APPROXIMATION OF CONTINUOUS FUNCTIONS BY MONOTONE SEQUENCES OF GENERALIZED POLYNOMIALS WITH RESTRICTED COEFFICIENTS

S. G. Gal

Abstract

The problem of approximation of continuous functions by generalized polynomials with restricted coefficients was considered in $[\mathbf{2}-\mathbf{3}]$ and $[\mathbf{4}-\mathbf{6}]$. In $[\mathbf{1}]$ we have obtained some results regarding the approximation by monotonous sequences of ordinary polynomials with restricted coefficients. The aim of this paper is to extend the results of [1] to the case of approximation by generalized polynomials with restricted coefficients.

1. Introduction

Replacing the ordinary polynomials by generalized polynomials, the results regarding the approximation by ordinary polynomials with restricted coefficients was firstly extended in $[\mathbf{2}-\mathbf{3}]$ and [5].

Some important generalizations of those results were obtained in [6] in the following manner.

Let $-\infty<a<b<+\infty$ and $C_{0}([a, b] ; \mathbf{C})=\{f:[a, b] \rightarrow \mathbf{C}: f$ continuous on [a,b] with $f(a)=0\}$, where \mathbf{C} is the field of complex numbers. If $K=\left(K_{k}\right)$ is a sequence of functions $K_{k} \in C_{0}([a, b] ; \mathbf{C})$ and $D=\left(D_{k}\right)$ is a sequence of numbers $D_{k}>0, k=1,2, \ldots$, we define $P_{K, D}(\mathbf{C})$ to be the class of all linear combinations $g, g(t)=\sum_{k=1}^{N} a_{k} K_{k}(t)\left(a_{k}-\right.$ complex $)$ with the restrictions that $\left|a_{k}\right| \leq D_{k}$, $k=1,2, \ldots, N$. Also, if $K_{k} \in C_{0}([a, b] ; \mathbf{R})=\{f:[a, b] \rightarrow \mathbf{R}: f$ continuous on $[a, b]$ and $f(a)=0\}$, then we define $P_{K, D}(\mathbf{R})$ to be the class of all linear combinations g, $g(t)=\sum a_{k} K_{k}(t)$, with a_{k} real numbers such that $\left|a_{k}\right| \leq D_{k}$.

In [6], among other results, the following two were proved:
Theorem 1.1 [6, Theorem 3]. If $K_{k}=t^{\lambda_{k}}, \lambda_{k}>0, \lambda_{k+1}-\lambda_{k} \geq c>0$, $\sum_{k=1}^{\infty} \lambda_{k}^{-1}=\infty$ and $D_{k}=A_{k}^{\lambda_{k}}$ with $A_{k}>0(k=1,2, \ldots)$, then for $f \in C_{0}([0,1] ; \mathbf{R})$
there exists a sequence $g_{n} \in P_{K, D}(\mathbf{R}), n=1,2, \ldots$, uniformly converging toward f on $[0,1]$, if and only if there exists a subsequence $\left(k_{i}\right)$ of (k) such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \lambda_{k_{i}}^{-1}=\infty \quad \text { and } \quad A_{k_{i}} \rightarrow \infty \quad(i \rightarrow \infty) \tag{1}
\end{equation*}
$$

Theorem 1.2 [6, Theorem 5]. If $K_{k}(t)=t^{\lambda_{k}}, 0<\lambda_{k} \rightarrow b(k \rightarrow \infty)$, $0<b<\infty$ with $\lambda_{i} \neq \lambda_{j}(i \neq j)$ and $D_{k}>0(k=1,2, \ldots$,$) then, for any$ $f \in C_{0}([0,1] ; \mathbf{R})$, there exists a sequence $g_{n} \in P_{K, D}(\mathbf{R}), n=1,2, \ldots$, uniformly converging toward f on $[0,1]$, if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} D_{k}\left|\lambda_{k}-b\right|^{p}=\infty, \quad \text { for all } p=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Remark. In fact, in [6], those results were proved for $f \in C_{0}([0,1] ; \mathbf{C}), g_{n} \in$ $P_{K, D}(\mathbf{C})$ being complex function. But it is clear that, if $f \in C_{0}([0,1] ; \mathbf{R})$, then $g_{n} \in P_{K, D}(\mathbf{C})$ are considered to be real-valued functions $\left(g_{n}(t)=\sum_{k=1}^{N_{n}} a_{k}^{(n)} t^{\lambda_{k}}\right.$, with $\left.a_{k}^{(n)} \in \mathbf{R}, k=1,2, \ldots, N_{n}\right)$; therefore, $g_{n} \in P_{K, D}(\mathbf{R})$.

