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CONVOLUTION IN COLOMBEAU'S SPACES

OF GENERALIZED FUNCTIONS

PART II. THE CONVOLUTION IN Ga

M. Nedeljkov, S. Pilipovi�c

Abstract. We investigate various de�nitions of convolution and the Fourier transform in
spaces Ga which are studied in the �rst part of the paper.

0. Introduction

Colombeau's theory of generalized functions [3] made on the problem of mul-
tiplication of distributions has a lot of applications in the theory of linear and
nonlinear partial di�erential equations; see the recent monograph [2] and the ref-
erences there. In this paper we are concerned with the convolution in spaces Ga
of Colombeau's generalized functions and the relations between the convolution
of Schwartz distributions and the generalized convolution of corresponding gener-
alized functions. For this reason some problems on the convolution of Schwartz
distributions are examined.

For the notion and the properties of the spaces Ga and the a-integral we refer
to Part I. In Section 1, we give several new de�nitions of convolution in the space
Ga. In Section 2, the relations between di�erent de�nitions of convolution and the
convolution of generalized functions which are determined by convolvable Schwartz
distributions are treated. In Section 3, we introduce the a; �-Fourier transform of
elements from Ga and give the well known exchange formulae for a = t.

1. De�nitions of convolution

Colombeau has given two de�nitions of convolution [3]: the convolution when
one generalized function has a compact support, and the tempered convolution. Let
F , G be in G, and let one of them, suppose G, have compact support. Then the
c-convolution is de�ned by

F
c
�G(x) =

Z
K

F (x� y)G(y) dy; x 2 Rn ;
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where K is a compact set which contains supp(G) in his interior. It is proved in
[3] that this convolution exists and is a generalized function.

Let F , G be in G� . The � -convolution is de�ned by

F
�
�G(x)

Z �

F (x� y)G(y) dy; x 2 Rn :

It is proved in [3] that this convolution exists and is a generalized tempered function.

Now, we shall introduce several new de�nitions of convolution. LetG1,G2 be
in G and letK1, K2 be their supports. We say that they have compatible supports
if for every bounded set I there exists an open bounded set J such that y 2 I implies
(y�K1)\K2 � J . For suchG1 andG2 we de�neG1�G2 =

R
J
G1(x�y)G2(y) dy,

x 2 I . One can prove that the de�nition is correct in the same way as Colombeau
has proved the correctness of the integration on a compact set [3]. In that case we
have G1 �G2 = G2 �G1 and P (D)(G1 �G2) = (P (D)G1) �G2. If g1; g2 2 D0

have compatible supports, then G1 = Cd(g1), G2 = Cd(g2) also have compatible
supports. By using [1] one can prove that for such g1 and g2, G1 �G2 � g1 � g2.
Let G1, G2 be in Ga. We de�ne

G1
a;�
� G2(x) =

Z
a;�

G1(x� y)G2(y) dy; x 2 Rn ;

where �", " > 0, is a unit net which corresponds to a (see Part I).

Proposition 1. Assume G1;G2 2 Ga. Then:

a) G1
a;�
� G2 2 G;

b) @�(G1
a;�
� G2) = (@�G1

a;�
� G2), where � 2 Nn0 ;

c) @hj (G1
a;�
� G2) = (@hjG1)

a;�
� G2, where h 2 H, j 2 f1; . . . ; ng (see Part I );

d) Let G1 and G2 be in
�

Ga. Then G1
a;�
� G2 2 Ga.

The assertion in a) means the following: for G1; G2 2 Ea, N1; N2 2 Na

(G1 +N1)
a;�
� (G2 +N2) = G1

a;�
� G2 + (G1

a;�
� N2 +N1

a;�
� G2 +N1

a;�
� N2) 2 G;

because G1
a;�
� G2 2 EM and (G1

a;�
� N2 +N1

a;�
� G2 +N1

a;�
� N2) 2 N . Assertion

in d) is similar.

