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ON THE ESTIMATES OF THE CONVERGENCE

RATE OF THE FINITE DIFFERENCE SCHEMES

FOR THE APPROXIMATION OF SOLUTIONS

OF HYPERBOLIC PROBLEMS

Bo�sko Jovanovi�c

Abstract. Some new estimates of the convergence rate for hyperbolic initial-boundary
value problems are obtained. For a special case a convergence rate estimate compatible with the
smoothness of data is obtained.

1. Introduction

For a broad class of �nite di�erence schemes for elliptic boundary value prob-
lems, of major interest are the estimates of the convergence rates compatible with
the smoothness of data [3, 7, 9], i.e.

ku� vkWk
2;h

� C hs�k kukW s
2
; s > k :

Here u denotes the solution of the original boundary value problem, v denotes
the solution of the corresponding �nite di�erence scheme, h is the discretization
parameter,W s

2 denotes the Sobolev space,W k
2;h denotes the discrete Sobolev space,

and C is a positive generic constant, independent of h and u.

Analogous estimates hold in the parabolic case [4]:

ku� vk
W

k;k=2
2;h

� C hs�k kuk
W

s;s=2
2

; s > k :

To the contrary, in a hyperbolic case, we only have weak estimates, not compatible
with the smoothness of data [5, 6]:

ku� vkC� (Wk
2;h)

� C hs�k�1 kukW s
2

; s > k + 1 :

Recently, for the hyperbolic projection di�erence scheme, Zlotnik [12] has
obtained a convergence rate estimate of the order of 2(s� k)=3. In this paper we
show that, in the same cases, it is possible to obtain better estimates.
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2. State of the problem, preliminaries and denotations

As an example let us consider the initial boundary value problem (IBVP) for
the equation of the vibrating string in the domain Q = (0; 1)� (0; T ]:

(1)

@2u=@t2 = @2u=@x2; (x; t) 2 Q;
u(0; t) = u(1; t) = 0; t 2 [0; t];

u(x; 0) = u0(x); @u(x; 0)=@t = 0; x 2 (0; 1):

Let Lq, q � 1, be Lebesgue spaces of integrable functions, andW s
2 =W s

2 (0; 1)
be standard Sobolev spaces [11]. Let us also introduce spaces C(W s

2 ) and Lq(W
s
2 )

of functions de�ned on [0; T ] with values in W s
2 , and norms

kukC(W s
2
) = max

t2[0;T ]
ku(t)kW s

2
and kukLq(W s

2
) = k ku(t)kW s

2
kLq :

In the following, we shall assume that u0(x) 2 W s
2 (0; 1), s � 1, and can be

oddly extended preserving the class, for x < 0 and x > 1. In other words, u0
satis�es the following conditions

u
(2j)
0 (0) = u

(2j)
0 (1) = 0; j = 0; 1; . . . ;

�
(s� 1)=2

�
:

The solution of the IBVP (1) satis�es an a priori estimate [8]

(2) max
t2[0;1]

�@u@t

2

L2

+

@u@x

2

L2

�
=

@u(x; 0)@t


2

L2

+

@u(x; 0)@x


2

L2

= ku00k2L2
:

From (2), we obtain

kukC(W 1

2
) � C ku0kW 1

2

; C = const =
p
1 + ��2 :

Di�erentiating equation (1), using estimate (2), we obtain the following esti-
mate

(3) max
t2[0;T ]

 @ku

@xj@tk�j


L2

� ku(k)0 kL2
; 1 � k � [s] ; 0 � j � k :

Hence, all partial derivatives of the solution u(x; t) of order � [s] belong to
the space C(L2). The solution can be oddly extended in x, for x < 0 and x > 1,
and evenly extended in t, for t < 0, thus preserving its class.

