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OPTIMAL PROBLEMS CONCERNING INTERPOLATION

METHODS OF SOLUTION OF EQUATIONS

Ion P�av�aloiu

Abstract. We consider optimality problems regarding the order of convergence of
the iterative methods which are obtained by inverse interpolation of Lagrange-Hermite type.
A similar problem for a class of Ste�ensen-type methods is solved.

Introduction

The inverse interpolation problem, connected with equation solution was es-
sentially approached in [5, 6, 7, 4]. In [4] it was shown that the most known
iteration methods, as: Newton's method, Chebyshev's method, chord method, as
well as various generalizations of them, are all obtained by means of Lagrange-
Hermite-type inverse interpolations. A classi�cation of these methods according
to their order of convergence is not beyond interest. In this paper we propose to
solve two extremum problems concerning the order of convergence of the iteration
methods obtained by the Lagrange-Hermite-type inverse interpolation and that of
the Ste�ensen-type method which follows from the preceding ones.

The Lagrange-Hermite-type inverse interpolation polynomial with n+1 nodes
(n 2 N), each node having a given multiplication order, leads to a class of (n+1)!
iteration methods. Out of this class of methods, we propose to determine the
method having the highest order of convergence. In the last part of the paper we
solve the same problem for a class of Ste�ensen-type iteration methods.

1. The inverse interpolation problems

and the determination of optimal iteration method

Let f : I ! R be a function, where I is an interval of the real axis. Denote by
E a set of n+1 distinct points from the interval I , namely E = fx1; x2; . . . ; xn+1g,
where xi 6= xj for i 6= j, i; j = 1; 2; . . . ; n+ 1.
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Consider the natural numbers �1; �2; . . . ; �n+1 and suppose that they satisfy

(1.1) �1 + �2 + � � �+ �n+1 = m+ 1; m 2 N:

It is a well-known fact that the numbers yji , j = 0; 1; . . . , �i = 1, i =
1; 2; . . . ; n+1 being given, there exists a unique polynomial P , of degree at most m,
which satis�es the relations

(1.2) P (j)(xi) = yji ; j = 0; 1; . . . ; �i � 1; i = 1; 2; . . . ; n+ 1:

The polynomial P satisfying the conditions (1.2) has the form:

(1.3) P (x) =

n+1X
i=1

�i�1X
j=0

�i�j�1X
k=0

yji
1

k! j!

�
(x � xi)

�i

!(x)

�(k)
x=xi

!(x)

(x� xi)�i�j�k
;

where:

(1.4) !(x) =

n+1Y
i=1

(x� xi)
�i :

If we suppose that the function f admits derivatives up to the (m+ 1)-th

order on the interval I , and if we put yji = f (j)(xi), j = 0; 1; . . . ; �i � 1, i =
1; 2; . . . ; n + 1, in (1.3), then P is the Hermite interpolating polynomial on the
nodes xi, i = 1; 2; . . . ; n + 1, associated with the function f , and the following
equality holds:

(1.5) f(x) � P (x) =
f (n+1)(�)

(m+ 1)!
!(x);

with � 2 I .
We shall suppose, in what follows, that f 0(x) 6= 0 for every x 2 I and denote

F = f(I). It follows that f : I ! F is bijective, hence there exists f�1 : F ! I and
the function f�1 admits derivatives up to the (m + 1)-th order, for every x 2 F .
The k-th order derivative, where k � m + 1, can be determined by means of the
following formula [7]:

(1.6) (f�1)(k)(y0)

=
X (2k � 2� i1)! (�1)k�1+i1

i2! i3! . . . ik! (f 0(x0))2k�1

�
f 0(x0)

1!

�i1�f 00(x0)
2!

�i2
� . . . �

�
f (k)(x0)

k!

