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ON BEST SIMULTANEOUS APPROXIMATION

S. V. R. Naidu

Abstract. For nonempty subsets F and K of a nonempty set V and a real valued function
f on X � X the notion of f-best simultaneous approximation to F from K is introduced as
an extension of the known notion of best simultaneous approximation in normed linear spaces.
The concept of uniformly quasi-convex function on a vector space is also introduced. SuÆcient
conditions for the existence and uniqueness of f-best simultaneous approximation are obtained.

The concept of best simultaneous approximation was studied by several au-
thors in normed linear spaces. In [1] the concept was extended to locally convex
spaces. In this paper we extend the notion to arbitrary sets and study it on arbi-
trary sets, vector spaces, topological spaces and topological vector spaces.

De�nition 1. Let X be a nonempty set and f be a real valued function
on X � X . Let F and K be nonempty subsets of X . For x in X , we de�ne
fF (x) = supff(x; y) j y 2 Fg. We de�ne fF (K) = infffF (x) j x 2 Kg and

P fK(F ) = fx 2 K j fF (x) = fF (K)g. An element of P fK(F ) is called an f -best
simultaneous approximation to F from K. An element z of F is called an f -
farthest point of an element x in X from F if f(x; z) = fF (x). F is said to be
f -antiproximinal if every element in X admits an f -farthest point from F . F is
said to be f -antiproximinal with respect to K if every element in K admits an f -
farthest point from F . An element z of K is called an f -nearest point of an element
y in X from K if f(z; y) = infff(x; y) j x 2 Kg. K is said to be f -proximinal if
every element in X admits an f -nearest point from K. K is said to be f -proximinal
with respect to F if every element in F admits an f -nearest point from K.

Remark 1. When X is a normed linear space over the �eld of real numbers
and f(x; y) = kx� yk for all x, y in X , the notions introduced above coincide with
the corresponding notions that already exist in literature.

Notation. When X is a vector space over the �eld of real numbers R, f is a
real valued function on X , F and K are subsets of X and x 2 X , we write fF (x) for
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gF (x), fF (K) for gF (K) and P fK(F ) for P
g
K(F ), where g : X �X ! R is de�ned

by g(x; y) = f(x � y) for all x; y in X . Similarly we speak of f -farthest point,
f -nearest point, f -antiproximinal, f -proximinal etc. for the corresponding notions
associated with g. When X is a normed linear space and f stands for the norm
on X , we generally drop f from the terminology. Thus we speak of farthest point

for f -farthest point and so on. We also write PK(F ) for P
f
K(F ).

Theorem 1. Let X be a topological space, F and K be nonempty subsets of

X and f be a nonnegative real valued function on X �X. Suppose that f( � ; y) is
lower semicontinuous on X for each y in F . Suppose that fkng admits a convergent

subnet with limit in K whenever fkng is a sequence in K such that f(kn; � ) is

uniformly bounded on F . Then P fK(F ) is nonempty. If fF (K) < +1, then P fK(F )
is countably compact.

Proof . Since f is a nonnegative real valued function, we have 0 � fF (K) �
+1. If fF (K) = +1, then P fK(F ) = K 6= ?. Suppose that fF (K) < +1. Then
there exists a sequence fkng in K such that ffF (kn)g decreases to fF (K). We have
0 � f(kn; y) � fF (kn) for all n = 1; 2; . . . and for all y in F . Hence ff(kn; � )g
is uniformly bounded on F . By hypothesis it follows that fkng has a convergent
subnet with limit, say, k in K. By hypothesis, f( � ; y) is lower semicontinuous on
X for each y in F . Hence for any positive real number " and for any y in F ,
fx 2 X j f(k; y) � " < f(x; y)g is an open set containing k. Hence for each
y in F , f(k; y) � " < f(kn; y) for in�nitely many n. Hence for each y in F ,
f(k; y) � " � fF (K). Since this is true for any positive real number ", we must

have fF (k) = fF (K). Hence k 2 P fK(F ). A perusal of the above proof shows that

when fF (K) < +1, every sequence in P fK(F ) admits a convergent subnet with

limit in P fK(F ). Hence P
f
K(F ) is countably compact when P fK(F ) < +1.