Let !h be a uniform mesh with the stepsize h = 1=n on [0; 1], !h = !h \
(0; 1) and !�h = !h [ f0g. Let vx and vx denote the upward and backward �nite
di�erences:

vx =
�
v(x+ h)� v(x)

�
=h ; v�x =

�
v(x) � v(x� h)

�
=h :

We de�ne the following discrete norms

kvkh = kvkL2;h
=

�
h
X
x2!h

v2(x)

�1=2

; [[vkh = [[vkL2;h
=

�
h
X
x2!�h

v2(x)

�1=2

;

and kvkW 1

2;h
=
�kvk2h + [[vk2h

�1=2
:
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Let !� be a uniform mesh with the stepsize � = T=(m � 1=2) on [��=2; T ],
!� = !� \(0; T ) and !�� = !� [f��=2g. We shall introduce the following notations

v = v(t); v̂ = v(t+ �); �v = v(t� �); vj = v
�
(j � 1=2)�

�
;

v = (v + v̂)=2; vt = (v̂ � v)=�; v�t = (v � �v)=�:

For functions de�ned on the mesh !h � !� we de�ne the following norms

kvkC� (W 1

2;h)
= max

t2!��

kv(�; t)kW 1

2;h

and

kvkLq;� (L2;h) =

�
�
X
t2!�

kv(�; t)kqL2;h

�1=q

:

Let Sx a St denote the Steklov smoothing operators in x and t

Sxf(x; t) =
1

h

Z x+h=2

x�h=2

f(�; t) d�; Stf(x; t) =
1

�

Z t+�=2

t��=2

f(x; �) d�:

Finally, let C denote the positive generic constant, independent of h and � .

3. Second order �nite di�erence schemes

We approximate the IBVP (1) by the following weighted �nite di�erence
scheme (FDS) [10]

vt�t = [� v̂ + (1� 2�) v + � �v]x�x; x 2 !h; t 2 !� ;(4)

v(0; t) = v(1; t) = 0; t 2 !� ;(5)

v0 = v1 = u0(x); x 2 !h:(6)

The solution of the FDS (4{6) satis�es the relation

N2(v) � kvtk2h + �2 (� � 0:25) [[vtxk2h + [[vxk2h = [[v0xk2h :
From here, for � � 1=4, we obtain

(7) max
t2!��

[[vxkh � [[v0xkh:

The inequality (7) holds also for � < 1=4 , if

� � h

r
1� c0
1� 4�

; c0 = const 2 (0; 1) (conditional stability).

From the initial conditions (6) it follows that

[[v0xkh = [[u0;xkh =

�
h
X
x2!�h

�
u0(x+ h)� u0(x)

h

�2�1=2

(8)

=

�
h
X
x2!�h

�
1

h

Z x+h

x

u00(�) d�

�2�1=2

�
� X

x2!�h

Z x+h

x

[u00(�)]
2 d�

�1=2

= ku00kL2
� ku0kW 1

2

:
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Using the inequality [10]

kvkh � [[vxkh=
�
2
p
2
�
;

from (7) and (8) we obtain

(9) kvkC� (W 1

2;h)
� C ku0kW 1

2

:

Let u be the solution of IBVP (1) and v the solution of FDS (4{6). The error
z = u� v satis�es the conditions

zt�t = [� ẑ + (1� 2�) z + ��z]x�x +  ; x 2 !h; t 2 !� ;(10)

z(0; t) = z(1; t) = 0; t 2 !� ;(11)

z0 = z1 = u(x; �=2)� u0(x); x 2 !h;(12)

where  = utt � [� û+ (1� 2�)u+ � �u]x�x.

The a priori estimate

(13) max
t2!��

[[zxkh � max
t2!��

N(z) � [[z0xkh +
1p
c
k kL1;� (L2;h)

where c = 1 for � � 1=4, and c = c0 for � < 1=4, holds.

Estimating z0x and  , using the Bramble-Hilbert lemma [1, 2], for c1h � � �
c2h, we obtain the estimate [5]

max
t2!��

[[zxkh � C hs�2 kukW s
2
(Q) ; 2 � s � 4 ;

i.e.

