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L,-APPROXIMATION BY ITERATIVE COMBINATION
OF PHILLIPS OPERATORS

Vijay Gupta and P. N. Agrawal

Abstract. An estimate of error in Lp-approximation in terms of higher order integral
modulus of smoothness is obtained using the device of Steklov means for an iterative combination,
due to Micchelli, of Phillips operators.

1. Introduction. Phillips [7] introduced the following linear positive oper-
ators

S\ = [ WOt de f € Ljo,c)
0
where p > 1, t € [0,00) and

WA t,u) = e MW (f: G + 5(u)> ,

—~ nl(n-1)!
d(u) being the Dirac—delta function.

It turns out that the order of approximation by the Phillips operator Sy(f,t)
is at best O(A~!). With the aim of improving the order of approximation by the
Phillips operators, May [5] applied the technique of linear combinations to Sj.
These combinations were introduced by Butzer [2] in order to improve the order
of approximation by Bernstein polynomials. Micchelli [6] offered yet another ap-
proach for improving the order of approximation by Bernstein polynomials B,, by
considering the iterative combinations T}, = I — (I — B,,)¥ and proved some direct
and saturation results. Agrawal and Kasana [1] improved a result of Micchelli [6]
and obtained a Voronovskaja type asymptotic formula for these operators.

In this paper, we consider Micchelli combination for the Phillips operator Sy
and prove some direct results in Ly-approximation. For f € L,[0,00), we define
the operator

k
L) Sl === 50400 = 0 (F) s

r=1
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where S} denotes the r-th iterative (superposition) of the operator Sy.
In what follows, we suppose that

0<a1<a3<a2<b2<b3<b1<oo, Ii:[ai,bi], 1=1,2,3.
and that [a] denotes the integral part of a.

2. Degree of approximation. We denote by wor(f,p, 1), k =0,1,2,...
1 < p < o0, the 2k-th order integral modulus of smoothness of f on I.

)

THEOREM 2.1. If f € L,[0,00), p > 1, then for all X sufficiently large

1S3k ) = Fllg iy < M {neCFA20, 1) + 317 0,00 |
where My, is a constant independent of f and .

The method of proof is first to approximate in a smooth subspace of L,[0, c0)
(Lemma 2.6 below) and then use Steklov means to obtain the degree of approxima-
tion in L,[0,00). The use of Steklov means has been a powerfull tool in the devel-
opment of results as against the usual procedures exploiting Peetre’s K -functional
technique of Wood in [9].

First we define the Steklov means and then mention some results in the form
of lemmas which will be used in the sequel. Let f € Lp[0,00),1 < p < 0o. Then for
sufficiently small n > 0, the Steklov mean f, ,, of m-th order corresponding to f is
defined by

n/2 77/2 m
fnm _nfm/ / )m 1Aml s (u)}Hdui, uwel.

n/2 n/2 i=1

It is easy to check [4,8] that

(i) fym has derivatives up to order m, fé%ﬁl) € AC(I;) and f?gr?n) exists a.e. and
belongs to L,(I1);

@ [, < Morenfnp b, r=100)m:
p 2

(iii) ||f_fn,m||Lp([2) < Mpy1wm(f,m,p,11);

(V) fnmlly, 1y < M2 fllz, (1)

(m)
@ |l o,
pendlng on i but independent of f and 7.