The following theorem is evident from Theorem 1:

Theorem 2. Let X be a topological vector space (T.V.S.) over R, F and K
be nonempty subsets of X, and f be a nonnegative real valued lower semicontinuous

function on X. Suppose that fkng has a convergent subnet with limit in K whenever

fkng is a sequence in K such that supff(kn � y) j n = 1; 2; . . . ; y 2 Fg is �nite.

Then P fK(F ) is nonempty. If fF (K) < +1, then P fK(F ) is countably compact.

De�nitions 2. Let X be a T.V.S. over R, f be a nonnegative real valued
function on X and S be a subset of X . For a real number r, let A(r) = fx 2 X j
f(x) � rg. We say that S is (i) f -boundedly compact if for every real number r
every net in S \ A(r) has a convergent subnet with limit in S, (ii) f -boundedly
countably compact if for every real number r every sequence in S \ A(r) has a
convergent subnet with limit in S, (iii) f -boundedly weakly countably compact if
for every real number r every sequence in S \A(r) has a weakly convergent subnet
with weak limit in S, and (iv) f -boundedly weakly compact if for every real number
r every net in S \A(r) has a weakly convergent subnet with limit in S.
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Remark 2. Let X be a T.V.S. overR, f be a nonnegative real valued function
on X and S be a subset of X . Every translate of S in X is f -boundedly weakly
countably compact or f -boundedly countably compact or f -boundedly compact
according as S is weakly countably compact or countably compact or compact.

From Theorem 2 we have the following:

Corollary 1. Let X be a T.V.S. over R and f be a nonnegative real valued,

lower semicontinuous function on X. Let F and K be nonempty subsets of X.

Suppose that the translate of K by some element of F is f-boundedly countably

compact. Then P fK(F ) is a nonempty, countably compact set.

The following de�nitions are known:

De�nitions 3. Let X be a midpoint convex subset of a vector space over R.
A real valued function f on X is said to be (i) quasi-convex on X if f

�
(x+y)=2

� �
maxff(x); f(y)g for all x, y in X , (ii) strictly quasi-convex on X if f

�
(x+ y)=2

�
<

maxff(x); f(y)g for all distinct x, y in X .

Proposition 1. Let X be a locally convex T.V.S. over R and f be a lower

semicontinuous, quasi-convex function on X. Then f is lower semicontinuous with

respect to the weak topology on X.

Proof . Let r be a real number and A(r) = fx 2 X j f(x) � rg. Since f is
lower semicontinuous on X , A(r) is a closed subset of X . Since f is quasi-convex
on X , the midpoint of any two points of A(r) belongs to A(r). Hence A(r) is a
closed, convex subset of X . Since X is locally convex, it follows that A(r) is weakly
closed. Hence f is lower semicontinuous on X with respect to the weak topology
on X .

In view of Proposition 1 we have the following corollary of Theorem 2:

Corollary 2. Let X be a locally convex T.V.S. over R, F and K be

nonempty subsets of X and f be a nonnegative real valued, lower semicontin-

uous, quasi-convex function on X. Suppose that fkng has a weakly conver-

gent subnet with weak limit in K whenever fkng is a sequence in K such that

supff(kn � y) j n = 1; 2; . . . ; y 2 Fg is �nite. Then P fK(F ) is nonempty. If

fF (K) < +1, then P fK(F ) is weakly countably compact.

From Corollary 2 we have the following:

Corollary 3. Let X be a locally convex T.V.S. over R, F and K be nonemp-

ty subsets of X and f be a nonnegative real valued, lower semicontinuous, quasi-

convex function on X. Suppose that the translate of K by some element of F is

f-boundedly weakly countably compact. Then P fK(F ) is a nonempty, weakly count-

ably compact set.

From Corollary 3 we have the following:
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Corollary 4 (Theorem 1 of [2]). Let X be a normed linear space; F be a

nonempty, bounded subset of X and K be a nonempty, boundedly weakly sequentially

compact subset of X. Then the set of all best simultaneous approximations to F
from K is nonempty and weakly sequentially compact.