In this paper we shall extend the results in [1] to the case of Theorems 1.1 and 1.2, using in their proofs an important remark, communicated to me by Professor D. Leviatan.

2. Basic Results

In the following, for $a>0$, let us denote by $\langle a\rangle$ the least integer such that $a \leq\langle a\rangle$ and let us denote by $C_{0}^{\langle a\rangle}([0,1] ; \mathbf{R})=\{f:[0,1] \rightarrow \mathbf{R}: f$ continuous on $[0,1]$ and $\left.f(0)=f^{\prime}(0)=\ldots=f^{(\langle a\rangle)}(0)=0\right\}$, where $f^{(\langle a\rangle)}(0)$ denotes the derivative of order $\langle a\rangle$ of f at the point 0 .

Let $\left(\lambda_{k}\right),\left(A_{k}\right)$ be two sequences or real numbers satisfying

$$
\begin{gather*}
1 \leq A_{k}, \quad k=1,2, \ldots, \quad A_{k} \xrightarrow{k} \infty \tag{3}\\
0<\lambda_{k}, \quad \lambda_{k+1}-\lambda_{k} \geq c>0, \quad(k=1,2, \ldots), \quad \sum_{k=1}^{\infty} \lambda_{k}^{-1}=\infty . \tag{4}
\end{gather*}
$$

Regarding the approximation by monotone sequences, to Theorem 1.1 there corresponds

Theorem 2.1. Assume that (3) and (4) hold. For any $f \in C_{0}^{\left\langle(\rangle \lambda_{1}\right)}([0,1] ; \mathbf{R})$ there exists a sequence of generalized polynomials $\left(P_{n}\right)$,

$$
P_{n}(t)=\sum_{k=1}^{i_{n}} b_{k}^{(n)} t^{\lambda_{k}}, \quad \text { with } b_{k}^{(n)} \in \mathbf{R}, n=1,2, \ldots, t \in[0,1]
$$

such that $P_{n} \rightarrow f$ uniformly on $[0,1],\left|b_{k}^{(n)}\right| \leq A_{k}^{\lambda_{k}}, k=\overline{1, i_{n}}, n=1,2, \ldots$, and $f(t)<P_{n+1}(t)<P_{n}(t) \quad$ for all $t \in(0,1], \quad P_{n}(0)=0, n=1,2, \ldots$.

Proof. Take $F(t)=f(t) / t^{\lambda_{1}}, t \in(0,1], F(0)=0$. Since $f \in C_{0}^{\left\langle\lambda_{1}\right\rangle}([0,1] ; \mathbf{R})$ we obtain:

$$
\lim _{t \rightarrow 0} \frac{f(t)}{t^{\lambda_{1}}}=\lim _{t \rightarrow 0} \frac{f^{\prime}(t)}{\lambda_{1} t^{\lambda_{1}-1}}=\ldots=\lim _{t \rightarrow 0} \frac{1}{M_{0}} \cdot f^{\left(\left\langle\lambda_{1}\right\rangle\right)}(t) t^{\lambda_{1}-\left\langle\lambda_{1}\right\rangle}=0
$$

(where $M_{0}=\lambda_{1}\left(\lambda_{1}-1\right) \cdot \ldots \cdot\left(\lambda_{1}-\left\langle\lambda_{1}\right\rangle+1\right)$), and therefore $F \in C_{0}([0,1] ; \mathbf{R})$.
Now let us denote by $\mu_{k}=\lambda_{k+1}-\lambda_{1}$ and $L=\left(L_{k}\right), L_{k}(t)=t^{\mu_{k}}$. Using an idea of D. Leviatan, communicated to me through a personal letter, let us denote by $B_{k}=A_{k+1}^{k /(k+1)}, C=\left(C_{k}\right), C_{k}=B_{k}^{\mu_{k}}$. Because of (3) it is obvious that $0<B_{k}$ and $B_{k} \xrightarrow{k}+\infty$.