< Mpysp™™ ||f||Lp(Il), where M;’s are certain constants de-

LEMMA 2.1, [5] Let the function ,uAm(t), m € N° (the set of non-negative
integers) be defined by pxm(t) = [ WA t,u)(u — t)™du. Then pro(t) = 1,
uxa(t) =0, ua2(t) = 2t/A, and the followmg recurrence relation holds

2t
2 Djur (1)) + 55D (17, (1)
2tm tm(m —1 2tm
= i mn ) = 2y () = D o) = 2 D2 s (1)
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Consequently,

(1) pa,m(t) is a polynomial in ¢ and 1/A for every ¢ € [0, 00).
(i) pam(t) =0 ()\_[WT“]), for every ¢ € [0, 00).
Moreover, by using Holder’s inequality we have
(2.1)  Sx(ju—t",t) = O(A""/?) for each r > 0 and for every fixed ¢ € [0, c0).
For every m € N° the m-th moment u{p ! for the operator S% is defined by
P (6) = SE((u— 1)7;1). Let ux m(t) denote ') (1)
LEMMA 2.2. The following recurrence relation holds
m m*j
1 m
22 W0 =3 (1) 5 50 (1o, 0) msss 0
7j=0 i=0
where D denotes the operator d/dt.

Proof. By the definition above, we have
(1) = Sa(SK((n = ) @) )

m

B (T) Sa((z =) SR ((u — )™ 5 2);1)

=0

=35 (1) (5 B ) )

Now, (2.2) follows immedlately.
LEMMA 2.3. We have
(2.3) uﬁ”,ﬁ( =0 (A [(m+1>/21)

Proof. For p = 1, the result follows from Lemma 2.1. Suppose the result is

true for p; we shall prove it for p + 1. Now, ug’;_j(t) = O (A m=3+1/21) js o

polynomial in ¢t of degree < m — j; it follows that
D (1)) = 0 (1 2707,

using Lemma 2.2, we obtain

ugpntl} (in:

3

—J

‘ZM

Jj=0 1

“o(8

7j=0 i=

\~lm— J+1)/2]+[(Z+J+1)/2])

Al m+z+1>/21)

which implies (2.3), by induction hypothesis. O

3

O
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LEMMA 2.4. For l-th moment (I € N) of S\ x, we have
(2.4) Sar((u—t) 1) =0N").

Proof. For k = 1, the result follows from Lemma 2.1. Now, suppose that (2.4)
holds for some k; then by using Lemma 2.2 and Lemma 2.3, we can infer it for k+1
(induction argument.) &

LEMMA 2.5 [3] Let 1 < p < oo, f € Lyla,b], f* € AC[a,b] and f*F+D) ¢
L,[a,b]; then

Hf(j)‘

< k. (k+1) | =
Lp[a,b] = k] (Hf ‘ + ||f||Lp[a,b]> ) J 1727 7k7

where k;’s are certain constants depending only on j,k,p,a and b.

Ly[a,b]

LEMMA 2.6. Ifp > 1, f € L,[0,00), f has 2k derivatives on I with f*F=1) ¢
AC(I) and f®%) € L,(I), then for all X sufficiently large

(25) ISkt = Ol 1y < MiATH {Hf@’“)HL ot ||f||Lp[o,oo>} .

If f € L1[0,00), f has (2k — 1) derivatives on I, with f?*=2) € AC(I) and
f@R=1 € BV(I}), then for all X sufficiently large

(2.6)  ISxk(fst) = FOIlL, (1)

SMZN{H]C@“)H )+Hf(2k71)‘

112 0,000 }

BV(I, Li(I2)

where My and My are constants independent of f and \.

Proof. First assume p > 1; then, by the hypothesis, for t € I, and u € I;

2k—1

=3 190 Sy AU R
Hence, we can write
2k—1 i
.1 f =3 Mo 0w

G [ 06 )

+ F(u, t)(1 = ¢(u)),

where ¢(u) is the characteristic function of I; and for all u € [0,00) and t € I

+

2k—1
(

Fluy) = - S Bt

j=0

9 @),
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Using (2.7) in (1.1), we have

2k—1 ()
Swlht—f =3 L2
= 7

'(t) S)\,k ((u - t)jv t)

+ ﬁsx,k <<P(U) /tu(u — w)?k=t fR) (w)dw,t>

+ Sxk (F(u, 1)(1 = ¢(u)), 1)
=3+ X+ X3, say
In view of Lemma 2.4 and [3]