Proof . We shall prove only a). Let G1 and G2 be in Ea. We adopt the
notation for G1 and @� in (12) from part I by using symbols with subindex 1,
and for G2 with subindex 2. Then, for given compact set K and every � 2 N

n
0

let N = [
1 + 
2 + N1 + N2 + n] + 1. Because of Lebesgue's theorem for the
di�erentiation under the integral sign, we have����@�

Z
G1(�"; x� y)G2(�"; y)�"(y) dy

���� =
����
Z
@�G1(�"; x� y)G2(�"; y)�"(y) dy

����
� sup
jyj�a(b=")+r

x2K

�
c1�1(jx � yj)

	
"�N1 � sup

jyj�a(b=")+r

�
c2�2(jyj)

	
"�N2c5"

�nbn

� c"�N ; �" 2 AN ; x 2 K; " 2 (0;1);
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where c = c1c2c3c4c5b
n+
1+
2 , � = minf�1; �2g; c3, c4, 
1, 
2 are given by �(�c +

a(x)) � c3x

1 , �(a(x)) � c4x


2 , �c = supfjxj : x 2 Kg+ r, c5 = �n=2�
�
(n + 2)=2

�
.

Thus we have proved that G1
a;�
� G2 2 EM . Similarly, one can prove that if G1 or

G2 belongs to Na, then G1
a;�
� G2 2 N .�

Corollary. If
�

�a = �a then G1
a;�
� G2 2 Ga. Particularly, let G1 and G2

be in Gt. Then G1
t;�
� G2 2 Gt.

If for every pair of unit nets �1", �2", G1
a;�1
� G2 � G1

a;�2
� G2, then we say

that there exists the associated a-convolution G1
a

�G2 = G1
a;�1
� G2. If for every

pair of unit nets �1", �2", G1
a;�1
� G2 �G1

a;�2
� G2 2 N ( 2 Na), then there exist

the a-convolution in G (in Ga) G1
a

�G2 = G1
a;�1
� G2 = G1

a;�2
� G2.

If the equality holds in g.d. (g.t.d.) sense, then there exist g.d. (g.t.d.) a-

convolution G1
a

�G2.

2. Relations between di�erent convolutions

Colombeau has proved [3] that if G1, G2 are from G� and one of them has

a compact support, then G1
c
�G2 = G1

�
�G2. Let G1;G2 2 Ga and one of them

has a compact support. Then there exists G1
a;�
� G2 and G1

c
�G2 = G1

a;�
� G2 for

every �", " > 0; thus G1
a

�G2 = G1
c
�G2.

Example. Let G(�"; x) = 1, x 2 Rn , " > 0. Clearly, G 2 G� (R). Then

G
�
�G(�"; x) =

Z
F (�)("x) dx = 2��(0)="; " > 0;

G
�;�
� G(�"; x) =

Z 1="a

�1="a

dx = 2="a; " > 0;

where �", " > 0, is a unit net. So G
t;�
� G is not associated with G

�
�G.�

Since we shall compare the Schwartz's convolution of distribution and the
a; �-convolutions of corresponding generalized functions, we need several assertions
concerning Schwartz's distributions.

If � 2 A1, then we put Æ�(x) = �1=�(x) = �n�(�x), x 2 R
n , � 2 N. This

is a Æ-sequence (for the general de�nitions we refer to [1]). For a unit net �" we
put " = 1=�, � 2 N and the corresponding sequence will be called a unit sequence
and denoted by �� (instead of �1=�). Such sequences belong to the set of special
approximate unit sequences introduced in [9] (see [4]): a sequence from D, � 2 N,
is a special approximate unit if

(1)

8>><
>>:

(i) For every compact setK � R
n there is �K > 0 such that ��(x) = 1,

x 2 K, � > �K ;

(ii) For every m 2 N0 , pm(��) � cm, � 2 N, where pm(') =
supfj@�'(x)j : j�j � m; x 2 Rng, ' 2 D.
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Proposition 2. Let hk, k 2 N, be a sequence of distributions from D0. If

(a)

8<
:

there exists m 2 N0 such that for every " > 0 there exist a compact set
K � R

n and k0 2 N with the property : ' 2 D, supp(') \K = ? )
jhhk; 'ij � "pm(') if k > k0,

then

(b)

�
for every special approximate unit �� the sequence hhk; ��i, converges
(when � !1 ) uniformly for k 2 N.