Since

$$
\sum_{k=1}^{\infty} \frac{1}{\mu_{k}}=\sum_{k=1}^{\infty} \frac{1}{\lambda_{k+1}-\lambda_{k}}>\sum_{k=1}^{\infty} \frac{1}{\lambda_{k+1}}=+\infty
$$

we obtain $\sum_{k=1}^{\infty} 1 / \mu_{k}=+\infty$. Also, $0<\mu_{k}, \mu_{k+1}-\mu_{k}=\lambda_{k+2}-\lambda_{k+1} \geq c>0$, $k=1,2, \ldots$, and, therefore, taking into account Theorem 1.1, the set $P_{L, C}(\mathbf{R})$ is dense in $C_{0}([0,1] ; \mathbf{R})$ in the sense of the uniform norm.

Then, for $F \in C_{0}([0,1] ; \mathbf{R})$, there exists a sequence $R_{n} \in P_{L, C}(\mathbf{R}), R_{n}(t)=$ $\sum_{k=1}^{j_{n}} a_{k}^{(n)} t^{\mu_{k}}$ such that $\left|F(t)-R_{n}(t)\right|<1 /[n(n+1)]$, for all $t \in(0,1]$ and all $n=1,2, \ldots$, where

$$
\begin{equation*}
\left|a_{k}^{(n)}\right| \leq B_{k}^{\mu_{k}}, \quad k=1,2, \ldots, j_{n}, \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|f(t)-t^{\lambda_{1}} R_{n}(t)\right|<t^{\lambda_{1}} /[n(n+1)], \quad \forall t \in(0,1], n=1,2, \ldots \tag{6}
\end{equation*}
$$

Take $Q_{n}(t)=t^{\lambda_{1}} R_{n}(t)$ and $S_{n}(t)=Q_{n}(t)+2 t^{\lambda_{1}} / n, t \in[0,1], n=1,2, \ldots$ From (6) it is evident that $Q_{n} \xrightarrow{n} f$ uniformly on [0, 1] and, therefore, $S_{n} \rightarrow f$, uniformly on $[0,1]$. Then, by (6), we obtain

$$
\begin{aligned}
\left|Q_{n}(t)-Q_{n+1}(t)\right| & \leq\left|Q_{n}(t)-f(t)\right|+\left|f(t)-Q_{n+1}(t)\right| \\
& <\frac{t^{\lambda_{1}}}{n(n+1)}+\frac{t^{\lambda_{1}}}{(n+1)(n+2)}<2 \cdot \frac{t^{\lambda_{1}}}{n(n+1)}
\end{aligned}
$$

for all $t \in(0,1]$ and all $n=1,2, \ldots$, and, therefore,

$$
S_{n}(t)-S_{n+1}(t)=Q_{n}(t)-Q_{n+1}(t)+2 t^{\lambda_{1}} /[n(n+1)]>0
$$

for all $t \in(0,1]$ and $S_{n}(0)=S_{n+1}(0)=0$, for all $n=1,2, \ldots$. But

$$
\begin{aligned}
S_{n}(t) & =\frac{2 t^{\lambda_{1}}}{n}+t^{\lambda_{1}} \sum_{k=1}^{j_{n}} a_{k}^{(n)} t^{\mu_{k}}=\frac{2 t^{\lambda_{1}}}{n}+\sum_{k=1}^{j_{n}} a_{k}^{(n)} t^{\lambda_{k+1}} \\
& =\frac{2 t^{\lambda_{1}}}{n}+\sum_{k=2}^{j_{n}+1} a_{k-1}^{(n)} t^{\lambda_{k}}=\sum_{k=1}^{i_{n}} b_{k}^{(n)} t^{\lambda_{k}}
\end{aligned}
$$