�ik
;

where the above sum is extended over all integral and nonnegative solutions of the
system

(1.7)
i2 + 2i3 + � � �+ (k � 1)ik = k � 1;

i1 + i2 + � � �+ ik = k � 1:

If we suppose that the equation:

(1.8) f(x) = 0
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admits a root �x 2 I , then the hypothesis f 0(x) 6= 0 for every x 2 I leads to the
conclusion that this root is unique.

From f(�x) = 0 it follows that �x = f�1(0) and the problem of the approximate
solution of the equation (1.8) reduces to the determination of an approximation for
f�1(0). Let ' be a function which approximates the function f�1, at least in a
neighbourhood V0 of the point y = 0; thus an approximation formula of the form:

(1.9) f�1(y) = '(y) +R[f�1; y]

holds on the set V0.

Neglecting the function R[f�1; y] and putting y = 0 into (1.9), we obtain the
following approximation for �x:

(1.10) �x � '(0);

with an approximation error given by the inequality

(1.11) j�x� '(0)j � jR[f�1; 0]j:

There are two natural conditions to be imposed on the function ':

a) to approximate the function f�1(y) as well as possible, i.e. the number
R[f�1; 0] must be as small as possible;

b) to have some simplicity properties for the computation of its values.

The functions which agree with the second condition are (or rather seem so)
polynomials, since the computation of their values reduces to elementary arithmetic
operations.

Obviously, if we succeed in constructing the best approximating polynomial
for f�1 on the set V0, then the �rst condition will be satis�ed too.

In what follows we shall not approach the problem from this point of view;
therefore the function will be replaced by the Hermite interpolating polynomial
associated to the function f�1, on the set F , called Hermite inverse interpolating
polynomial. For this purpose, in the interpolating polynomial (1.3) we consider,

as interpolating nodes, the values yi = f(xi), i = 1; 2; . . . ; n + 1, while for yji ,

j = 0; 1; . . . ; �i � 1, i = 1; 2; . . . ; n + 1, we consider y
(0)
i = xi, i = 1; 2; . . . ; n + 1,

respectively y
(j)
i = (f�1)(j)(yi), i = 1; 2; . . . ; n+1, j = 1; 2; . . . ; �i�1. In this way

the polynomial (1.3) acquires the form:

(1.12) P (y) =
n+1X
i=1

�i�1X
j=0

�i�j�1X
k=0

(f�1)(j)(yi)
1

k! j!

�
(y � yi)

�i

!(y)

�(k)
y=yi

!(y)

(y � yi)�i�j�k
;

where:

(1.13) !(y) =

n+1Y
i=1

(y � yi)
�i :
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From (1.5) it follows that

(1.14) f�1(y)� P (y) =
[f�1(�)](m+1)

(m+ 1)!
!(y); where � 2 F .

Taking into account the fact that �x = f�1(0), from (1.14) one obtains:

(1:15) �x� P (0) =
[f�1(�1)]

(m+1)

(m+ 1)!
!(0)

where �1 is a point lying in the shortest interval which contains 0, f(x1), f(x2),
. . . , f(xn+1). Denoting this interval by F1 and putting:

(1:150) Mm+1 = sup
y2F1

j[f�1(y)](m+1)j;

it results, from (1.15),

(1.16) j�x� P (0)j � Mm+1

(m+ 1)!
j!(0)j

and, since yi = f(xi), i = 1; 2; . . . ; n+ 1,

(1.17) j�x� P (0)j � Mm+1

(m+ 1)!
jf(x1)j�1 � jf(x2)j�2 � . . . � jf(xn+1)j�n+1 :

From (1.17) it follows that if x1; x2; . . . ; xn+1 are chosen suÆciently close to
�x, then the values f(x1), f(x2), . . . , f(xn+1) are real numbers close to zero; so

much more the product
Qm+1

i=1 jf(xi)j�i will be close to zero. This remark allows us
to consider the value P (0) as an approximation for �x the root of the equation (1.8).

If P (0) is not a good enough approximation for �x, then we can construct, by
iterations, a sequence of approximations (xk)k�1, which, under certain conditions,
will be convergent, and limxk = �x.