De�nition 4. A topological space X is said to be locally countably compact
if for each x in X there exists a neighbourhood of x whose closure is countably
compact.

Proposition 2. Let X be a T.V.S. over R and K be a closed, bounded,

star-shaped, locally countably compact subset of X. Then K is countably compact.

Proof . SinceK is star-shaped, there exists x in K such that �x+(1��)y 2 K
whenever y 2 K and 0 � � � 1. Since K is locally countably compact, there exists
a neighbourhood V of x such thatK\V is countably compact, where bar stands for
closure in X . Let W = V �x. Then W is a neighbourhood of zero and V = x+W .
We have (K � x) \W = (K \ V ) � x. Hence (K � x) \W is countably compact.
Since K is bounded, so is K�x. Hence, there exists a real number t > 1 such that
K � x � tW . If y 2 K � x, then y=t 2 (K � x) \W since t > 1 and K � x is
star-shaped with centre at zero. Hence K�x � t

�
(K�x)\W � � t

�
(K�x)\W �

.

Since (K � x) \W is countably compact, so is t((K � x) \W ). Since K � x is a
closed subset of t

�
(K�x)\W�

, it follows that K�x is countably compact. Hence
K is countably compact.

The following Proposition can be established along the lines of Proposition 2:

Proposition 3. Let X be a T.V.S. over R and K be a closed, bounded,

star-shaped, locally compact subset of X. Then K is compact.

In view of Proposition 2 we have the following corollary of Corollary 1:

Corollary 5. Let X be a T.V.S. over R and f be a nonnegative real valued

lower semicontinuous function on X such that f(tx) � f(x) for all x in X and for

all t in [0; 1]. Suppose that for each nonnegative real number r, fx 2 X j f(x) � rg
is bounded and locally countably compact. Let F and K be nonempty subsets of X.

Suppose that K is closed. Then P fK(F ) is nonempty. If fF (K) < +1, then P fK(F )
is countably compact.

Proof . For a nonnegative real number r, let A(r) = fx 2 X j f(x) � rg.
Since f(tx) � f(x) for all x in X and for all t in [0; 1], it follows that A(r) is
star-shaped with centre at zero. Since f is lower semicontinuous on X , A(r) is
closed. By hypothesis A(r) is bounded and locally countably compact. In view of
Proposition 2 it follows that A(r) is countably compact. Let fkng be a sequence
in K such that ff(kn � z)g is bounded for some z in F . Then there exists a
nonnegative real number s such that f(kn � z) � s for all n = 1; 2; . . . . Hence
fkn � zg is a sequence in A(s). Since A(s) is countably compact, it follows that
fkn � zg has a convergent subnet. Hence fkng has a convergent subnet with limit,
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say, k. Since K is closed, k 2 K. From Corollary 1 it now follows that P fK(F ) is
nonempty and that, when fF (K) < +1, it is countably compact.

Again from Corollary 1 we have the following:

Corollary 6. Let X be a T.V.S. over R and f be a nonnegative, lower

semicontinuous, quasi-convex function on X. Let F and K be nonempty subsets

of X. Suppose that K is closed, star-shaped and that there is a z in F such that

the set (K � z) \ fx 2 X j f(x) � rg is bounded and locally countably compact for

every positive real number r. Then P fK(F ) is nonempty. If fF (K) < +1, then

P fK(F ) is countably compact.

Proof . For a nonnegative real number r, let A(r) = fx 2 X j f(x) � rg.
Since f is lower semicontinuous and quasi-convex, A(r) is a closed, convex subset
of X . Since K is star-shaped, there exists x0 in K such that lx0 + (1 � l)x 2 K
for all x in K and for all l in [0; 1]. By hypothesis there exists an element z in
F such that (K � z) \ A(r) is bounded and locally countably compact for any
positive real number r. Let s be a positive real number such that s � f(x0 � z).
Then the set (K � z) \ A(s) is star-shaped with centre at x0 � z. Since both K
and A(s) are closed, (K � z) \ A(s) is closed. Now from Proposition 2 it follows
that (K � z) \A(s) is countably compact. Hence K � z is f -boundedly countably
compact. Now the corollary is evident from Corollary 1.

