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SOME COMMUTATIVITY THEOREMS FOR s-UNITAL RINGS

WITH CONSTRAINTS ON COMMUTATORS

H.A. S. Abujabal and V. Peri�c

Abstract. Continuing the investigation of [1], [2], [3] and [10], we prove here some

commutativity theorems for s-unital rings R satisfying the polynomial identity xt[xn; y]yt
0

=

�xs
0

[x; ym]ys, resp. xt[xn; y]yt
0

= �ys[x; ym]xs
0

, where m;n; s; s0; t and t0 are given non-negative
integers such that m > 0 or n > 0 and t+ n 6= s0 +1 or m+ s 6= t0 +1 for m = n. The additional
assumption in these theorems concern some torsion freeness of commutators in R.

1. Introduction. Throughout this paper R will be an associative ring (may
be without identity 1), Z(R) will represent the center of R, N(R) the set of all
nilpotent elements of R, and C(R) the commutator ideal of R. By R0 we denote
the opposite ring of R, i.e. the ring with the same elements and addition as R, but
with opposite multiplication Æ de�ned by x Æ y = yx for all x; y in R0. We will omit
the sign Æ of the multiplication in R0, as it is usual for the sign � of the multiplication
in R.

A ring R is called left, resp. right s-unital if x 2 Rx, resp. x 2 xR for all
x in R. If R is both left and right s-unital, then R is said to be s-unital. If R
is s-unital (resp. left or right s-unital), then, for every �nite subset F of R, there
exists an element e in R such that ex = xe = x (resp. ex = x or xe = x) for all x
in F .

By [x; y] we denote the commutator xy�yx of two elements x; y in a ring R. If
n is a positive integer, then we say for R to have the property Q(n) if commutators
in R are n-torsion free, i.e. if n[x; y] = 0 implies [x; y] = 0 for all x; y in R. Obviously,
any n-torsion free ring R has the property Q(n), and if a ring R has the property
Q(n), then R has also the property Q(m) for all divisors m of n. It is clear that R
is left, resp. right s-unital if and only if R0 is right, resp. left s-unital, and that, for
any positive integer n, R has the property Q(n) if and only if R0 has this property.
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We investigate here the commutativity of a ring R which satis�es the poly-
nomial identity

xt[xn; y]yt
0

= �xs
0

[x; ym]ys for all x; y in R; (1)

resp.

xt[xn; y]yt
0

= �ys[x; ym]xs
0

for all x; y in R: (10)

For t0 = s0 = 0, the identity (1), resp. (10) becomes

xt[xn; y] = �[x; ym]ys for all x; y in R, (2)

resp.
xt[xn; y] = �ys[x; ym] for all x; y in R. (20)

If an identity with the sign � occurring in it is denoted by (k), then we denote
by (k+), resp. (k�) this identity with the sign +, resp. � instead of �.

In [10] Psomopoulos proved the following result.

Theorem P [10, Theorem 1 and Theorem 2]. Let R be a ring with identity

1 satisfying the polynomial identity (2+) for some positive integers m, n and some

non-negative integers s, t. If n > 1 and R is n-torsion free, then R is commutative.

Also, if m, n are relatively prime, then R is commutative.

For s = t0 = 0, the identities (1) and (10) reduce to

xt[xn; y] = �xs
0

[x; ym] for all x; y in R (3)

and
xt[xn; y] = �[x; ym]xs

0

for all x; y in R, (30)

respectively. The commutativity of a left or right s-unital ring R satisfying (3) or
(30) has been investigated in [1]. Especially was proved

Theorem AP [1, Theorem 1]. Let R be a left or right s-unital ring with

polynomial identity (3) or (30). If m > 1, n � 1, and R has the property Q(m) for
n > 1, then R is commutative.

If s = s0 = 0, the identities (1) and (10) reduce to the identity

yt[xn; y]xt
0

= �[x; ym] for all x; y in R (4)

considered in [2]. For s = t = 0, (1) and (10) become

[xn; y]yt
0

= �xs
0

[x; ym] for all x; y in R (5)

and
[xn; y]yt

0

= �[x; ym]xs
0

for all x; y in R, (50)

respectively. Passing to the opposite ring R0, the identities (5) and (50) can be
rewritten in the form

yt
0

[xn; y] = �[x; ym]xs
0

for all x; y in R0 (6)
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and
yt

0

[xn; y] = �xs
0

[x; ym] for all x; y in R0, (60)

respectively. For R instead of R0, the last two identities were considered in [3].