More precisely, let x1; x2; . . . ; xn+1 be n+ 1 approximations of the root �x of
the given equation (1.8). We denote xn+2 = P (0) and replace one of the n + 1
nodes x1; x2; . . . ; xn+1, then continue the iteration process by the above described
procedure.

The problem which arises is to determine the interpolating node which should
be replaced at each iteration step in order to obtain a sequence of approximations
(xk)k�1 with a maximum order of convergence. To solve the problem, let us consider
the following equations:

P (t) = tn+1 � an+1t
n � ant

n�1 � � � � � a2t� a1 = 0;(1.18)

Q(t) = tn+1 � a1t
n � a2t

n�1 � � � � � ant� an+1 = 0;(1.19)

R(t) = tn+1 � ai1t
n � ai2 t

n�1 � � � � � aint� ain+1 = 0:(1.20)

where a1; a2; . . . ; an+1 are real number satisfying the conditions:

a1 + a2 + � � �+ an > 1; ai � 0; i = 1; 2; . . . ; n+ 1;(1.21)

an+1 � an � . . . � a2 � a1;(1.22)

while i1; i2; . . . ; in+1 is an arbitrary permutation of the numbers 1; 2; . . . ; n+ 1.

The following lemma holds:
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Lemma 1. If a1; a2; . . . ; an+1 satisfy the conditions (1.21), then any of the

equations (1.20) has a single positive and supraunitary root. If, in addition, the

condition (1.22) is also satis�ed and we denote by a, b, c, respectively, the positive

roots of the equations (1.18){(1.20), then

(1.23) 1 < b � c � a;

i.e. the equation (1.18) admits the greatest root.

Proof. Consider one of the (n + 1)! equations of the form (1.20) and denote
by s the greatest natural number for which ais 6= 0. We have ais+1 = ais+2 = . . . =

ain+1 = 0, and consider the function  (t) = R(t)=tn�s+1. We have  (1) = 1�ai1�
� � � � ais < 0 and limt!1  (t) = +1. Accordingly, the equation  (t) = 0 has at
least one supraunitary root and therefore R(t) = 0 has at least one supraunitary
root.

The uniqueness of this root follows easily if we consider the function f(t) =
�tn+1R(1=t) which satis�es the condition f 0(t) > 0, for t > 0.

In order to prove the inequalities (1.23) it is suÆcient to show that R(b) � 0
and R(a) � 0. Indeed, we have:

R(b)�Q(b) = (a1 � ai1)b
n + (a2 � ai2)b

n�1 + � � �+ (an � ain)b+ an+1 � ain+1

= (b� 1)[(a1 � ai1)b
n�1 + (a1 + a2 � ai1 � ai2)b

n�2 + � � �
+ (a1 + a2 + � � �+ an�1 � ai1 � ai2 � � � � � ain�1)b

+ a1 + a2 + � � �+ an � ai1 � ai2 � � � � � ain ] � 0;

since b > 1 and a1 + a2 + � � �+ as � ai1 � ai2 � � � � � ais � 0, s = 1; 2; . . . ; n.

The inequality R(a) � 0 can be proved analogously.

Consider now the permutation i1; i2; . . . ; in+1 of the numbers 1; 2; . . . ; n+ 1
for which the natural numbers �1; �2; . . . ; �n+1 satisfying the equality (1.1), can
be increasingly ordered, namely:

(1.24) �i1 � �i2 � . . . � �in � �in+1 :

We renumber, accordingly, the elements of the set E, i.e. we consider:

E = fxi1 ; xi2 ; . . . ; xin+1g

For the sake of clearness we shall set:

(1.25) as = �is ; s = 1; 2; . . . ; n+ 1

and

(1.26) us = xis ; s = 1; 2; . . . ; n+ 1;

and denote by H(y1; a1; y2; a2; . . . ; yn+1; an+1; f
�1 j x) the Hermite interpolating

polynomial, corresponding to the nodes yi = f(ui), i = 1; 2; . . . ; n+ 1, having the
multiplicities a1; a2; . . . ; an+1 respectively.
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From (1.17) we obtain

(1.27)
���x�H(y1; a1; y2; a2; . . . ; yn+1; an+1; f

�1 j 0)
�� � Mm+1

(m+ 1)!

n+1Y
i=1

jf(xi)j�i

where Mm+1 has the same meaning as in (1.15).