(14) kzkC� (W 1

2;h)
� C hs�2 kukW s

2
(Q) ; 2 � s � 4 :

On the other hand, using

z0x =
�
u(x; �=2)� u(x; 0)

�
x
=

1

h

Z x+h

x

Z �=2

0

Z t

0

@3u(�; �)

@t2@x
d� dt d�

we easily obtain

(15)

[[z0xkh �
�
h
X
x2!�h

h�2 h (�=2)3
Z x+h

x

Z �=2

0

�
@3u(�; t)

@t2@x

�2

dt d�

�1=2

� �2

4
max
t2[0;T ]

 @3u

@t2@x


L2

:

Using relations S2x
�
@2u=@x2

�
= ux�x and S2t

�
@2u=@t2

�
= ut�t, and equation

(1), we can represent the function  in the following manner

 (x; t) =

�
S2t
@2u

@t2
� S2xS

2
t

@2u

@t2

�
�
�
S2x
@2u

@x2
� S2xS

2
t

@2u

@x2

�
� � �2 S2xS

2
t

@4u

@x2@t2

= � 1

h�

Z x+h

x�h

Z �

x

Z t+�

t��

(� � �)

�
1� j� � xj

h

��
1� j� � tj

�

�
@4u(�; �)

@x2@t2
d� d� d�
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+
1

h�

Z x+h

x�h

Z t+�

t��

Z �

t

(� � �)

�
1� j� � xj

h

��
1� j� � tj

�

�
@4u(�; �)

@x2@t2
d� d� d�

� ��2

h�

Z x+h

x�h

Z t+�

t��

�
1� j� � xj

h

��
1� j� � tj

�

�
@4u(�; �)

@x2@t2
d� d� :

From this we obtain

j (x; t)j � C (h2 + �2)p
h�

 @4u

@x2@t2


L2(e)

;

where e = (x � h; x+ h)� (t� �; t+ �), and

(16) k kL1;� (L2;h) � C (h+ �)2 max
t2[0;T ]

 @4u

@x2@t2


L2(0;1)

:

From (13), (15), (16) and (3) we obtain the following convergence rate estimates
for FDS (4{6)

max
t2!��

[[zxkh � C (h+ �)2 ku0kW 4

2
; i.e.

kzkC� (W 1

2;h)
� C (h+ �)2 ku0kW 4

2

:(17)

On the other hand, from the self-evident inequalities

max
t2!��

[[zxkh � max
t2!��

[[uxkh + max
t2!��

[[vxkh � max
t2[0;T ]

@u@x

L2

+ ku00kL2
� 2 ku00kL2

we obtain

(18) kzkC� (W 1

2;h)
� C ku0kW 1

2
:

By the K-method for the real interpolation [11] we introduce the function

spaces (W k
2 ;W

k+1
2 )�;2 (0 < � < 1, k = 0; 1; 2; . . . ). Let R denote the linear operator

de�ned by Ru0 = z. From (17) and (18) it follows that R is a bounded operator
from W 4

2 into D � C� (W
1
2;h) and also from W 1

2 into D. Therefore, R is a bounded

operator from (W 1
2 ;W

4
2 )�;2 into D, and the interpolation inequality

(19) kRk(W 1

2
;W 4

2
)�;2!D � kRk1��

W 1

2
!D

kRk�W 4

2
!D

holds. Here

kRkA!B = sup
u6=0

kRukB
kukA

is the standard operator norm of R : A! B.

From (17{19) we get

kzkC� (W 1

2;h)
� C (h+ �)2� ku0k(W 1

2
;W 4

2
)�;2 :
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Further from [11], we have

(W 1
2 ;W

4
2 )�;2 =W 1��+4�

2 =W 3�+1
2 ; 0 < � < 1 :

Setting 3� + 1 = s, we �nally obtain the required convergence rate estimate

(20) kzkC� (W 1

2;h)
� C (h+ �)

2

3
(s�1) ku0kW s

2
; 1 � s � 4 :

The estimate of the form (20) is obtained in [12].

4. Fourth{order scheme

Let us approximate equation (1) by

(21) vt�t = vx�x +
�2 � h2

12
vt�tx�x :

Here observe that (21) reduces to (4) for � = 1=2�h2=(12�2). The scheme is stable
for

� � h
p
1� 3 c0=2 ; c0 = const 2 (0; 2=3) :

The initial conditions can be approximated by

(22) v0 = v1 = u0 +
�2

8
u0;x�x ; x 2 !h :

Then,
[[v0xkh � [[u0;xkh + C �2 h�2 [[u0;xkh � ku00kL2

and the a priori estimates (7) and (9) hold.

The error z = u� v satis�es the conditions (10), (11) and

(23) z0 = z1 = u(x; �=2)� u0(x) � 0:125 �2 u0;x�x ;

as well as the a priori estimate (13).