Proof . The proof is similar to the proof of \(b)) (c)" in [4, (1.1) Proposition]
with the remark that for �r as in this proof and a special approximate unit �� we
have hhk�r; �p � �qi = 0 for p; q > �0.�

It is proved in [4] that the de�nitions of convolutions of Schwartz, Vladimirov,
Schiraishi, Chevalley and Mikusi�nski are equivalent (see also [5]). Recall, [4, (1.1)
Proposition and (1.3) Theorem], f; g 2 D0 are convolvable i� one of the following
equivalent conditions is satis�ed:

For every ' 2 D, f(x)g(y)'(x + y) 2 D0L1 , x; y 2 Rn ;(I)

For every ' 2 D and every special approximate unit �� inD(R2n ),

hf(x)g(y); '(x + y)��(x; y)i converges when � !1;
(II)

(Special approximate unit means that a �� has a compact support.)

(III)

8<
:

For every ' 2 D there is an m 2 N0 such that for every " > 0
there is a compact set K � R

2n such that if  2 D(R2n ), and
supp( ) \K = ?, then jhf(x)g(y); '(x + y) (x; y)ij � "pm( ).

Note that there are several other equivalent conditions.

Proposition 3. a) Let f; g 2 D0 be convolvable, and let Æk be a delta sequence.
Then for hk(x; y) = (f � Æk)(x) (g � Æk)(y), k 2 N, x; y 2 R

n , the condition (a)
from Proposition 2 holds (with the same m, K as in (III)). Particularly, for any
strong approximate unit �� , � 2 N, from D(R2n ) we have that h(f � Æk)(x) (g �
Æk)(y); ��(x; y)i, � !1, converges uniformly for k 2 N.

b) hf � g; 'i = lim
�!1

h(f � Æ�)(x) (g � Æ�)(y)'(x+ y); ��(x; y)i, ' 2 D(Rn ).

Proof . a) By using the condition (III) and the notation from there, we have

hf(x)g(y)'(x+y);  (x; y)i = hf(x)g(y); '(x+y) (x; y)i = h@lF (x)@sG(y); �(x; y)i;

where �(x; y) = '(x+y) (x; y) 2 D(R2n ), supp(�) � Ix�Iy; Ix and Iy are bounded
intervals in Rn and f = @lF in Ix and g = @sG in Iy for some l; s 2 Nn0 and some
continuous functions F and G. Thus we obtain

jhf(x)g(y); '(x + y) (x; y)ij =

����
ZZ

Ix�Iy

F (x)G(y)(�@lx)(�@
s
y)�(x; y) dx dy

����
� "pm( ):
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Assume now that (a) from Proposition 2, with " replaced with 2", does not
hold. Since on Ix, respectively on Iy, we have f �Æk = @l(F �Æk), g�Æk = @s(G�Æk),
k 2 N, after the same procedure we get that there is a subsequence rk, k 2 N, of
natural numbers such that����
ZZ

Ix�Iy

(F � Ærk)(x) (G � Ærk)(y) (�@
l
x)(�@

s
y)�(x; y) dx dy

���� > 2"pm( ); k 2 N:

This is in a contradiction with the fact that F � Ærk ! F uniformly on Ix and
G � Ærk ! G uniformly on Iy, when k !1. The assertion a) is proved.

b) The previous part implies that for every k 2 N, f � Æk and g � Æk are
convolvable. Put

ak;� = h(f � Æk)(x) (g � Æk)(y)'(x + y); ��(x; y)i; k; � 2 N:

We have

ak;�
�!1
�! ak = h(f � Æk) � (g � Æk); 'i

k!1
�! hf � g; 'i;

ak;�
k!1
�! a� = hf(x)g(y)'(x + y); ��(x; y)i

�!1
�! hf � g; 'i:

Since Proposition 3 implies ak;�
�!1
�! ak uniformly for k 2 N, from the well

known properties of a double sequence we have

lim
k!1
�!1

ak;� = lim
k!1

lim
�!1

ak;� = lim
�!1

lim
k!1

ak;� = lim
�!1

a�;� :

All above implies the assertion b).�

By [8] we have (for ' 2 D(Rn ))

hf � g; 'i = lim
k!1

hf(x) (g � �')(x); �k(x)i = lim
k!1

hf(x)g(x)'(x + y); �k(x)i;

where �k, k 2 N, is a strong unit sequence from D(Rn ).