where $i_{n}=j_{n}+1, b_{1}^{(n)}=2 / n$ and $b_{k}^{(n)}=a_{k-1}^{(n)}, k=2, \ldots, i_{n}$.
Taking now into account (3), (4) and (5), we obtain: there exists an $n_{0} \in \mathbf{N}$, such that $b_{1}^{(n)}=2 / n \leq A_{1}^{\lambda_{1}}$ for all $n \geq n_{0}$ and then

$$
\left|b_{k}^{(n)}\right|=\left|a_{k-1}^{(n)}\right| \leq B_{k-1}^{\mu_{k-1}}=A_{k}^{\mu_{k-1}(k-1) / k} \leq A_{k}^{\mu_{k-1}}=A_{k}^{\lambda_{k}-\lambda_{1}} \leq A_{k}^{\lambda_{k}}
$$

$k=2, \ldots, i_{n}, n=1,2, \ldots$. Hence, it is evident that $P_{n}(t)=S_{n+n_{0}}(t), n=$ $1,2, \ldots$, satisfies the conclusions of Theorem 2.1.

Remarks. 1°. If, in the previous proof, we consider $S_{n}(t)=Q_{n}(t)-2 t^{\lambda_{1}}$, then it can easily be seen that $\left(S_{n}\right)_{n \geq n_{0}}$ is a monotonously increasing sequence in $(0,1]$.
2°. For $\lambda_{k}=k, k=1,2, \ldots$, we obtain a more general version of Theorem 2.1 in $[\mathbf{1}]$ in the sense that the monotonicity condition on the sequence A_{k} in $[\mathbf{1}]$ is completely unnecessary.
3°. Suppose that $\lambda_{1} \geq 1$ is an integer. Then, as it was also pointed out by D. Leviatan (in the case of $\lambda_{1}=1$, see M.R.90d - 41010) the condition $f \in$ $C^{\left\langle\lambda_{1}\right\rangle}([0,1] ; \mathbf{R})$ in Theorem 2.1 can be replaced by

$$
f \in\left\{f \in C[0,1]: f(0)=\ldots=f^{\left(\lambda_{1}-1\right)}(0)=0,\left|f^{\left(\lambda_{1}\right)}(0) /\left(\lambda_{1}!\right)\right|<A_{1}^{\lambda_{1}}\right\}
$$

Indeed, denote

$$
F(x)=f(x)-f^{\prime}(0) x-f^{\prime \prime}(0) x^{2} / 2!-\cdots-f^{\left(\lambda_{1}\right)} x^{\lambda_{1}} / \lambda_{1}!
$$

Then, since obviously $F(0)=F^{\prime}(0)=\ldots=F^{\left(\lambda_{1}\right)}(0)=0$, following the proof of Theorem 2.1, there is a generalized polynomial sequence $\left(F_{n}\right)$ satisfying $F_{n} \rightarrow f$ uniformly on $[0,1]$,

$$
F(x)<F_{n+1}(x)<F_{n}(x), \quad F_{n}(0)=0, \quad x \in(0,1], \quad n \geq n_{0}
$$

where

$$
F_{n}(x)=\frac{2 x^{\lambda_{1}}}{n}+\sum_{k=2}^{i_{n}} b_{k}^{(n)} x^{\lambda_{k}} \quad \text { and } \quad\left|b_{k}^{(n)}\right| \leq A_{k}^{\lambda_{k}}, \quad k=\overline{2, i_{n}}
$$

