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APPROXIMATION OF CONTINUOUS FUNCTIONS BY

MONOTONE SEQUENCES OF GENERALIZED POLYNOMIALS

WITH RESTRICTED COEFFICIENTS

S.G. Gal

Abstract. The problem of approximation of continuous functions by generalized poly-
nomials with restricted coeÆcients was considered in [2{3] and [4{6]. In [1] we have obtained
some results regarding the approximation by monotonous sequences of ordinary polynomials with
restricted coeÆcients. The aim of this paper is to extend the results of [1] to the case of approxi-
mation by generalized polynomials with restricted coeÆcients.

1. Introduction

Replacing the ordinary polynomials by generalized polynomials, the results
regarding the approximation by ordinary polynomials with restricted coeÆcients
was �rstly extended in [2{3] and [5].

Some important generalizations of those results were obtained in [6] in the
following manner.

Let �1 < a < b < +1 and C0([a; b];C) = ff : [a; b] ! C : f continuous on
[a; b] with f(a) = 0g, where C is the �eld of complex numbers. If K = (Kk) is a
sequence of functions Kk 2 C0([a; b];C) and D = (Dk) is a sequence of numbers
Dk > 0, k = 1; 2; . . . , we de�ne PK;D(C) to be the class of all linear combinations

g, g(t) =
PN

k=1 akKk(t) (ak | complex) with the restrictions that jakj � Dk,
k = 1; 2; . . . ; N . Also, if Kk 2 C0([a; b];R) = ff : [a; b]! R : f continuous on [a; b]
and f(a) = 0g, then we de�ne PK;D(R) to be the class of all linear combinations g,
g(t) =

P
akKk(t), with ak real numbers such that jakj � Dk.

In [6], among other results, the following two were proved:

Theorem 1.1 [6, Theorem 3]. If Kk = t�k , �k > 0, �k+1 � �k � c > 0,P1
k=1 �

�1
k =1 and Dk = A�k

k with Ak > 0 (k = 1; 2; . . . ), then for f 2 C0([0; 1];R)
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there exists a sequence gn 2 PK;D(R), n = 1; 2; . . . , uniformly converging toward f
on [0; 1], if and only if there exists a subsequence (ki) of (k) such that

1X

i=1

��1ki =1 and Aki !1 (i!1): (1)

Theorem 1.2 [6, Theorem 5]. If Kk(t) = t�k , 0 < �k ! b (k ! 1),
0 < b < 1 with �i 6= �j (i 6= j) and Dk > 0 (k = 1; 2; . . . ;) then, for any

f 2 C0([0; 1];R), there exists a sequence gn 2 PK;D(R), n = 1; 2; . . . , uniformly

converging toward f on [0; 1], if and only if

1X

k=1

Dk j�k � bjp =1; for all p = 0; 1; 2; . . . . (2)

Remark. In fact, in [6], those results were proved for f 2 C0([0; 1];C), gn 2
PK;D(C) being complex function. But it is clear that, if f 2 C0([0; 1];R), then

gn 2 PK;D(C) are considered to be real-valued functions
�
gn(t) =

PNn

k=1 a
(n)
k t�k ,

with a
(n)
k 2 R, k = 1; 2; . . . ; Nn

�
; therefore, gn 2 PK;D(R).

In this paper we shall extend the results in [1] to the case of Theorems 1.1 and
1.2, using in their proofs an important remark, communicated to me by Professor
D. Leviatan.

2. Basic Results

In the following, for a > 0, let us denote by hai the least integer such that

a � hai and let us denote by C
hai
0 ([0; 1];R) = ff : [0; 1]! R : f continuous on [0; 1]

and f(0) = f 0(0) = . . . = f (hai)(0) = 0g, where f (hai)(0) denotes the derivative of
order hai of f at the point 0.

Let (�k), (Ak) be two sequences or real numbers satisfying

1 � Ak; k = 1; 2; . . . ; Ak
k
�!1; (3)

0 < �k ; �k+1 � �k � c > 0; (k = 1; 2; . . . );

1X

k=1

��1k =1: (4)

Regarding the approximation by monotone sequences, to Theorem 1.1 there
corresponds

Theorem 2.1. Assume that (3) and (4) hold. For any f 2 C
h(i�1)
0 ([0; 1];R)

there exists a sequence of generalized polynomials (Pn),

Pn(t) =

inX

k=1

b
(n)
k t�k ; with b

(n)
k 2 R; n = 1; 2; . . . ; t 2 [0; 1]
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such that Pn ! f uniformly on [0; 1], jb
(n)
k j � A�k

k , k = 1; in, n = 1; 2; . . . , and

f(t) < Pn+1(t) < Pn(t) for all t 2 (0; 1]; Pn(0) = 0; n = 1; 2; . . . :

Proof. Take F (t) = f(t)=t�1 , t 2 (0; 1], F (0) = 0. Since f 2 C
h�1i
0 ([0; 1];R)

we obtain:

lim
t!0

f(t)

t�1
= lim

t!0

f 0(t)

�1t�1�1
= . . . = lim

t!0

1

M0
� f (h�1i)(t)t�1�h�1i = 0

(where M0 = �1(�1 � 1) � . . . � (�1 � h�1i+ 1)), and therefore F 2 C0([0; 1];R).