The following representations hold:

z0x = � �2

8h2

Z x+h

x�h

Z �

x

Z �+h

�

(� � �)

�
1� j� � xj

h

�
u
(5)
0 (�) d� d� d�

+
1

6h

Z �=2

0

Z x+h

x

�
�

2
� s

�3
@5u(�; �)

@t4@x
d� d�

and

 (x; t) =
1

6h�

Z x+h

x�h

Z �

x

Z t+�

t��

�
h2

2
(� � �)� (� � �)3

�
�

�
�
1� j� � xj

h

��
1� j� � tj

�

�
@6u(�; �)

@x4@t2
d� d� d�
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� 1

6h�

Z x+h

x�h

Z t+�

t��

Z �

t

�
�2

2
(� � �)� (� � �)3

�
�

�
�
1� j� � xj

h

��
1� j� � tj

�

�
@6u(�; �)

@x4@t2
d� d� d�:

Herefrom we obtain

[[z0xkh � C (�2 h2 + h4) ku(5)0 kL2
� C h4 ku0kW 5

2

;(24)

k kL1;� (L2;h)
� C (h4 + �4)

 @6u

@x4@t2


C(L2)

� C h4 ku0kW 6

2

and

(25) kzkC� (W 1

2;h)
� C h4 ku0kW 6

2
:

Further,

max
�2!��

[[zxkh � max
�2!��

[[uxkh + max
�2!��

[[vxkh

� max
t2[0;T ]

@u@x

L2

+ [[v0xkh � C ku00kL2
� C ku0kW 1

2

:

From here follows the inequality (18).

From (25) and (18), by interpolation we obtain the following convergence rate
estimate of FDS (21), (5), (22)

(26) kzkC� (W 1

2;h)
� C h

4

5
(s�1) ku0kW s

2
; 1 � s � 6 :

5. The exact scheme

Set � = h (m = [T=h+ 1=2]), and approximate equation (1) by the explicit
FDS

(27) vt�t = vx�x :

The solution of the IBVP (1) can be represented by the series

u(x; t) =

1X
k=1

ak cos k�t sin k�x :

It could easily be veri�ed that u(x; t) satis�es equation (27). The error z = u� v
also satis�es (27), and the a priori estimate

max
t2!��

[[zxkh � [[z0xkh ;

holds. Hence, the convergence rate depends only on the approximation of the initial
conditions.
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If the initial conditions are approximated by (6), then the relations (15) and
(18) hold; so we have

kzkC� (W 1

2;h)
� C h2 ku0kW 3

2
;

and

(28) kzkC� (W 1

2;h)
� C ku0kW 1

2

:

By interpolation we obtain

(29) kzkC� (W 1

2;h)
� C hs�1 ku0kW s

2
; 1 � s � 3 :

If initial conditions are approximated by (22), then (24) holds and

(30) kzkC� (W 1

2;h
) � C h4 ku0kW 5

2
:

By interpolation, from (28) and (30) we obtain the estimate in the form (29), for
1 � s � 5. The estimate (29) is compatible with the smoothness of data.

The obtained results can be transferred, without diÆculties, to the IBVP
with nonhomogeneous second initial condition

@u(x; 0)=@t = u1(x) :

Let the conditions

u1 2 W s�1
2 (0; 1) ; s � 1 ;

u
(2j)
1 (0) = u

(2j)
1 (1) = 0 ; j = 0; 1; . . . ;

�
s� 2

2

�
; for s � 2

hold. Then, we substitute the initial conditions (6) and (22) by

v0 = u0 � �

2
S2xu1 ; v1 = u0 +

�

2
S2xu1 ; x 2 !h ;

and

v0 = u0 � �

2
S2xu1 +

�2

8
u0;x�x � �3 � 2h2�

48
S4xu

00
1 ;

v1 = u0 +
�

2
S2xu1 +

�2

8
u0;x�x +

�3 � 2h2�

48
S4xu

00
1 :

Hence, the estimates of the forms (20), (26) and (29) hold, where on the right-
hand-side ku0kW s

2

is replaced by ku0kW s
2

+ ku1kW s�1
2

.

The following diagram graphically represents the relation between the
smoothness of initial data (s) and the order of convergence (o.c.) in estimates
(14), (20), (26) and (29).
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