Hence, we obtain,

$$
\begin{aligned}
f(x)-f^{\prime}(0) x-\cdots-f^{\left(\lambda_{1}\right)}(0) \frac{x^{\lambda_{1}}}{\lambda_{1}!} & <\frac{2 x^{\lambda_{1}}}{n+1}+\sum_{k=2}^{i_{n+1}} b_{k}^{(n+1)} x^{\lambda_{k}} \\
& <\frac{2 x^{\lambda_{1}}}{n}+\sum_{k=2}^{i_{n}} b_{k}^{(n)} x^{\lambda_{k}}
\end{aligned}
$$

that is

$$
\begin{aligned}
f(x) & <f^{\prime}(0) x+\cdots+f^{\left(\lambda_{1}\right)}(0) \frac{x^{\lambda_{1}}}{\lambda_{1}!}+\frac{2 x^{\lambda_{1}}}{n+1}+\sum_{k=2}^{i_{n+1}} b_{k}^{(n+1)} x^{\lambda_{k}} \\
& <f^{\prime}(0) x+\cdots+f^{\left(\lambda_{1}\right)}(0) \frac{x^{\lambda_{1}}}{\lambda_{1}!}+\frac{2 x^{\lambda_{1}}}{n}+\sum_{k=2}^{i_{n}} b_{k}^{(n)} x^{\lambda_{k}} .
\end{aligned}
$$

Denoting now by

$$
S_{n}(x)=f^{\prime}(0) x+\cdots+f^{\left(\lambda_{1}\right)}(0) \frac{x^{\lambda_{1}}}{\lambda_{1}!}+\frac{2 x^{\lambda_{1}}}{n}+\sum_{k=2}^{i_{n}} b_{k}^{(n)} x^{\lambda_{k}}
$$

it is obvious that if $f(0)=\ldots=f^{\left(\lambda_{1}-1\right)}(0)=0$ and $\left|f^{\left(\lambda_{1}\right)}(0) /\left(\lambda_{1}!\right)\right|<A_{1}^{\lambda_{1}}$, for all $n \geq n_{1}$. As a conclusion, the sequence $\left(P_{n}\right)$ in Theorem 2.1 can be chosen by $P_{n}(x)=S_{n+n_{1}}(x)$.

In the following, let $\left(\lambda_{k}\right),\left(D_{k}\right)$ be two sequences satisfying

$$
\begin{gather*}
\lambda_{k} \in \mathbf{R}, \quad 0<\lambda_{k} \uparrow b, \quad 0<b<+\infty \tag{7}\\
D_{k} \in \mathbf{R}, \quad 0<D_{k}, \quad k=1,2, \ldots \\
\sum_{k=1}^{\infty} D_{k}\left(b-\lambda_{k}\right)^{p}=+\infty, \quad \text { for all } p=0,1, \ldots \tag{8}
\end{gather*}
$$

Regarding the approximation by monotone sequences, to Theorem 1.2 there corresponds

Theorem 2.2. Assume that (7) and (8) hold. For any $f \in C_{0}^{\left\langle\lambda_{1}\right\rangle}([0,1] ; \mathbf{R})$ there exists a sequence of generalized polynomials $\left(P_{n}\right), P_{n}(t)=\sum_{k=1}^{i_{n}} b_{k}^{(n)} t^{\lambda_{k}}$, $b_{k}^{(n)} \in \mathbf{R}$, such that $P_{n} \rightarrow f$ uniformly on $[0,1],\left|b_{k}^{(n)}\right| \leq D_{k}, k=\overline{1, i_{n}}, n=1,2, \ldots$, and $f(t)<P_{n+1}(t)<P_{n}(t)$ for all $t \in(0,1], P_{n}(0)=0, n=1,2, \ldots$.

