SOME ESTIMATES OF THE INTEGRAL $\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right|(2 \pi)^{-1} d \theta$

Stojan Radenović

Abstract

We investigate some estimates of the integral $\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$, if the polynomial $P(z)$ has a concentration at low degrees measured by the l_{p}-norm, $1 \leq p \leq 2$. We also obtain better estimates for some concentrations than those obtained in [1].

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial with complex coefficients and let d be a real number such that $0<d \leq 1$. We say that $P(z)$ has a concentration d of degrees of at most k, measured by the l_{p}-norm $(p \geq 1)$, if

$$
\begin{equation*}
\left(\sum_{j \leq k}\left|a_{k}\right|^{p}\right)^{1 / p} \geq d\left(\sum_{j \geq 0}\left|a_{j}\right|^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

Polynomials with concentrations of low degrees were introduced by B. Beauzamy and P. Enflo; this plays an important role in the construction of an operator on a Banach space with no non-trivial invariant subspace. We investigate here the estimates of the integral $\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ of such polynomials. In the following, we shall normalize $P(z)$ under the l_{p}-norm and also assume that

$$
\begin{equation*}
\left(\sum_{j \geq 0}\left|a_{j}\right|^{p}\right)^{1 / p}=1 \tag{2}
\end{equation*}
$$

Otherwise, the concentration of polynomials is measured by some of the wellknown norms: $|P|_{p}(p \geq 1),|P|_{2}=\|P\|_{2},|P|_{\infty},\|P\|_{\infty}, \ldots$. For details see [1].

Similarly, as in [1, Lemme 3] (case $p=2$) and [2, Theorem 1] (case $p=1$) we have the following results:

Theorem 1. Let $P(z)=\sum_{j \geq 0} a_{j} z^{j}$ be a polynomial which satisfies (1) and (2). Then:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq \sup _{1<t \leq 3} f_{d, k}(t), \\
& f_{d, k}(t)= \begin{cases}t \log d\left(\frac{t-1}{t+1}\right)^{k+1}-\frac{1}{2} t^{2}, & 1<p \leq 2 \\
t \log d\left(\frac{t-1}{t+1}\right)^{k+1}, & p=1\end{cases}
\end{aligned}
$$

(see also [3, Lemma 3.2; p. 28, 29]).
Theorem 2. Let $P(z)$ be a polynomial as in Theorem 1. Then:

$$
\begin{aligned}
& \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq \sup _{1<t<+\infty} f_{d, k, p}(t), \\
& f_{d, k, p}(t)= \begin{cases}t \operatorname{there} \\
\frac{t}{p} \log d^{p} \frac{\left(\frac{t+1}{t-1}\right)^{p}-1}{\left(\frac{t+1}{t-1}\right)^{p(k+1)}-1}-\frac{1}{2} t^{2}, & 1<p \leq 2 \\
t \log \frac{2 d}{(t-1)\left[\left(\frac{t+1}{t-1}\right)^{k+1}-1\right]}, & p=1\end{cases}
\end{aligned}
$$

(for the case $p=1$ see [2, Theorem 1]).
For proofs of the Theorems 1 and 2 we use (as in [1, Lemme 3] and [2, Theorem 1] (see also [3])) the following well known facts

$$
\begin{aligned}
& 1^{\circ} \quad a_{j}=\int_{0}^{2 \pi} \frac{P\left(r e^{i \theta}\right)}{r^{j} e^{i j \theta}} \cdot \frac{d \theta}{2 \pi} \text { if } 0<r<1 . \\
& 2^{\circ}\left|a_{j}\right| \leq\left|P\left(z_{0}\right)\right| \frac{1}{r^{j}}, \text { where }\left|P\left(z_{0}\right)\right|=\max _{|z|=r}|P(z)| .
\end{aligned}
$$

3° The classical Jensen's inequality and the known transformation:

$$
\log \left|P\left(z_{0}\right)\right| \leq \int_{0}^{2 \pi} \log \left|P\left(\frac{z_{0}+e^{i \theta}}{1+\bar{z}_{0} e^{i \theta}}\right)\right| \frac{d \theta}{2 \pi}=\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{1-r^{2}}{\left|1-\bar{z}_{0} e^{i \theta}\right|^{2}} \frac{d \theta}{2 \pi},
$$

where $\left|z_{0}\right|=r$.