In the same way as Proposition 3 one can prove

Proposition 4. lim
m!1

hfm(x)gm(y); �m(x)'(x+ y)i = hf � g; 'i, ' 2 D(Rn ),

where fn = f � Æm, gm = g � Æm, m 2 N and �m, m 2 N, is a strong unit sequence
from D(Rn ).

Proposition 5. Let f; g be in D0, G1 = Cd(f), G2 = Cd(g). If there exists
f � g in the distributional sense and for some a 2 A, G1 and G2 are in Ga, then

there exists G1
a;�
� G2, and G1

a;�
� G2 � f � g, for all unit nets �", " > 0, and thus

G1
a

�G2 � f � g.

Proof . Proposition 1 a) implies G1
a;�
� G2 2 G for every unit net �", " > 0,

and Proposition 4 implies that

lim
"!0

ZZ
G1(�"; x� y)G2(�"; y)�"(y)'(x) dx dy = hf � g; 'i:

This implies the assertion.�
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Corollary. With the same notation as in Proposition 5 we have G1
a

�G2 =

G2
a

�G1.

Proof . It follows from f � g = g � f in D0.�

Corollary. If g1, g2 are in D0F and g1 � g2 exists in D; then there exists

an a 2 A such that for any �, G1
a;�
� G2 exists. Thus G1

a

�G2 � g1 � g2, where
G1 = Cd(g1), G2 = Cd(g2).

3. Fourier transform

We shall de�ne the a; �-Fourier transform of elements from Ga. Let G 2 Ga.
We de�ne Fa;� : Ga ! Gt by Fa;�(G)(x) =

R
a;�

G(y)e�ixy dy, x 2 Rn .

Proposition 6. Fa;� : Ga ! Gt.

Proof . Let G 2 Na. For c > 0 we have����
Z
G(�"; y)e

�ixy�"(y) dy

���� �
Z
jyj�a(b=")+r

jG(�"; y)j dy

� c"�(q)�N � c(1 + jxj)"�(q)�N :

This means that Fa;�(Na) � Nt. Similarly, we have Fa;�(Ea) � Et.�

If for every two unit nets �1", �
2
", " > 0, which correspond to a, Fa;�1(G) =

Fa;�2(G) (g.t.d.), then we say that there exists the a-Fourier transform in g.t.d.
sense Fa(G) = Fa;�1(G). In the sequel, we shall consider t-Fourier transform.

Proposition 7. Let G1, G2 be in Gt and �", " > 0, be a unit net. Then:

a) hFt;�(G); 'i = hG; F (')i. Particularly, for every G 2 Gt there exists
Ft(G) (in g.t.d. sense);

b) If Ft(G1) = Ft(G2) (g.t.d.), then G1 = G2 (g.t.d.);

c) Ft(G1
t;�
� G2) = Ft(G1)Ft(G2) (g.t.d.);

d) Ft(@
�
G) = (ix)�Ft(G) (g.t.d.), � 2 Nn0 .

Proof . a) We have

hFt;�(G); 'i =

Z �Z
t;�

G(y)e�ixy dy

�
'(x) dx =

Z
t;�

G(y)F (')(y) dy

=

Z
G(y)F (')(y) dy = hG; F (')i:

b) This assertion follows from Proposition 7 a) and the fact that the Fourier
transform is a bijection of S onto S.