Now let us denote by �k = �k+1 � �1 and L = (Lk), Lk(t) = t�k . Using an
idea of D. Leviatan, communicated to me through a personal letter, let us denote

by Bk = A
k=(k+1)
k+1 , C = (Ck), Ck = B�k

k . Because of (3) it is obvious that 0 < Bk

and Bk
k
�! +1.

Since
1X

k=1

1

�k
=

1X

k=1

1

�k+1 � �k
>

1X

k=1

1

�k+1
= +1;

we obtain
P1

k=1 1=�k = +1. Also, 0 < �k, �k+1 � �k = �k+2 � �k+1 � c > 0,
k = 1; 2; . . . , and, therefore, taking into account Theorem 1.1, the set PL;C(R) is
dense in C0([0; 1];R) in the sense of the uniform norm.

Then, for F 2 C0([0; 1];R), there exists a sequence Rn 2 PL;C(R), Rn(t) =Pjn
k=1 a

(n)
k t�k such that jF (t) � Rn(t)j < 1=[n(n + 1)], for all t 2 (0; 1] and all

n = 1; 2; . . . , where

ja
(n)
k j � B�k

k ; k = 1; 2; . . . ; jn; n = 1; 2; . . . : (5)

Hence

jf(t)� t�1Rn(t)j < t�1=[n(n+ 1)]; 8t 2 (0; 1]; n = 1; 2; . . . : (6)

Take Qn(t) = t�1Rn(t) and Sn(t) = Qn(t) + 2t�1=n, t 2 [0; 1], n = 1; 2; . . . . From

(6) it is evident that Qn
n
�! f uniformly on [0; 1] and, therefore, Sn ! f , uniformly

on [0; 1]. Then, by (6), we obtain

jQn(t)�Qn+1(t)j � jQn(t)� f(t)j+ jf(t)�Qn+1(t)j

<
t�1

n(n+ 1)
+

t�1

(n+ 1)(n+ 2)
< 2 �

t�1

n(n+ 1)
;

for all t 2 (0; 1] and all n = 1; 2; . . . , and, therefore,

Sn(t)� Sn+1(t) = Qn(t)�Qn+1(t) + 2t�1=[n(n+ 1)] > 0

for all t 2 (0; 1] and Sn(0) = Sn+1(0) = 0, for all n = 1; 2; . . . . But

Sn(t) =
2t�1

n
+ t�1

jnX

k=1

a
(n)
k t�k =

2t�1

n
+

jnX

k=1

a
(n)
k t�k+1

=
2t�1

n
+

jn+1X

k=2

a
(n)
k�1t

�k =

inX

k=1

b
(n)
k t�k ;
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where in = jn + 1, b
(n)
1 = 2=n and b

(n)
k = a

(n)
k�1, k = 2; . . . ; in.

Taking now into account (3), (4) and (5), we obtain: there exists an n0 2 N,

such that b
(n)
1 = 2=n � A�1

1 for all n � n0 and then

jb
(n)
k j = ja

(n)
k�1j � B

�k�1
k�1 = A

�k�1(k�1)=k
k � A

�k�1
k = A�k��1

k � A�k
k ;

k = 2; . . . ; in, n = 1; 2; . . . . Hence, it is evident that Pn(t) = Sn+n0(t), n =
1; 2; . . . , satis�es the conclusions of Theorem 2.1.

Remarks. 1Æ. If, in the previous proof, we consider Sn(t) = Qn(t) � 2t�1 ,
then it can easily be seen that (Sn)n�n0 is a monotonously increasing sequence in
(0; 1].

2Æ. For �k = k, k = 1; 2; . . . , we obtain a more general version of Theorem
2.1 in [1] in the sense that the monotonicity condition on the sequence Ak in [1] is
completely unnecessary.