Let u1; u2; . . . ; un+1 be the n + 1 initial approximations of the root �x of
the equation (1.8). We construct the sequence (up)p�1 by means of the following
iterative procedure:

(1.28)

(
un+2 = H(y1; a1; y2; a2; . . . ; yn+1; an+1; f

�1 j 0); . . . ;
un+s+1 = H(ys; a1; ys+1; a2; . . . ; ys+n; an+1; f

�1 j 0); s = 2; 3; . . . :

DenotingM = supy2F j[f�1(y)](m+1)j and � = supx2I jf 0(x)j, we obtain from
(1.27) and (1.28):

(1.29) j�x� xn+s+1j � M�m+1

(m+ 1)!

n+1Y
i=1

j�x� us+i�1jai ; s = 1; 2; . . . :

Denoting �i = � m
p
�M=((m+ 1)!) j�x�uij, i = 1; 2; . . . , we obtain from (1.29):

(1.30) �n+s+1 �
n+1Y
i=1

�ais+i�1; s = 1; 2; . . . :

Suppose that there exists a d 2 R, 0 < d < 1, such that:

�i � d!
i

; for i = 1; 2; . . . ; n+ 1,

where ! is the positive root of the equation (1.18). That number is called the
convergence order of the method (1.28).

If we suppose that:

�i � d!
i

; i = n+ 2; n+ 3; . . . ; n+ s

then, taking into account (1.30) and the fact that ! is a root of the equation (1.18),
we derive the inequality:

(1.31) �n+s+1 � d!
n+s+1

;

which is valid for every s = 1; 2; . . . .

Taking into account the expression for �n+s+1, we obtain the following in-
equality for the error evaluation:

(1.32) j�x� un+s+1j � 1

� m
p
�M=((m+ 1)!)

� d!n+s+1 ; s = 1; 2; . . . ;

from which it follows that limn!1 up = �x.
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Observe that both the error evaluation and the convergence speed of the
method (1.28) depend on the root ! of the equation (1.18). The greater ! is, the
better the upper limit obtained for the error is.

Consider all (n+ 1)! permutations of the set f1; 2; . . . ; n+ 1g. To each per-
mutation i1; i2; . . . ; in+1 it corresponds an iterative method of the form:

(1.33)

8><
>:

xn+2 = H(yi1 ;�i1 ; yi2 ;�i2 ; . . . ; yin+1 ;�in+1 ; f j 0);
xn+s+2 = H(yi1+s;�i1 ; yi2+s;�i2 ; . . . ; yin+1+s;�in+1 ; f j 0);

s = 1; 2; . . . :

All together we have (n+ 1)! iterative methods.

Taking into account Lemma 1 and the results proved so far, we can state the
following theorem:

Theorem 1. Out of the (n+1)! iterative methods of the form (1.33), with the

greatest convergence order (namely these which provide the best upper limit for the

absolute value of the error) is that determined by the permutation i1; i2; . . . ; in+1,
which orders increasingly the numbers �i1 , �i2 , . . . , �in+1 , namely �i1 � �i2 �
. . . � �in+1 .

2. Some particular cases

In what follows we shall discuss some particular cases.