Remark 3. Corollaries 1, 3, 5 and 6 remain valid if the word \countably" is
deleted from them.

Remark 4. Theorems 2.1 and 2.2 of [1] are corollaries of Corollary 1 as well
as Corollary 3. This shows that many conditions in Theorems 2.1 and 2.2 of [1]
are redundant. The �rst and second parts of Theorem 2.3 of [1] are corollaries of
Corollary 5 and Corollary 6 respectively.

Theorem 3. Let X be a nonempty set and f be a real valued function on

X �X. Let F and K be nonempty subsets of X. Suppose that there exist x� in K
and y� in F such that y� is an f -farthest point of x� from F and x� is an f-nearest

point of y� from K. Then fF (K) = f(x�; y�) and x� 2 P fK(F ).

Proof . Let x 2 K. Then fF (x) � f(x; y�) � f(x�; y�) = fF (x
�). Hence

fF (K) = fF (x
�) and x� 2 P fK(F ).

The following is the vector space analogue of Theorem 3:

Theorem 4. Let X be a vector space over R and f be a real valued function

on X. Let F and K be nonempty subsets of X. Suppose that there exist x� in K
and y� in F such that y� is an f-farthest point of x� from F and x� is an f-nearest

point of y� from K. Then fF (K) = f(x� � y�) and x� 2 P fK(F ).

Remark 5. Let F and K be nonempty subsets of a normed linear space X
over R. Let x1; x2; . . . ; xm be points of K and y1; y2; . . . ; ym be points of F such
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that for each i in f1; . . . ;mg, yi is a farthest point of xi from F and xi+1 is a
nearest point of yi from K, where xm+1 = x1. In view of Theorem 4 it is natural to
ask whether fx1; x2; . . . ; xmg\PK(F ) 6= ?. The following examples show that this
need not be true even when m = 2, X = R

2, F and K are disjoint compact sets
and K is convex. While in Example 1 F has exactly two elements, in Example 2
F is convex.

Example 1. Let X = R
2, F = f(�2; 0); (2; 0)g and K be the convex hull of�

(0; 0);
�� 3

2 ;�
p
3
2

�
;
�
3
2 ;�

p
3
2

�	
. Let f denote the Euclidean norm of R2. It can be

seen that P fK(F ) = f(0; 0)g. Set x1 =
�� 3

2 ;�
p
3
2

�
, x2 =

�
3
2 ;�

p
3
2

�
, y1 = (2; 0) and

y2 = (�2; 0). Then y1, y2 are the farthest points of x1, x2 from F and x2, x1 are

the nearest points of y1, y2 from K. But neither x1 nor x2 belongs to P fK(F ). In

fact, even the convex hull of fx1; x2g is disjoint with P fK(F ).

Example 2. Let X = R
2, F = convex hull of f(�2; 0); (2; 0)g and K =

convex hull of
��� 3

4 ;�
p
3
4

�
;
�� 3

2 ;�
p
3
2

�
;
�
3
2 ;�

p
3
2

�
;
�
3
4 ;�

p
3
4

�	
. Let f denote the

Euclidean norm ofR2. We see that F andK are compact, convex subsets ofR2 and

that they are disjoint. We note that P fK(F ) =
��
0;�

p
3
4

�	
. Choosing x1; x2; y1; y2

as in Example 1 we see that the observations made about them in Example 1 are
also true here. For each x in K the set of all farthest points of x from F is a subset
of fy1; y2g. We have inffkx� y1k j x 2 Kg = 1 = inffkx� y2k j x 2 Kg. But

fF (K) =
p
67=4 > 2.

Remark 6. Example 2 shows that the equation `fF (K) = infff(y0 � x) j
x 2 Kg' given in the proof of Theorem 2.6 of [1] is false. It is not known whether
the conclusions of the theorem are true or false (vide M.R. of [1]).

Theorem 5. Let X be a vector space over R and f be a quasi-convex function

on X such that f(�x) = f(x) for all x in X. Let F and K be nonempty subsets

of X. Suppose that there exist x� in K and y� in F such that fF (x
�) = f(x� � y�)

and 2x� � y� 2 F . Then x� 2 P fK(F ).