Convolution in Colombeau's spaces of generalized functions, II 111

c) The corollary of Proposition 1 implies G1
t;�
� G2 2 Gt. For any ' 2 S we

have

hFt(G1
t;�
� G2); 'i = hG1

t;�
� G2; F (')i

=

ZZ �Z
t

G1(x1 � y)G2(y)'(z) dy

�
e�ix1z dz dx

=

ZZ �Z
t

G1(x1 � y)G2(y)'(z) e
�i(x1�y)ze�iyz dy

�
dz dx1:

If we put x = x1 � y, y = y, z = z, we obtain

hFt(G1
t;�
� G2); 'i =

ZZ �Z
t

G1(x)G2(y)'(z)e
�ixze�iyz dy

�
dz dx

=

Z �Z
Ft(G2)(z)G1(x)'(z)e

�ixz dz

�
dx =

Z
Ft(Ft(G2'))(x)G1(x) dx

=

Z
t

Ft(Ft(G2'))(x)G1(x) dx =

Z
t
�Z

Ft(G2)(z)G1(x)'(z)e
�ixz dz

�
dx

=

Z
Ft(G1)(z)Ft(G2)(z)'(z) dz:

This follow from Proposition 7 a), since Ft(G)' is a rapidly decreasing function for
�xed " > 0.

d) We have

hFt(@
�
G); 'i = h@�G; F (')i = hG; @�F (')i (�1)j�j

= hG; F ((ix)�')i (�1)j�j = (�1)j�j h(ix)�Ft(G); 'i:�

Proposition 7 implies the following one.

Proposition 8. If G1;G2;G3 2 Gt and �", " > 0, is a unit net, then:

(i) G1
t;�
� G2 =G2

t;�
� G1 (g.t.d.);

(ii) (G1
t;�
� G2)

t;�
� G3 = G1

t;�
� (G2

t;�
� G3) (g.t.d.);

(iii) @�(G1
t;�
� G2) = @�G1

t;�
� G2 (g.t.d.), � 2 Nn0 .

Let us de�ne the inverse a; �-Fourier transform of elements from Ga. Let
G 2 Ga. We de�ne F�1

a;� : Ga ! Gt by

F�1
a;�(G)(x) = (2�)�n

Z
a;�

G(y)eixy dy; x 2 Rn :

All the facts which hold for Fa;�, hold also for F�1
a;�. Furthermore, we have

hFt(F
�1
t

(G)); 'i = hF�1
t

(G); F (')i = hG; 'i; G 2 Gt; ' 2 D;

i.e. F�1
t

is the inverse of Ft in the g.t.d. sense. For unit nets �1;", �2;", " > 0, we
have

hG1
t;�1
� G2; 'i = hFt(F

�1
t

(G1
t;�1
� G2)); 'i = hFt(F

�1
t

(G1)F
�1
t

(G2)); 'i

= hFt(F
�1
t

(G1
t;�2
� G2)); 'i = hG1

t;�2
� G2; 'i:
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This implies that there exists the g.t.d. t-convolution for every G1, G2 from Gt:

G1
t

�G2 = G1
t;�1
� G2.

Proposition 9. Let G be in Gt such that G � g, g 2 S 0. Then xjG � xjg;

Ft(G) � F (g), and Ft(@
h
jG)(x) � ixjFt(G)(x), for h 2 H, j 2 f1; . . . ; ng.

Proof . One can easily prove the �rst two assertions by using Proposition 8 of
Part I. So we shall prove only the last one. Let ' 2 D. Then, by Proposition 7 d),

hFt(@
h
jG); 'i(�") =

Z
Ft(@jG(�"; � ) � �h("))(x)'(x) dx

=

Z
supp(�)

ixjFt(G)(�"; x)Ft(�h("))(x)'(x) dx:

We shall use the fact that for any compact set K j1�F (�h("))(x)j � ch(")n, x 2 K.
Since for g 2 S 0, F (@jg)(x) = ixjF (g)(x), x 2 R

n and (i) and (ii) hold, we have
that there exists a function B 2 L1, which depends on ', and there exist an N 2 N,
and an � > 0 such that

jixjFt(G)(�"; x)'(x)j � B(x); x 2 Rn ; 0 < " < �; � 2 AN :

Let A(�") =
�
hFt(@hjG); 'i � hixjFt(G); 'i

�
(�"). Then

jA(�")j =

Z
supp(')

B(x) j1� F (�h("))(x)j dx;

and lim"!0; �2AN jA(�")j = 0, because h(")! 0 as "! 0.�
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