For m = n = 0, any ring R satis�es both (1) and (10). If

[ [x; y]; x] = 0 for all x; y in R, (7)

especially, if all commutators in R are central, then the identities (1) and (10) can
be rewritten in the form

nxn+t�1[x; y]yt
0

= �mxs
0

[x; y]ym+s�1 for all x; y in R. (8)

Thus, for m = n, m + s = t0 + 1 and n + t = s0 + 1, any ring R satisfy-
ing (7), especially any ring R with central commutators, satis�es both (1+) and
(10+). Therefore, for non-negative numbers in the identities (1) and (10) we all along
assume that m > 0 or n > 0, and m 6= n if n+ t� 1 = s0 and m+ s� 1 = t0.

2. First we observe that under an additional assumption the integers m and
n in Theorem P, can be interchanged. In fact, the theorem can be improved as
follows:

Theorem 1. Let R be a ring satisfying (2) or (20) for m � 1, n � 1, and
having the property Q(d) for d = (m;n). If, moreover, R is left or right s-unital

for m+ s > 1 and n+ t > 1, then R is commutative.

Proof . By an argument used in the proof of [1, Lemma 4], we can prove that,
form m+ s > 1 and n+ t > 1, the ring R is s-unital. Hence, for this case, we can
assume that R is a ring with identity 1 (see [7, Proposition 1]).

If n = 1 and t = 0, then R is commutative by a special version of [11,
Hauptsatz 3] stated in [1] which will be cited here as Theorem S.

If n = 1 and t > 0, then we set in (2), resp. (20), x + 1 for x and combine
the identity obtained with (2), resp., (20) to get ((x + 1)t � xt)[x; y] = 0 for all
x; y in R. For t = 1 this means that [x; y] = 0 for all x; y in R, and thus, R is
commutative. If t > 1, then the last identity yields [x; y] = f(x)[x; y] for all x; y
in R, where f(X) 2 Z[X ] is a polynomial all monomials of which are of degree at
least one. Hence, R is commutative by Theorem S.

Similarly, we can prove that R is commutative for m = 1.

Now, we suppose that m > 1 and n > 1. The proof, we give here for the sake
of completeness, di�ers from the proof of Theorem P only in the �nal phase where
we use Theorem S. To prove that C(R) � N(R), by [8, Theorem 1], it suÆces to
take

x =

�
0 1
0 0

�
; y =

�
0 0
0 1

�
; in Z2�2

for the case of the identity (2). In the case of the identity (20), one should take� 1 0

0 0

�
instead of

� 0 0

0 1

�
.
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Next we prove that N(R) � Z(R). Let a be an arbitrary element in N(R).
Then there exists a positive integer p such that

ak 2 Z(R) for all integers k � p, p minimal. (9)

If p = 1, then a 2 Z(R). Suppose that p > 1. We set b = ap�1 to get a
contradiction. Obviously,

[bk; x] = bk[b; x] = [b; x]bk = 0 for all x in R and all integers k > 1. (10)

In view of (10), the identity (2), resp. (20) yields

xt[xn; b] = 0 for all x in R. (11)

Therefore, setting 1 + b for y in (2), resp. (20), one gets, in account of (10)
and (11),

m[x; b](1 + sb) = 0 for all x in R, resp. m(1 + sb)[x; b] = 0 for all x in R.

Hence, by (10), m[x; b]b = 0, resp. mb[x; b] = 0 for all x in R, and thus,

m[x; b] = 0 for all x in R. (12)

Similarly, from (2), resp. (20) one gets

[b; ym]ys = 0 for all y in R, (13)

resp.
ys[b; ym] = 0 for all y in R. (130)

By (13), resp. (130), from (2), resp. (20), we easily get

n(1 + tb)[b; y] = 0 for all y in R, resp. n[b; y](1 + tb) = 0 for all y in R,

hence, by (10), nb[b; y] = 0 resp. n[b; y]b = 0 for all y in R, and thus

n[x; b] = 0 for all x in R. (14)

Since R has the property Q(d) for d = (m;n), then (12) and (14) imply

[x; b] = 0 for all x in R, i.e. ap�1 2 Z(R); (15)

which is a contradiction. Thus, we proved that

C(R) � N(R) � Z(R): (16)

In view of (16) and [9, Lemma 3], the identities (2) and (20) can be rewritten
in the form

nxn+t�1[x; y] = �m[x; y]ym+s�1 for all x; y in R. (17)
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Now, setting x+1 for x in (17) and combining the identity obtained with (17), one
gets

n((x+ 1)n+t�1 � xn+t�1)[x; y] = 0 for all x; y in R. (18)

Similarly, from (17), interchanging x and y, and taking in account (16), one
derives

m((x + 1)m+s�1 � xm+s�1)[x; y] = 0 for all x; y in R. (19)

For m = dm1, n = dn1, the integers m1; n1 are relatively prime, and by Q(d),
(18) and (19) imply

n1[x; y] = f(x)[x; y] for all x; y in R (20)

and
m1[x; y] = g(x)[x; y] for all x; y in R, (21)

where f(X), g(X) are polynomials in Z[X ] all monomials of which have degree at
least one. Since m1, n1 are relatively prime, then from (20) and (21), for some
integers m2, n2, it follows

[x; y] = (n2f(x) +m2g(y))[x; y] for all x; y in R.

