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ON THE ESTIMATES OF THE CONVERGENCE
RATE OF THE FINITE DIFFERENCE SCHEMES
FOR THE APPROXIMATION OF SOLUTIONS
OF HYPERBOLIC PROBLEMS

Bosko Jovanovié

Abstract. Some new estimates of the convergence rate for hyperbolic initial-boundary
value problems are obtained. For a special case a convergence rate estimate compatible with the
smoothness of data is obtained.

1. Introduction

For a broad class of finite difference schemes for elliptic boundary value prob-
lems, of major interest are the estimates of the convergence rates compatible with
the smoothness of data [3, 7, 9], i.e.

lu—vllwe, <CHFllullwg,  s>k.

Here u denotes the solution of the original boundary value problem, v denotes
the solution of the corresponding finite difference scheme, h is the discretization
parameter, W3 denotes the Sobolev space, W2’” ,, denotes the discrete Sobolev space,
and C is a positive generic constant, independent of h and w.

Analogous estimates hold in the parabolic case [4]:
llu — U||W2k,:/2 <Chk ||u||W25,3/2 , s>k.

To the contrary, in a hyperbolic case, we only have weak estimates, not compatible
with the smoothness of data [5, 6]:

lu=vlle,wp,) < CR T lullys, s> k41
Recently, for the hyperbolic projection difference scheme, Zlotnik [12] has

obtained a convergence rate estimate of the order of 2(s — k)/3. In this paper we
show that, in the same cases, it is possible to obtain better estimates.
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2. State of the problem, preliminaries and denotations

As an example let us consider the initial boundary value problem (IBVP) for
the equation of the vibrating string in the domain @ = (0,1) x (0,T:

0*u/ot* = 9%*u/0z?, (z,t) € Q,
(1) u(0,t) = u(1,t) =0, t €[0,t],
u(z,0) = ugp(z), Ou(z,0)/0t =0, z € (0,1).

Let Ly, ¢ > 1, be Lebesgue spaces of integrable functions, and W5 = W5 (0, 1)
be standard Sobolev spaces [11]. Let us also introduce spaces C(W35) and L, (WV5)
of functions defined on [0, 7] with values in W3, and norms

lullews) = max flu@®)llws  and  lullp,owg) = [ lu(®)llws

Lg-
te[0,T7]

In the following, we shall assume that ug(z) € W5(0,1), s > 1, and can be
oddly extended preserving the class, for x < 0 and x > 1. In other words, ug
satisfies the following conditions

uf0) = a1y =0,  j=0,1,...,[(s—1)/2].

The solution of the IBVP (1) satisfies an a priori estimate [8]

du|? du|? du(z,0)|” du(z,0) || A
@ s (15, +15],) = 12520, + 1], = vt

Lo
From (2), we obtain
llullewsy < Clluollwy C =const = V1 +772.

Differentiating equation (1), using estimate (2), we obtain the following esti-
mate

L2 Lo

ok

3) dxioth—i ||,

(k) ;
< 1<k< 0<j<k.
telo.1] <llug g, » <k<[s], 0<j<

2

Hence, all partial derivatives of the solution u(z,t) of order < [s] belong to
the space C(Ls). The solution can be oddly extended in z, for z < 0 and = > 1,
and evenly extended in ¢, for ¢ < 0, thus preserving its class.

Let @y, be a uniform mesh with the stepsize h = 1/n on [0,1], wp, = @y N
(0,1) and w;, = wy U {0}. Let v, and vz denote the upward and backward finite
differences:

v, = (v(z +h) —v(z))/h, vy = (v(z) —v(z —h))/h.

We define the following discrete norms

ol = ol = {1 3 v%x)}m, [olle = Blla, = {1 3 v%m)}m,

TEWH TEW,

2 2\1/2
and  lollwz, = (lvll + [vll,) "
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Let @, be a uniform mesh with the stepsize 7 = T'/(m — 1/2) on [—7/2,T],
wr =w,N(0,7) and w, = w,U{—7/2}. We shall introduce the following notations
v=o(t), d=v(t+7), v=0v(t—-71), V= v((j —1/2)7),
v=(w4+0)/2, v=(0-v)/T, vi=(v—0)/T.
For functions defined on the mesh @, x W, we define the following norms

lolle,wy,) = max (s Dllwz,

Ewr

1/q
P { ) ||v(-,t>||%2,h} |

tEwr

and

Let S, a S denote the Steklov smoothing operators in z and ¢

z+h/2 t+7/2
St =3 [ Cfend.  sf@n=r [ fwmnd

z—h/2 T Jt—7/2

Finally, let C' denote the positive generic constant, independent of h and 7.