3Æ. Suppose that �1 � 1 is an integer. Then, as it was also pointed out
by D. Leviatan (in the case of �1 = 1, see M.R.90d { 41010) the condition f 2
Ch�1i([0; 1];R) in Theorem 2.1 can be replaced by

f 2
�
f 2 C[0; 1] : f(0) = . . . = f (�1�1)(0) = 0; jf (�1)(0)=(�1!)j < A�1

1

	
:

Indeed, denote

F (x) = f(x)� f 0(0)x� f 00(0)x2=2!� � � � � f (�1)x�1=�1!:

Then, since obviously F (0) = F 0(0) = . . . = F (�1)(0) = 0, following the proof of
Theorem 2.1, there is a generalized polynomial sequence (Fn) satisfying Fn ! f
uniformly on [0; 1],

F (x) < Fn+1(x) < Fn(x); Fn(0) = 0; x 2 (0; 1]; n � n0;

where

Fn(x) =
2x�1

n
+

inX

k=2

b
(n)
k x�k and jb

(n)
k j � A�k

k ; k = 2; in:

Hence, we obtain,

f(x)� f 0(0)x� � � � � f (�1)(0)
x�1

�1!
<

2x�1

n+ 1
+

in+1X

k=2

b
(n+1)
k x�k

<
2x�1

n
+

inX

k=2

b
(n)
k x�k ;

that is

f(x) < f 0(0)x+ � � �+ f (�1)(0)
x�1

�1!
+

2x�1

n+ 1
+

in+1X

k=2

b
(n+1)
k x�k

< f 0(0)x+ � � �+ f (�1)(0)
x�1

�1!
+

2x�1

n
+

inX

k=2

b
(n)
k x�k :
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Denoting now by

Sn(x) = f 0(0)x+ � � �+ f (�1)(0)
x�1

�1!
+

2x�1

n
+

inX

k=2

b
(n)
k x�k ;

it is obvious that if f(0) = . . . = f (�1�1)(0) = 0 and jf (�1)(0)=(�1!)j < A�1
1 , for

all n � n1. As a conclusion, the sequence (Pn) in Theorem 2.1 can be chosen by
Pn(x) = Sn+n1(x).

In the following, let (�k), (Dk) be two sequences satisfying

�k 2 R; 0 < �k " b; 0 < b < +1 (7)

Dk 2 R; 0 < Dk; k = 1; 2; . . . ;
1P
k=1

Dk(b� �k)
p = +1; for all p = 0; 1; . . . .

(8)

Regarding the approximation by monotone sequences, to Theorem 1.2 there
corresponds

Theorem 2.2. Assume that (7) and (8) hold. For any f 2 C
h�1i
0 ([0; 1];R)

there exists a sequence of generalized polynomials (Pn), Pn(t) =
Pin

k=1 b
(n)
k t�k ,

b
(n)
k 2 R, such that Pn ! f uniformly on [0; 1], jb

(n)
k j � Dk, k = 1; in, n = 1; 2; . . . ,

and f(t) < Pn+1(t) < Pn(t) for all t 2 (0; 1], Pn(0) = 0, n = 1; 2; . . . .

Proof. Taking F (t)=t�1 , t 2 (0; 1], F (0) = 0, as in proof of Theorem 2.1, we
have F 2 C0([0; 1];R). Now, let us denote by �k = �k+1 � �1 and L = (Lk), C =
(Ck), de�ned by Lk(t) = t�k , Ck = Dk+1, k = 1; 2; . . . . Since �k " b� �1 = b1 > 0
(from (7)) and

1X

k=1

Ck(b1 � �k)
p =

1X

k=1

Dk+1(b� �k+1)
p = +1; for p = 0; 1; . . . ,

(from (8)), taking into account Theorem 2.1, we get that the set PL;C(R) is dense
in C0([0; 1];R) in the uniform norm. Then, for F 2 C0([0; 1];R), there exists a

sequence Rn(t) =
Pjn

k=1 a
(n)
k t�k 2 PL;C(R), such that jF (t)�Rn(t)j < 1=[n(n+1)],

for all t 2 (0; 1] and all n = 1; 2; . . . , where

ja
(n)
k j � Ck = Dk+1; k = 1; 2; . . . ; jn; n = 1; 2; . . . : (9)

Taking Sn(t) = t�1Rn(t) + 2t�1=n and using the same arguments as in the
proof of Theorem 2.1, we obtain that Sn ! f uniformly on [0; 1], Sn(t)�Sn+1(t) >

0, for all t 2 (0; 1], Sn(0) = 0 for all n = 1; 2; . . . , and Sn(t) =
Pin

k=1 b
(n)
k t�k , where

in = jn + 1, b
(n)
1 = 2=n and b

(n)
k = a

(n)
k�1, k = 2; . . . ; in.

Taking into account (9), we obtain that jb
(n)
k j = ja

(n)
k�1j � Dk, k = 2; . . . ; in,

n = 1; 2; . . . . Also, from D1 > 0, there obviously exists an n0 2 N such that

b
(n)
1 = 2=n < D1 for all n > n0; therefore it is self-evident that Pn(t) = Sn+n0(t),
n = 1; 2; . . . , satis�es the conclusions of Theorem 2.2.
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