Case n = 0. From (1.12) one obtains the Taylor inverse interpolating poly-
nomial:

(2.1) T (y) = x1 +
[f�1(y1)]

0

1!
(y � y1) + � � �+ [f�1(y1)]

(�1�1)

(�1 � 1)!
(y � y1)

�1�1

while, from (1{6), we obtain the following expressions for the successive derivatives
[f�1(y)](k), k = 1; 2; 3; 4:

[f�1(y)]0 =
1

f 0(x)
;(2.2)

[f�1(y)]00 = � f 00(x)

[f 0(x)]3
;(2.3)

[f�1(y)]000 = �f
000(x)f 0(x) � 3[f 00(x)]2

[f 0(x)]5
;(2.4)

[f�1(y)](4) =
�[f 0(x)]2f (4)(x) + 10f 0(x)f 00(x)f 000(x)� 15[f 00(x)]3

[f 0(x)]7
:(2.5)

From (2.2) and (2.1) for �1 = 2 we obtain:

T (y) = x1 +
1

f 0(x1)
(y � f(x1));
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which, for y = 0, leads to the approximation x2 of �x given by the expression

(2.6) x2 = x1 � f(x1)

f 0(x1)
;

i.e. to the Newton's method.

From (2.2), (2.3) and (2.1) for �1 = 3 we obtain Chebyshev's method, i.e.:

(2.7) x2 = x1 � f(x1)

f 0(x1)
� 1

2

f 00(x1)f
2(x1)

[f 0(x1)]3
:

Lastly, from (2.2), (2.3), (2.4) and (2.1) for �1 = 4 we obtain:

(2.8) x2 = x1 � f(x1)

f 0(x1)
� 1

2

f 00(x1)f
2(x1)

[f 0(x1)]3
+
f 000(x)f 0(x1)� 3[f 00(x1)]

2

6[f 0(x1)]5
:

From the above methods one obtains by iterations the corresponding sequence
of approximations, which has the order of convergence 2, 3 and 4 respectively.

As one may notice from (2.5) and (1.6), for �1 � 5 the expressions for the
derivatives [f�1(y)](k), k � 4, have a more complex form. That is why the methods
following from (2.1) in these cases are also complex.

Case n = 1. In this case, from (1.12) it follows:

(2.9) P (y) =

2X
i=1

�i�1X
j=0

�i�j�1X
k=0

[f�1(yi)]
(j) 1

k! j!

�
(y � yi)

�i

!(y)

�(k)
y=yi

!(y)

(y � yi)�i�j�k

where:

(2.10) !(y) = (y � y1)
�1 � (y � y2)

�2 :

From (2.9) one obtains two iterative methods; namely denoting as above by
H(y1;�1; y2;�2; f

�1 j y) the Hermite inverse interpolating polynomial (2.9), we
�nd:

(2.11)

(
x3 = H(y1;�1; y2;�2; f

�1 j 0); x1; x2 2 I; y1 = f(x1); y2 = f(x2);

xn+1 = H(yn�1;�1; yn;�2; f
�1 j 0); n = 3; 4; . . . ;

or

(2.12)

(
x3 = H(y1;�2 : y2;�1; f

�1 j 0); x1; x2 2 I; y1 = f(x1); y2 = f(x2);

xn+1 = H(yn�1;�2; yn;�1; f
�1 j 0); n = 3; 4; . . . :

The characteristic equations which provide the convergence orders for the two
methods are:

(2.13) t2 � �2t� �1 = 0



Optimal problems concerning interpolation methods of solution of equations 121

for the method (2.11), and:

(2.14) t2 � �1t� �2 = 0

for the method (2.12).

If we denote by !1 and !2, respectively, the positive roots of equations (2.13)
and (2.14), then it is clear that �2 � �1 implies !2 � !1; so, the method with
optimal convergence order is the method (2.11).

Now, we shall briey discuss some particular cases.