Proof . For k in K we have

f(x� � y�) = f

�
(2x� � y� � k) + (k � y�)

2

�
� max

�
f(2x� � y� � k); f(k � y�)

	

= max
�
f(k � (2x� � y�)); f(k � y�)

	 � fF (k):

Hence fF (x
�) � fF (k), so x

� 2 P fK(F ).

Theorem 6. Let X be a vector space over R and f be a quasi-convex function

on X such that f(�x) = f(x) for all x in X. Suppose that there exist y1; y2 in F
such that (y1 + y2)=2 2 K and fF (x) = maxff(x� y1); f(x � y2)g for all x in K.

Then (y1 + y2)=2 2 P fK(F ). If further f is strictly quasi-convex, then P fK(F ) is a

singleton.
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Proof . Set z = (y1 + y2)=2. We have

fF (z) = maxff(z � y1); f(z � y2)g = f
�
(y1 � y2)=2

�
:

For k in K we have

f

�
y1 � y2

2

�
= f

�
(y1 � k) + (k � y2)

2

�
� maxff(y1 � k); f(k � y2)g

= maxff(k � y1); f(k � y2)g = fF (k):

Hence fF (z) � fF (k) for all k in K, so z 2 P fK(F ). When f is strictly quasi-convex,
for k 6= z we have

f

�
(y1 � k) + (k � y2)

2

�
< maxff(y1 � k); f(k � y2)g

so that fF (z) < fF (k). Hence in this case P fK(F ) = fzg.
Remark 7. In Theorem 6 if the condition `(y1 + y2)=2 2 K' is deleted from

the hypothesis, then it is natural to ask whether an f -nearest point of (y1 + y2)=2

from K can be an element of P fK(F ). Example 3 shows that this need not be true

even when X = R
2, f is the Euclidean norm on R2, and F and K are compact,

convex subsets of R2.

Example 3. Let X = R
2, F = convex hull of f(1; 0); (0; 1)g and K = convex

hull of
�
(0; 0);

�
1
2 ; 0

�
;
�
1
2 ;

1
4

�	
. Let f be the Euclidean norm of R2. We note that�

2
5 ;

1
5

�
is the nearest point of (0; 1) from K and (0; 1) is the farthest point of

�
2
5 ;

1
5

�
from F . It can be seen that PK(F ) =

��
2
5 ;

1
5

�	
. For each x in K the set of all

farthest points of x from F is a subset of fy1; y2g, where y1 = (1; 0) and y2 = (0; 1).
The nearest point of (y1 + y2)=2 from K is

�
1
2 ;

1
4

�
.

We shall now obtain a couple of theorems which prescribe conditions under

which P fK(F ) can have at most one element.

Theorem 7. Let X be a vector space over R, f be a strictly quasi-convex

function on X, and F and K be nonempty subsets of X. Suppose that K is mid-

point convex and F is f-antiproximinal with respect to K. Then P fK(F ) has at

most one element.

Proof . If possible, suppose that P fK(F ) has more than one element. Let

x1; x2 be distinct elements of P fK(F ). Since K is midpoint convex, (x1+x2)=2 2 K.
Since each point of K has an f -farthest point from F , there exists z in F such that
fF
�
(x1 + x2)=2

�
= f

�
(x1 + x2)=2 � z

�
. Since x1 6= x2, we have x1 � z 6= x2 � z.

Hence from strict quasi-convexity of f we have

f

�
x1 + x2

2
� z

�
= f

�
(x1 � z) + (x2 � z)

2

�
< max

�
f(x1 � z); f(x2 � z)

	

� max
�
fF (x1); fF (x2)

	
= fF (K):

Thus we have fF
�
(x1 + x2)=2

�
< fF (K) which is a contradiction. Hence the

theorem.
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Remark 8. In proving Theorem 7 we adopted the line of argument given in
Theorem 3.1 of [1] which was observed to be false in the M.R. of [1].

We shall now introduce the concept of uniformly quasi-convex function as a
generalization of uniformly convex norm.