2k—1

||Zl||Lp([2) <ok (Z Hf(j)‘ Lo( )) < CoaF <||f||Lp([2) + Hf(%)HL T )> :
i=1 P n

To estimate X, let hy be the Hardy-Littlewood majorant [9] of f@® on I,. Use
of Holder’s inequality and (2.1) leads to:

SM¢WXl%u—wV”4ﬂ%Vwaiﬂ

gsx@mnlmw—w%*um%mww,ﬁ
< S5 () (u — )% by ()] 1)

< {8 (Ju— tP*90(u), 8) 77 - Sy (g (w) P (), 1)}/

Ji =

a1

b1 1/p
< Caa* ( W(A, 1, U)|hf(u)|pdu>

Fubini’s theorem and [10, Ch. 2] imply that

b bi
17215, 1) < CsAFP / WA t,u) by (u)[Pdu dt
a2 a

1

b1 bo
< 03/\_kp/ ( W(A,t,u)dt) |h s (u)[Pdu
p

Lp(Il)
Consequently ||22||Lp(12) < COsA™Fk ”f(%)“Lp(h)' For u € [0,00) \ [a1,b1], t € I»
there exists a 6 > 0 such that |u —t| > §. Thus
|Sx(F (u, £)(1 = ¢(u)), )]
<O ZESA(IF (u,t)|(u — )%, )

< CNTRP || 2R

_ 672]\7 [SA(|f(u)|(u—t)2k,t) + Z 5 |S>\(|u—t|2k+j,t)]

=Jo+ J3, say.
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Holder’s inequality and (2.1) get us:
| Ja] < 672K (SA(1f ()P, 8) 7P (S (Ju — ¢4, 1))/
< CaA T [Sa(If )P, 0]
Again applying Fubini’s theorem, we get ||.J2[|,_7,) < CrA™* [|£ll 10,0y Moreover,
using (2.1) and [3], we obtain
Ly(I2) > '

2k—1

a1l 1y < CsA~ Z [

< O (||f||L "

Lp(IzJ '

Now assume p = 1; then by the assumption on f for almost all ¢ € I, and for
allu e I,

p(IZ

Combining the estimates of Jo and Js, we are led to:

190l ) < A 1511109 + £2%)

Hence the result (2.5) follows.

2k—1

“_t 1 ! 2k—1 7¢(2k—1
=3 WD 0 + s [ = )
We can write
2k—1 u
=3 W00 + sy [ = w7 D o)

+F(u, 1)(1 = ¢(u)),

where p(u) denotes the characteristic function on I1 and F'(u,t) is defined as earlier
for almost all ¢t € I, and for all u € [0 00). Thus

2k—1
f

S)\k(fv Z

; ﬁs&k ([ ot wpw)

+ Sxk(F(u, t)(1 = p(u)),t)
=J1+J>+ J3, say.

_t)ivt)

Applying Lemma 2.2 and [3], we obtain

N Iell Ly (1) < CA* [||f||L1 ) + Hf (2k— 1)‘

L112:|.

Lq(I2)

[l

Furthermore

KE‘

S ([ -t e )

b b1
< [7 [ wontwl -
a2 al

du dt.
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For each A there exists a non-negative integer » = r(\) such that
rATY? < max(by — az, by —ay) < (r + 1AV
Then, we have

t+(I+1)A~1/2 e
K< Z ()W (A, t,u)|u — t|

tHIAT1/2

t+(I+1)A~1/2
: (/t o(w) ‘df(z’“l)(w)D du

t—Ix~1/2
+/ W)W (A, by ) — 2+
t—(l4+1)\—1/2

: (/t o(w) ‘df(%_l)(w)‘) du} dt.
t—(I+1)A—1/2

Let ¢ c.q(w) denote the characteristic function of the interval
[t —eATV2 g dA—l/ﬂ

where ¢, d are non-negative integers. Now proceeding along the lines of [9, p. 70]
we obtain, after using Lemma, 2.1 and Fubini’s theorem:

K < Cy\—(2k+1)/ {Zl 4 (/ (/ dt) ‘df@kfl)(w)‘
ai wf(l+1))\—1/2
by wH(I+1)A"1/2
+/ / dt ‘df@k*l)(w)‘
b1 wHAT/?
+/ / dt ‘df@k*l)(w)‘
al w—A—1/2

<o,

Hence, [|J2]lp, (7,) < Cad™* || F** ||y
on k.