Hence, R is commutative by Theorem S.

In [6, Theorem 8] Harmanci showed that \If n > 1 and R is a ring with
1 which satis�es the identities [xn; y] = [x; yn] and [xn+1; y] = [x; yn+1] for all
x; y 2 R, then R must be commutative". Bell [4, Theorem 6] extended this result
to any pair of relatively prime integers m and n instead of n and n + 1. The
following result, generalizing Bell's result, was proved in [1] as Theorem 8.

Theorem 2. Let m > 1 and n > 1 be �xed relatively prime integers, m0 � 1,
n0 � 1, and r, s and t be given non-negative integers. If R is an s-unital (resp.
left or right s-unital) ring satisfying both identities

xt[xm
0

; y] = �yr[x; ym]xs and xt[xn
0

; y] = �yr[x; yn]xs for all x; y in R,

or

xt[xm
0

; y] = �xs[x; ym]yr and xt[xn
0

; y] = �xs[x; yn]yr for all x; y in R,

(if r = 0), then R is commutative.

Now, we prove the following similar result generalizing also Bell's result.

Theorem 3. Let m;n;m0; n0 be �xed positive, and s, s0, t �xed non-negative

integers. Further, let R be a ring satisfying both identities

xt[xm
0

; y] = �xs
0

[x; ym]ys and xt[xn
0

; y] = �xs
0

[x; yn]ys for all x; y in R (22)

or

xt[xm
0

; y] = �ys[x; ym]xs
0

and xt[xn
0

; y] = �ys[x; yn]xs
0

for all x; y in R. (220)

If, moreover, R is s-unital (resp. left or right s-unital for s0 = 0), and has the

property Q(d), where d = (m;n) (resp. d = (m;n;m0; n0), for s0 = 0), then R is

commutative.
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Proof . Actually, R is s-unital, and thus by [7, Proposition 1], we can assume
that R is a ring with identity 1.

For m = 1 or n = 1 (resp. m0 = 1 or n0 = 1 if s0 = 0), we can see, as in
the proof of Theorem 1 (using [5, Lemma] for s0 > 0), that R is commutative. For
m > 1 and n > 1 (resp. m0 > 1 and n0 > 1 for s0 = 0), instead of (12), (resp. (14)),
we get now (12) and (14) (resp.

m0[x; b] = 0 and n0[x; b] = 0 for all x in R). (23)

By the property Q(d) this implies (15). Similarly (for s0 = 0), instead of (21) (resp.
(20)), we have (20) and (21) (and also

m0

1[x; y] = f 0(x)[x; y] for all x; y in R, (24)

n01[x; y] = g0(x)[x; y] for all x; y in R, (25)

where f 0(X), g0(x) are polynomials in Z[X ] all monomials of which are of degree
at least equal to one, and m0 = dm0

1, n
0 = dn01 for d = (m;n;m0; n0)).

Since m1 and n1 (resp. m1, n1, m
0

1 and n
0

1) are relatively prime, (12) and (14)
(resp. (12), (14), (24) and (25) for s0 = 0) imply commutativity of R by Theorem S.

3. Now we prove a commutativity theorem for s-unital rings satisfying the
polynomial identity (1), resp. (10), wherem = n = 1 and one of the other exponents
is equal to zero.

Theorem 4. Let R be a ring satisfying the polynomial identity (1), resp. (10)
for m = n = 1 and s0 = 0. Then R is commutative in any of the following cases :

(a) t � 1, and for s > 0, R is right, resp. left s-unital :

(b) t = 0, and t0 = 0 or s = 0;

(c) t = 0, t0 > 0, s > 0, R is an s-unital (resp. left or right s-unital) ring

which satis�es (1�) (resp. (10
�
)), or, for s� t0 odd, (1+) (resp. (10+), and has the

property Q(2);

(d) t = 0, t0 > 0, s > 0, s� t0 even, and R is an s-unital (resp. left or right

s-unital) ring which satis�es (1+) and the property Q((js � t0j + 1)!) (resp. (10+)
and the property Q((maxfs; t0g)!)).

Proof . Case (a): For s = 0, R is commutative by Theorem S. If s > 0, then
it is easy to see that R is in fact s-unital, and thus, by [7, Proposition 1], we can
assure that for s > 0, R is a ring with identity 1.

Now, setting x+1 for x in (1), resp. (10), and combining the identity obtained

with (1), resp. (10), one gets ((x + 1)t � xt)[x; y]yt
0

= 0 for all x; y in R; hence, by
[5, Lemma], we have ((x+ 1)t � xt)[x; y] = 0 for all x; y in R.