3. Second order finite difference schemes

We approximate the IBVP (1) by the following weighted finite difference
scheme (FDS) [10]

(4) vg=[ov+ (1 —20)v+ 00z, T €wpy, tEuwr,
(5) v(0,t) = v(1,t) =0, tew,,
(6) v’ = vt = u(x), T € wp.

The solution of the FDS (4-6) satisfies the relation
N?(v) = |lvelly + 7° (0 = 0.25) [vea [, + [02]]7 = [o21l7 -
From here, for o > 1/4, we obtain

(7) max [T[[n < [v3]]n-
tewr

The inequality (7) holds also for o < 1/4 | if

1_
7 < hy/ 1 :O , co = const € (0,1) (conditional stability).
— 40

From the initial conditions (6) it follows that

(8) [0l = [uoelln = {h 3 {uo(x+hf)L—u0(x)r}1/2

TEW,

- {h > (% /:Mu'o(f)df)z}m

TEW),

z+h

< { > / [%(5)]2015}1/2 = [lugllz, < lluollwy -

_Jx
TEW),
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Using the inequality [10]
lolln < [oalln/ (2V2),

from (7) and (8) we obtain
9) Blle. s,y < C lluollw; -

Let u be the solution of IBVP (1) and v the solution of FDS (4-6). The error
z = u — v satisfies the conditions

(10) zg=[02+ (1 —=20)z+ 0%z + 1, T Ewy, tEw,,
(11) 2(0,t) = 2(1,t) =0, tewr,
(12) 20 =2t =z, 7/2) — uo(2), T € wp,

where ¢ =uz —[ca+ (1 — 20) u + 0 4],z.
The a priori estimate
(13) max [Z;(|n < max N(2) < [2lln + —= 1¥llz, . (z2)
tEwr tEwr \/_
where ¢ =1 for 0 > 1/4, and ¢ = ¢y for o0 < 1/4, holds.

Estimating 20 and v, using the Bramble-Hilbert lemma [1, 2], for c;h < 7 <
coh, we obtain the estimate [5]

max [Z[ln < Ch7° lullwy @),  2<s<4,
tEwr

i.e.

(14) HE”CT(W%,,L) < OP 2 ullws () » 2<s<4.

On the other hand, using

z+h T/2 )
zg—[(xT/Q)—umO h/ / ; 823 dn dt d¢

we easily obtain

[22lln < {h S b h(r/2) /erh/ < il a >2dtd£}1/2

(15) TEW,
2

93y
ot* 0z

r
< — max .
4 teo,1) Lo

Using relations S2(8%u/0x?) = uaz and S7(0%u/0t?) = w;, and equation

(1), we can represent the function 1 in the following manner

0%u 0%u 0%u 0%u 0tu
_ [ q2 2 2 2 2 ¢2 2 g2
Y(z,t) (S 2 SZS; t2> <S SZS; > oS S s 350

z+h t+'r 4
€~ qf <= o]\ 0*u(n.0)
/l @ )O‘T>aMﬁWM5
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S A € — =] In—tl\ 9*u(&, ¢
— 1- 1-— >~ dC dnd
L I, /<" <>( ) (- ) T acance
x+h t+1 _ 4
/ [ (- 1tl) (1=t Dt
oen Jt T 0x?0t?

From this we obtain

C(h*+12) || 0*u
) <
Wj(m: )| = \/F Ox20t2 Lz(e)’
where e = (x — h,z+ h) x (t —7,t + 7), and
84
1 < :
(16) HI/}HLLT(L“) <CO(h+7)? mo [0,T] ‘3:1:2315 L2(0,1)

From (13), (15), (16) and (3) we obtain the following convergence rate estimates
for FDS (4-6)

max [Z||n < C’(h+7)2||u0||wé; ) ie.
tewr

(17) IZll e, wz,) < C (h+7)* Iluollwy -

On the other hand, from the self-evident inequalities

ax [z, < max [@,||, + max [v;]|, < ma ‘(% + [lugllp, <2 |lugll
max [z max [[u max [v max ||— U, U
tEwr “lh = tEwr wilh tEwr “ilh = tefo,1] || Oz Lo 0fLz = 1Lz
we obtain

(18) 1Zlc,wy,) < Clluollw; -

By the K-method for the real interpolation [11] we introduce the function
spaces (W, Wi)5 (0< 0 <1,k=0,1,2,...). Let R denote the linear operator
defined by Rugp = Z. From (17) and (18) it follows that R is a bounded operator
from W into D = C (W, h) and also from W} into D. Therefore, R is a bounded

operator from (W.}, W )9,2 into D, and the interpolation inequality

(19) IRl wp wiye.sn < IR b 1Rl

holds. Here

R
IR = sup 14
v Tl

is the standard operator norm of R : A — B.
From (17-19) we get

HE”CT(W%’,L) <C(h+71)* lwoll w2, way,.s -
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Further from [11], we have
(W, Wh)ga =W 0T = w3+t p<g<i.
Setting 360 + 1 = s, we finally obtain the required convergence rate estimate

(20) e g,y < C R+ flugllwy,  1<s <4
The estimate of the form (20) is obtained in [12].