Proof. Taking $F(t) / t^{\lambda_{1}}, t \in(0,1], F(0)=0$, as in proof of Theorem 2.1, we have $F \in C_{0}([0,1] ; \mathbf{R})$. Now, let us denote by $\mu_{k}=\lambda_{k+1}-\lambda_{1}$ and $L=\left(L_{k}\right), C=$ $\left(C_{k}\right)$, defined by $L_{k}(t)=t^{\mu_{k}}, C_{k}=D_{k+1}, k=1,2, \ldots$. Since $\mu_{k} \uparrow b-\lambda_{1}=b_{1}>0$ (from (7)) and

$$
\sum_{k=1}^{\infty} C_{k}\left(b_{1}-\mu_{k}\right)^{p}=\sum_{k=1}^{\infty} D_{k+1}\left(b-\lambda_{k+1}\right)^{p}=+\infty, \quad \text { for } p=0,1, \ldots
$$

(from (8)), taking into account Theorem 2.1, we get that the set $P_{L, C}(\mathbf{R})$ is dense in $C_{0}([0,1] ; \mathbf{R})$ in the uniform norm. Then, for $F \in C_{0}([0,1] ; \mathbf{R})$, there exists a sequence $R_{n}(t)=\sum_{k=1}^{j_{n}} a_{k}^{(n)} t^{\mu_{k}} \in P_{L, C}(\mathbf{R})$, such that $\left|F(t)-R_{n}(t)\right|<1 /[n(n+1)]$, for all $t \in(0,1]$ and all $n=1,2, \ldots$, where

$$
\begin{equation*}
\left|a_{k}^{(n)}\right| \leq C_{k}=D_{k+1}, \quad k=1,2, \ldots, j_{n}, \quad n=1,2, \ldots \tag{9}
\end{equation*}
$$

Taking $S_{n}(t)=t^{\lambda_{1}} R_{n}(t)+2 t^{\lambda_{1}} / n$ and using the same arguments as in the proof of Theorem 2.1, we obtain that $S_{n} \rightarrow f$ uniformly on [0, 1], $S_{n}(t)-S_{n+1}(t)>$ 0 , for all $t \in(0,1], S_{n}(0)=0$ for all $n=1,2, \ldots$, and $S_{n}(t)=\sum_{k=1}^{i_{n}} b_{k}^{(n)} t^{\lambda_{k}}$, where $i_{n}=j_{n}+1, b_{1}^{(n)}=2 / n$ and $b_{k}^{(n)}=a_{k-1}^{(n)}, k=2, \ldots, i_{n}$.

Taking into account (9), we obtain that $\left|b_{k}^{(n)}\right|=\left|a_{k-1}^{(n)}\right| \leq D_{k}, k=2, \ldots, i_{n}$, $n=1,2, \ldots$ Also, from $D_{1}>0$, there obviously exists an $n_{0} \in \mathbf{N}$ such that $b_{1}^{(n)}=2 / n<D_{1}$ for all $n>n_{0}$; therefore it is self-evident that $P_{n}(t)=S_{n+n_{0}}(t)$, $n=1,2, \ldots$, satisfies the conclusions of Theorem 2.2.

Acknowledgement. I am very indebted to Professor Lothar Hoischen (Institute of Mathematics, Giessen University, Germany) for bringing to my attention the references [4-6], and to Professor D. Leviatan (Tel-Aviv University) for his remarks on my paper [1].

REFERENCES

[1] S. G. Gal, Approximation of continuous functions by monotone sequences of polynomials with restricted coefficients, Publ. Inst. Math. (Beograd) 44 (58) (1988), 45-48.
[2] M.v. Golitschek, Permissible bounds on the coefficients of generalized polynomials, in: Approximation Theory, Proc. Conf. Approx. Theory, Austin, Texas, 1973 (G. G. Lorentz ed.), Academic Press, New York, 1973.
[3] M.v. Golitschek, Permissible bounds on the coefficients of approximating polynomials with real or complex exponents, J. Math. Anal. Appl. 60 (1977), 123-138.
[4] L. Hoischen, Kriterien für die asymptotische Approximation durch Dirichletsche Reihen, J. Approx. Theory 45 (1985), 11-18.
[5] L. Hoischen, Koeffizientenwachstum bei der Approximation durch verallgemeinerte Polynome, J. Approx. Theory 45 (1985), 19-25.
[6] L. Hoischen, Approximation by linear combinations of continuous functions with restricted coefficients, J. Approx. Theory 65 (1991), 207-215.

Department of Mathematics
Str. Armatei Romane Nr. 5
3700 Oradea, Romania