For t = 1, the last identity means that R is commutative, and for t > 1, this
identity implies the commutativity of R by Theorem S.

The cases (b), (c) and (d) follow from [1, Theorem 6].

Obviously, for m = n = 1 and any one zero exponent in (1), resp. (10), we
have an analogous result. All these results are corollaries of Theorem 4. We state
here only the following one
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Corollary 1. Let R be a ring satisfying the polynomial identity (1), resp.
(10) for m = n = 1 and s = 0. Then R is commutative in any of the following

cases :

(a) t0 � 1, and for s0 > 0, R is left, resp. right s-unital ;

(b) t0 = 0, and t = 0 or s0 = 0;

(c) t0 = 0, t > 0, s0 > 0, and R is an s-unital (resp. left or right s-unital)
ring which satis�es (1�) (resp. (1

0

�
)), or for s0 � t odd, (1+) (resp. (1

0

+)) and has

the property Q(2);

(d) t0 = 0, t > 0, s0 > 0, s0 � t even, and R is s-unital (resp. left or right

s-unital) ring which satis�es (1+) and the property Q((js0 � tj + 1)!) (resp. (10+)
and the property Q((maxfs0; tg)!)).

Proof . From (1), resp. (10) it follows

yt
0

[x; y]xt = �ys[x; y]xs
0

for all x; y in R0,

resp.

yt
0

[x; y]xt = �xs
0

[x; y]ys for all x; y in R0,

and thus, R0 is commutative by Theorem 4. Hence, R is also commutative.

4. The assumption that in (1), resp. (10), s0 = t0 = 0, makes Theorem 1
symmetrical with respect to m and n. Here we assume that in (1), resp. (10), m, n,
s and t are given positive integers, and that one of the given non-negative integers
s0 and t0 is equal to zero. The result we will prove is the following theorem.

Theorem 5. Let R be a ring with polynomial identity (1), resp. (10), where
m, n, s and t are given positive, and s0, t0 are given non-negative integers one of

them being equal to zero, and the other positive. Then R is commutative in any of

the following cases :

(a) s0 = 0 and R is right, resp. left s-unital and has the property Q(n) for

n > 1,

(b) t0 = 0, and R is left s-unital and has the property Q(m) form m > 1;

Proof . Case (a): It is easy to see that R is in fact s-unital, and thus we
can assume that R is a ring with identity 1. For n = 1, by the same argument
used in the proof of Theorem 1, one can show that R is commutative. If n >

1, using the property Q(n), we can prove, as in the proof of Theorem 1, that
C(R) � N(R) � Z(R). Hence, the identities (1) and (10) can be rewritten in the

form nxn+t�1[x; y]yt
0

= �m[x; y]ym+s�1 for all x; y in R. Now, setting in the last
identity x+1 for x and combining the identity obtained with the one above, we get

n((x + 1)n+t�1 � xn+t�1)[x; y]yt
0

= 0 for all x; y in R,

hence, by [5, Lemma] and the property Q(n),

((x+ 1)n+t�1 � xn+t�1)[x; y] = 0 for all x; y in R.
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This yields commutativity of R by Theorem S.

Case (b): Since, for t0 = 0, (1), resp. (10) can be rewritten in the form

ys[ym; x]xs
0

= �[y; xn]xt for all x; y in R0

resp.

ys[ym; x]xs
0

= �xt[y; xn] for all x; y in R.

Hence, R0 resp. R is commutative by the case (a), and thus, R is commutative.

5. In this section the commutativity of an s-unital ring R satisfying the
polynomial identity (1) or (10) shall be shown for some other special values of non-
negative integers m, n, s, s0, and t0. Since every of these results is similar to the
corresponding result in [1], then they will be stated here without proof.

Theorem 6. Let R be an s-unital ring satisfying the polynomial identity (1)
or (10). Then R is commutative provided one of the following conditions is ful�lled :

(a) m = 0 and R has the property Q(n);

(b) n = 0 and R has the property Q(m).

Theorem 7. Let R be an s-unital ring which satis�es the polynomial identity

(1) or (10). Suppose that at least one of the integers n+ t�s0�1 and m+s� t0�1
is odd and that R has the property Q(2). If, moreover, R has one of the properties

Q(m) and Q(n), especially, if (m;n) = 2r for some non-negative integer r, then

R is commutative.

Theorem 8. Let R be an s-unital ring with polynomial identity (1) or (10).
Suppose that n+ t 6= s0+1 or m+ s 6= t0+1, and that R has the property Q(k) for

k = j2n+t � 2s
0+1j or k = j2m+s � 2t

0+1j. If, moreover, R has one of the properties

Q(m) and Q(n), especially, if (m;n) = 2rr0 for some non-negative integer r and

some odd divisor r0 of k, then R is commutative.
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