4. Fourth—order scheme

Let us approximate equation (1) by

7_2_h2

(21) Vg = VUgz + 13 Vttaz -

Here observe that (21) reduces to (4) for o = 1/2—h?/(1272). The scheme is stable

for
T<hy1-3¢/2, ¢o = const € (0,2/3).

The initial conditions can be approximated by
72
(22) ’UOZ’UIZ’U,O-Fg’U/O,mj, T EwWy.

Then, . Y
— '
[vall, < Twoell, + C7° A7 [uoell, < llully,

and the a priori estimates (7) and (9) hold.

The error z = u — v satisfies the conditions (10), (11) and
(23) 22 =2 =z, 7/2) —up(x) — 0.125 73 ug 4z ,

as well as the a priori estimate (13).

The following representations hold:

Q=-a /;M/:/nwh(f—n)(l B2 o) dcande

e 365u(f,n>
6h J, / <§_S> dtioz D
and

1/}(1., t) GhT z+h / /tt-i--r

—) - (6—77)3} X

€ — =] € =t 8u(n, Q)
x(l— - )(1 - >846t2 d¢ dn d¢
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1 xz+h t+1 ¢ 2
—@/% . /t {%(C—n)—((—nf]x

h T Ozt ot?

Herefrom we obtain

5
(24) [221],, < C (72 B2 + h%) lug ||, < C h* fluolyys »
o com+ |22 < ont ol
L1+ (L2n) = Ozt o2 O(La) 0llw;
and
(25) Zlle, wy ) < Ch* [luollwg -
Further,
max [z, < max [@,|, + max [7.]|,
TEWS, TEWS TEWS
< max ou + 21, < Cllugll,. < Clluoll
~tefo,1] || 0z ||, ellh = 0llLy = 0llwy -

From here follows the inequality (18).

From (25) and (18), by interpolation we obtain the following convergence rate
estimate of FDS (21), (5), (22)

(26) Zlle,qwz,) < Ch3E lugllwy , 1< s<6.

5. The exact scheme

Set 7 = h (m = [T/h + 1/2]), and approximate equation (1) by the explicit
FDS

(27) Vit = Uz -
The solution of the IBVP (1) can be represented by the series
o0
u(z,t) = Z ay, cos krt sinkwx .

k=1

It could easily be verified that u(z,t) satisfies equation (27). The error z = u — v
also satisfies (27), and the a priori estimate

max [Z:ll, < [[Zg”ha

holds. Hence, the convergence rate depends only on the approximation of the initial
conditions.
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If the initial conditions are approximated by (6), then the relations (15) and
(18) hold; so we have

Flle, w,) < C B2 lluollws
and
(28) 1Zllc,wz,) < Clluollwy -
By interpolation we obtain

(29) Elle,w,) < Ch* Mluollws, 1< s<3.

If initial conditions are approximated by (22), then (24) holds and
(30) Zlle, wy ) < Ch* luollws -

By interpolation, from (28) and (30) we obtain the estimate in the form (29), for
1 < s < 5. The estimate (29) is compatible with the smoothness of data.

The obtained results can be transferred, without difficulties, to the IBVP
with nonhomogeneous second initial condition

Ou(x,0)/0t = uy(x).
Let the conditions

up € W5H0,1),  s>1,
s—2
2

W0y =ul (1) =0, j:O,l,...,[ ] for s> 2

hold. Then, we substitute the initial conditions (6) and (22) by

T T
Uozu0—§S£u1, v1:u0+553u1, T E wy,
and
2 3 2
T T T° = 2h°T 4
’UO = Uug — 5 S§U1 + § U, x2z — T qu'l',
2 3 2
T T 7 — 2h*T
’U1 = ug + 5 Siul + § Ug,zz + T S;l’u,’l’ .

Hence, the estimates of the forms (20), (26) and (29) hold, where on the right-
hand-side ||uol|yy, is replaced by [Juollyy, + ||u1||W2s_1.

The following diagram graphically represents the relation between the
smoothness of initial data (s) and the order of convergence (o.c.) in estimates
(14), (20), (26) and (29).
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