For all u € [0,00) \ [a1,b1] and all ¢ € I, we can choose a § > 0 such that
|u —t| > 6. Therefore

" where C} is a constant which depends

bo 00
1S3 (F(u, (1 = (), )l 1, 1) < / / WA )| £ ()| (L = p(u))du dt

2k1

ba
Z./ / Wt w) [ FO O] u— £ (1 = p(u))dudt

=Jy+ J5, say.
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For sufficiently large u there exist positive constants Ry and Cg such that

(u — t)%*

m>06 foralluZRO,tEb.

By Fubini’s theorem

A—(fffzé%fj Oty )| F ()] (1 — plw))dt du

=Js+ Jr, say.

Next, by using Lemma 2.1, we have

Ro
%gc»x-</ |<nm0,

b2 )2k _ 00
Jr < FG/R / WA 2,c+1)| (w)|dt du < CaA™ (/R |f(u)|du>

Hence, Ju < CoA™ || f|l1, (10,00))- Further, using (2.1) and [3] we get

L1(12)> .

L1(12)> -
The result (2.6) follows.

Proof of Theorem 2.1. Let f, 2 (u) be the Steklov mean of 2k-th order cor-
responding to f(u) where n > 0 is sufficiently small and f(u) is defined to be zero
outside [0, 00). Then we have

||S>\,k(f, ) - fHLp(Iz)
< ||S>\,k(f - fn,zk: ')||Lp(12) + ||S>\,k(fn,2k: ')||Lp(12) + ||fn,2k - f”Lp([z)
= 21 + 22 + 23, say.

1 < Cuox* (Il + 124

Combining the estimates of Jy and J5 we have

31, (1, <Ok 1£11, 0,00 + FOED)
(f2) [0,00)

To estimate X1, let ¢(u) be the characteristic function of I3. Then

SX((f = fa2k) (W), t) = Sx(p(w)(f = fa26) (), 8) + Sx((1 = (W) (f = fo,2n) (w), )
=3+ 25, say.

The following is true for p = 1; the truth for p > 1 follows from Hélder’s inequality.

b2 b2 b3
/'mmms/ WA £ w0)|(f — fior) ()P

az
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Now, applying Fubini’s theorem, we get

b2 b3 b2
[omas [T [T WOl - fra@Pdedu < = il o
a a3 a2

2

Hence, [|Zally, 7,y < IIf — fﬂy%HLp([g)' Using Holder’s inequality (2.1) and Fubini’s
theorem we get the following for p > 1:

1Zsll, (1) < Cid™"||f - Fo2kllz,0,00) -

Now, using Jensen’s inequality and Fubini’s theorem we obtain || f, x|, [0,00)
rlY

Co [ fllL,0,00)- Hence [|Ss]ly, 2y < C3A=F 171l (0,00): Again by the property of
Steklov means, we get

51 < Co {wnfump 1) + A 1l 0,00y | -
It is well known that

<
Hf’mk BV(I3) — Toan Li(Is)

Therefore by virtue of Lemma 2.6 (for p > 1) and Lemma 2.5 we have

L,(Is) + ||fn,2k||Lp[0,oo)}
< O L PP (.m0, 1) + £y o)}

in view of the properties of Steklov means.

Ty < CsA* {Hf7§22kk)

To estimate Y3, we use the Steklov means property (iii) and obtain that
Y3 < Cewar(f,m,p,I1). The result follows. &
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