From (2.9), for �1 = �2 = 1, we obtain

(2.15) P1(y) = (y1 � y2)
�1[(y � y2)f

�1(y1)� (y � y1)f
�1(y2)]

wherefrom, taking into account the fact that f�1(y1) = x1 and f�1(y2) = x2, we
�nd for y = 0

(2.16) x3 = x1 � x2 � x1
f(x2)� f(x1)

f(x1) = x1 � f(x1)

[x1; x2; f ]
;

where [x1; x2; f ] stands for the �rst order divided di�erence of the function f on
the nodes x1 and x2, and

(2.17) xn+1 = xn�1 � f(xn�1)

[xn�1; xn; f ]
; n = 3; 4; . . . ;

which is the chord method. In this case, since �1 = �2, the above method has the
same convergence order as the other one, which follows from (2.12), i.e.:

(2.18) xn+1 = xn � f(xn)

[xn�1; xn; f ]
; n = 2; 3; . . . :

The order of convergence of the method (2.17) is !1 =
1
2 (1 +

p
5).

Now we shall discuss the case �1 = 1, �2 = 2. In this particular case, we
obtain from (2.9) the following iterative methods:

(2.19) xn+2 = xn � xn+1 � xn
f(xn+1)� f(xn)

f(xn)

+
f(xn+1)� f(xn)� (xn+1 � xn)f

0(xn+1)

[f(xn+1)� f(xn)]2f 0(xn+1)
f(xn) � f(xn+1);
n = 1; 2; . . . ; x1; x2 2 I

and

(2.20) xn+2 = xn+1 � xn � xn+1
f(xn)� f(xn+1)

f(xn+1)

+
f(xn)� f(xn+1)� (xn � xn+1)f

0(xn)

[f(xn)� f(xn+1)]2f 0(xn)
f(xn) � f(xn+1):
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Solving the corresponding characteristic equations, we �nd the convergence orders
!1 = 1+

p
2 for the method (2.19) and !2 = 2 for the method (2.20).

As we showed above, the Hermite inverse interpolating polynomial leads to
a large class of iterative methods. The convergence order of each method depends
on the number of interpolating nodes, the order of multiplicity of these ones, and,
essentially, on the interpolating node replaced at each iteration step by that calcu-
lated at the precedent one.

As Ste�ensen notices, in the case of the method (2.17), the convergence order
of this method can be increased if at each iteration step the element xn depends
in a certain manner on xn�1. More exactly, if we consider a function ' : I ! R

having the property '(�x) = �x, where �x is the root of the equation (1.8), and if we
put xn = '(xn�1) into (2.17), then we obtain the sequence (xn)n�1 generated by
Ste�ensen's method:

xn = xn�1 � f(xn�1)

[xn�1; '(xn�1); f ]
; n = 2; 3; . . . ;

which has, as it is well known, the convergence order 2.

3. Ste�ensen-type optimal methods

Now let 'i : I ! R, i = 1; 2; . . . ; n + 1, be n + 1 functions satisfying the
following conditions:

a) 'i(�x) = �x, i = 1; 2; . . . ; n+ 1, where f(�x) = 0;

b) there exist real numbers �i � 0 and pi > 1, i = 1; 2; . . . ; n + 1 such that
the functions 'i and f satisfy the relations:

(3.1) jf('i(x))j � �ijf(x)jpi ; i = 1; 2; . . . ; n+ 1:

Denote by u0 2 I an initial approximation of the root �x of the equation (1.8).
We construct n+ 1 interpolating nodes x1i , i = 1; 2; . . . ; n+ 1, as follows:

(3.2) x11 = '1(u0); x1i+1 = 'i+1(x
1
i ); i = 1; 2; . . . ; n:

Denote y1i = f(x1i ), i = 1; 2; . . . ; n + 1, and consider the natural numbers
�1; �2; . . . ; �n+1 satisfying:

(3.3) �1 + �2 + � � �+ �n+1 = m+ 1:

Using the interpolating nodes y1i , i = 1; 2; . . . ; n+1, and the Hermite interpo-
lating polynomial on these nodes, with the orders of multiplicity �1; �2; . . . ; �n+1,
respectively, we obtain, for �x the following approximations:

(3.4) u1 = H(y11 ;�1; y
1
2;�2; . . . ; y

1
n+1;�n+1; f j 0);

with the error evaluation given by the inequality:

(3.5) j�x� u1j � M

(m+ 1)!
j!(0)j;
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where

(3.6) j!(0)j = jf(x11)j�1 � jf(x12)j�2 � . . . � jf(x1n+1)j�n+1 :
Now, using the property b) of the function 'i, we derive

jf(x11)j = jf('1(u0))j � �1jf(u0)jp1 ;
jf(x12)j = jf('2(x11))j � �2jf(x11)jp2 � �2�

p2
1 jf(u0)jp1p2 ;

and generally,

(3.7) jf(x1i+1)j � �i+1�
pi+1
i �

pipi+1
i�1 � . . . � �p2p3�...�pi+11 jf(u0)jp1p2�...�pi+1 ;

i = 0; 1; . . . ; n:

If we denote

(3.8) � =

n+1X
i=1

�i

iY
j=1

pj

and

(3.9) � =

n+1Y
i=1

�
�i+
Pn+1

j=i+1
�j
Qj

k=i+1
pk

i ;

having in view (3.6) and (3.7), we obtain:

(3.10) j!(0)j � �jf(x0)j�

wherefrom, taking into account (3.5), we derive

(3.11) j�x� u1j � M�

(m+ 1)!
jf(u0)j�:

If we consider now some element uk�1 that we have constructed by iterations,
then the interpolating nodes xi, i = 1; 2; . . . ; n+ 1 corresponding to the next step
are obtained, as in the case of the �rst step, by using the relations:

(3.12) xk1 = '1(uk�1); xki+1 = 'i+1(x
k
i ); i = 1; 2; . . . ; n; k � 2:

Constructing the element uk, as for the �rst step, we obtain:

(3.13) uk = H(yk1 ;�1; y
k
2 ;�2; . . . ; y

k
n+1;�n+1; f j 0); k � 2;

where yki = f(xki ), i = 1; 2; . . . ; n+ 1, which infers the following inequality

(3.14) j�x� ukj � �M

(m+ 1)!
jf(uk�1)j�; k = 2; 3; . . . :

Denoting � = supx2I jf 0(x)j, the inequalities (3.14) take the form

j�x� ukj � M���

(m+ 1)!
j�x� uk�1j�; k = 1; 2; . . . ;
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wherefrom we derive

(3.15) j�x� ukj � C1=(1��)
�
C1=(1��)j�x� u0j

��k
;

where C =M���=((m+ 1)!).

If we assume that

(3.16) C1=(1��)j�x� u0j < 1;

then, from (3.15), it follows

(3.17) lim
k!1

uk = �x:

Let (k1; k2; . . . ; kn+1) and (j1; j2; . . . ; jn+1) be two arbitrary permutations of
numbers 1; 2; . . . ; n+ 1. Also denote

H(y) = H(y1k1 ; �j1 ; y
1
k2 ; �j2 ; . . . ; y

1
kn+1 ;�jn+1 ; f j y)

the Hermite inverse inerpolating polynomial having the interpolating nodes yki with
the orders of multiplicity �ji , i = 1; 2; . . . ; n+ 1.

With the above denotations, let us consider the following class of iterative
methods

(3.18) us = H(ysk1 ;�j1 ; y
s
k2 ;�j2 ; . . . ; y

s
kn+1 ;�jn+1 ; f j 0); s = 1; 2; . . .

where
yski = f(xski); i = 1; 2; . . . ; n+ 1; s = 1; 2; . . . ;

and

(3.19)
xsk1 = 'k1(us�1);

xski = 'ki(x
s
ki�1 ); i = 2; 3; . . . ; n+ 1; s = 1; 2; . . . ;

u0 being the given initial approximation.