De�nition 5. A nonnegative real valued function f on a vector space X
over R is said to be uniformly quasi-convex if for any positive real numbers r and
" there corresponds a real number � (depending on r and ") in (0; 1) such that
f
�
(x + y)=2

� � �r whenever x, y are elements of X such that f(x) � r, f(y) � r
and maxff(x� y); f(y � x)g � ".

Theorem 8. Let X be a vector space over R and f be a uniformly quasi-

convex function on X such that f(x) 6= 0 for x 6= 0. Let F and K be nonempty

subsets of X. Suppose that K is midpoint convex and fF (K) < +1. Then P fK(F )
contains at most one element.

Proof . If possible, suppose that there are two distinct elements x1, x2
in P fK(F ). Since K is midpoint convex, (x1 + x2)=2 2 K. Since f takes positive
values at nonzero points of X , it follows that either fF (x1) or fF (x2) is positive.

Since both x1 and x2 are in P fK(F ), we must have fF (x1) = fF (K) = fF (x2).
Hence fF (K) is positive. Since fF (K) < +1, r = fF (K) is a positive real num-
ber. Set " = maxff(x1 � x2); f(x2 � x1)g. We note that " is also a positive
real number. Since f is uniformly quasi-convex, there exists an � in (0; 1) such
that f

�
(x + y)=2

� � �r whenever x, y are elements of X such that f(x) � r,
f(y) � r and maxff(x � y); f(y � x)g � ". For all z in F we have f(x1 � z) � r
and f(x2 � z) � r. Hence f

�
(x1 + x2)=2 � z

� � �r for all z in F . Hence

fF
�
(x1 + x2)=2

� � �r < r = fF (K). This is a contradiction. Hence P fK(F )
contains at most one element.

In view of Theorem 7 it is of interest to know some suÆcient conditions for
the existence of f -farthest points. So we give the following:

Proposition 4. Let X be a T.V.S. over R and f be a real valued upper

semicontinuous function on X. Let F be a nonempty, countably compact subset

of X. Let x be an element of X such that fF (x) < +1. Then x has an f-farthest
point from F .

The following is a generalization of Proposition 4 to topological spaces:

Proposition 5. Let X be a topological space, f be a real valued function on

X �X and F be a nonempty, countably compact subset of X. Let x 2 X be such

that fF (x) < +1 and f(x; � ) is upper semicontinuous on X. Then x admits an

f-farthest point from F .

Proof . For a positive integer n, let rn = fF (x) � 1=n and Un = fy 2 X j
f(x; y) < rng. Since f(x; � ) is upper semicontinuous on X , for each positive inte-
ger n, Un is an open subset of X . We note that Un � Um if n � m. If possible,
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suppose that there is no z in F such that f(x; z) = fF (x). Then fUn j n = 1; 2; . . .g
is a countable open cover of F . Since F is countably compact, it follows that there
exists a positive integer N such that F � UN . Hence fF (x) � rN . This is a
contradiction. Hence x has an f -farthest point from F .

Out of heuristic interest we shall now state without proof a proposition which
lays down suÆcient conditions for the existence of f -nearest points.

Proposition 6. Let X be a topological space, f be a real valued function on

X �X and K be a nonempty, countably compact subset of X. Let y 2 X be such

that f( � ; y) is lower semicontinuous on X and bounded below on K. Then y admits

an f-nearest point from K.

The following is the vector space analogue of Proposition 6:

Proposition 7. Let X be a T.V.S. over R, f be a real valued lower semi-

continuous function on X and K be a nonempty, countably compact subset of X.

Let y 2 X be such that f is bounded below on K � y. Then y admits an f-nearest
point from K.

REFERENCES

[1] P. Govindarajulu, On f-best simultaneous approximation in locally convex spaces, J. Math.
Phys. Sci. 22 (6) (1988), 789{796. MR 89m : 41014.

[2] K.P.R. Sastry and S.V.R. Naidu, On best simultaneous approximation in normed linear
spaces, Proc. Nat. Acad. Sci. India 48(A) (1978), 249{250.

Department of Applied Mathematics (Received 25 05 1990)
A.U.P.G. Centre
Nuzvid { 521 201, India