To each couple of permutations (k1; k2; . . . ; kn+1) and (j1; j2; . . . ; jn+1) of the
numbers 1; 2; . . . ; n + 1 there corresponds an iterative method of the form (3.18).
All together we have again (n+ 1)! iterative methods of this form.

We shall attempt to determine, out of the (n + 1)! iterative methods, that
one for which the number � given by (3.8) is maximum.

With this goal in view, we shall �rst prove the following lemma:

Lemma 2. Let p1; p2; . . . ; pn+1 with �1; �2; . . . ; �n+1, with pi � 1, �1 � 1,
i = 1; 2; . . . ; n+ 1, be real numbers satisfying

(3.20) p1 � p2 � . . . � pn+1; �1 � �2 � . . . � �n+1:

Out of all numbers of the form

(3.21) � = �j1pk1 + �j2pk1pk2 + � � �+ �jn+1pk1pk2 � . . . � pkn+1 ;
where (j1; j2; . . . ; jn+1) and (k1; k2; . . . ; kn+1) are arbitrary permutations of the set

(1; 2; . . . ; n+ 1), the greatest one is the number

(3.22) �max = �1p1 + �2p1p2 + � � �+ �n+1p1p2 � . . . � pn+1:
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Proof. From the �rst set of inequalities (3.20) it follows that the inequality:

(3.23) �j1pk1 + �j2pk1pk2 + � � �+ �jn+1pk1pk2 � . . . � pkn+1
� �j1p1 + �j2p1p2 + � � �+ �jn+1p1p2 � . . . � pn+1

holds for any two permutations (j1; j2; . . . ; jn+1) and (k1; k2; . . . ; kn+1) of the num-
bers (1; 2; . . . ; n+ 1).

Let us denote

(3.24) bi = p1p2 � . . . � pi; i = 1; 2; . . . ; n+ 1;

and let us attempt to prove the inequality

(3.25) �j1b1 + �j2b2 + � � �+ �jn+1bn+1 � �1b1 + �2b2 + � � �+ �n+1bn+1

for every permutation (j1; j2; . . . ; jn+1). We shall do that by induction. For n = 0
the inequality (3.25) is obvious, since n+ 1 = 1 and hence �j1 = �1. Suppose now
that the inequality is true for n pairs of numbers (�1; b1), (�2; b2), . . . , (�n; bn),
namely

(3.26) �j1b1 + �j2b2 + � � �+ �jnbn � �1b1 + � � �+ �nbn;

where �1 � �2 � . . . � �n and b1 � b2 � . . . � bn. Using the inequalities
b1 � b2 � . . . � bn � bn+1 and �1 � �2 � . . . � �n � �n+1, as well as the
induction hypothesis (3.26), and assuming that j1 = i, 1 � i � n, we have

�j1b1 + �j2b2 + � � �+ �jn+1bn+1

= b1(�j1 + �j2 + � � �+ �jn+1) + (b2 � b1)�j2 + (b3 � b1)�j3 + � � �
+ (bn+1 � b1)�jn+1

� b1(�1 + �2 + � � �+ �n+1) + (b2 � b1)�1 + (b3 � b1)�2 + � � �
+ (bi � b1)�i�1 + (bi+1 � b1)�i+1 + � � �+ (bn+1 � b1)�n+1

� b1(�1 + �2 + � � �+ �n+1) + (b2 � b1)�2 + (b3 � b1)�3 + � � �
+ (bi � b1)�i + (bi+1 � b1)�i+1 + � � �+ (bn+1 � b1)�n+1

= b1�1 + b2�2 + � � �+ bn+1�n+1; q.e.d.

The above lemma leads to the following theorem:

Theorem 2. Out of all (n+ 1)! iterative methods of the form (3.12){(3.13),
the one for which the maximum convergence order given by (3.8) is achieved, is the

method determined by the order of the numbers pi, �i, i = 1; 2; . . . ; n+1, given by

the inequalities (3.20).

The proof of this theorem follows immediately from Lemma 2 and (3.8).
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