$$
4^{\circ} \text { If } 0<r<1 \text { then } \frac{1-r}{1+r} \leq \frac{1-r^{2}}{\left|1-\bar{z}_{0} e^{i \theta}\right|^{2}} \leq \frac{1+r}{1-r} .
$$

$$
5^{\circ} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}=\int_{\log |P|<0}+\int_{\log |P|>0}, \text { and }
$$

$$
\int_{\log |P|>0}=\frac{1}{2} \int_{\log |P|>0} \log |P|^{2}<\frac{1}{2} \int_{\log |P|>0}|P|^{2}<\frac{1}{2} \int_{0}^{2 \pi}|P|^{2} \frac{d \theta}{2 \pi}
$$

$$
=\frac{1}{2}\|P\|_{2}^{2}=\frac{1}{2}|P|_{2}^{2}<\frac{1}{2}|P|_{p}^{2}=\frac{1}{2}
$$

because the l_{p}-norm decreases with p.
Finally, we get the functions $f_{d, k}(t)$ and $f_{d, k, p}(t)$ after the change of variables $t=(1+r) /(1-r)$.

Taking $t=2$ and $1<p \leq 2$, we have the Beauzamy-Enflo's estimate from [1]:

$$
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq 2 \log \frac{d}{e \cdot 3^{k+1}}
$$

From the following proposition and Corollaries 1 and 3 , it follows that this is not the best possible estimate.

Proposition 1. Let $P(z)$ be a polynomial as in Theorem 1. Then there exists a $\left.\left.t_{k} \in\right] 1,3\right]$ such that

$$
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq f_{d, k}\left(t_{k}\right) \geq \begin{cases}2 \log \frac{d}{e \cdot 3^{k+1}} ; & 1<p \leq 2 \\ 2 \log \frac{d}{3^{k+1}} ; & p=1\end{cases}
$$

Proof. First observe that $\lim _{t \rightarrow 1+} f_{d, k}(t)=-\infty$ and the function $f_{d, k}(t)$ has the form

$$
f_{d, k}(t)=t \log d+t(k+1) \log (t-1)-t(k+1) \log (t+1)-t^{2} / 2, \quad 1<p \leq 2
$$

We find derivatives:

$$
\begin{aligned}
f_{d, k}^{\prime}= & \log d+(k+1) \log (t-1)-(k+1) \log (t+1) \\
& -t+t(k+1)\left(\frac{1}{t-1}-\frac{1}{t+1}\right) \\
f_{d, k}^{\prime \prime}= & \frac{2(k+1)}{t-1}-\frac{2(k+1)}{t+1}-1+t(k+1)\left(\frac{1}{(t+1)^{2}}-\frac{1}{(t-1)^{2}}\right) \\
f_{d, k}^{\prime \prime \prime}= & \frac{3(k+1)}{(t+1)^{2}}-\frac{3(k+1)}{(t-1)^{2}}+2 t(k+1)\left(\frac{1}{(t-1)^{3}}-\frac{1}{(t+1)^{3}}\right)
\end{aligned}
$$

It is clear that $\lim _{t \rightarrow 1+} f_{d, k}^{\prime \prime}=-\infty$ and $f_{d, k}^{\prime \prime}(3)<0$. Since $\left.\left.f_{d, k}^{\prime \prime \prime}(t)>0, t \in\right] 1,3\right]$, it follows that $f_{d, k}^{\prime \prime}(t)<0$, hence $f_{d, k}^{\prime}(t)$ decreases. We also observe that $\lim _{t \rightarrow 1+} f_{d, k}^{\prime}(t)=$ $+\infty$. Hence, there exists exactly one $\left.\left.t_{k} \in\right] 1,3\right]$ such that $f_{d, k}^{\prime}\left(t_{k}\right)=0$ or $f_{d, k}^{\prime}(t)>0$ for each $t \in] 1,3]$. This proves the proposition. The case $p=1$ can be treated similarly.

Corollary 1. Let $P(z)$ be a polynomial as in Theorem 1. Then for every $d \in] 0,1]$ and $k \in\{0,1,2,3,4,5,6,7\}$ there exists a $\left.t_{k} \in\right] 1,2[$, such that

$$
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq f_{d, k}\left(t_{k}\right)>2 \log \frac{d}{e \cdot 3^{k+1}}, \quad 1<p \leq 2
$$

For the case $p=1$ a similar result does not hold.

Proof. Since
$f_{d, k}^{\prime}(3)=\frac{4}{3} k-\frac{2}{3}-(k+1) \log 3+\log d=0.235 k-1.773+\log d, \quad \log 3=1.098$ it follows that $f_{d, k}^{\prime}(2)<0$, for each $\left.\left.d \in\right] 0,1\right]$ and $k \in\{0,1, \ldots, 7\}$. Hence,

$$
\max _{1<t \leq 3} f_{d, k}(2)>f_{d, k}(2)=2 \log \frac{d}{e \cdot 3^{k+1}} .
$$

If $p=1$, we have

$$
f_{d, k}^{\prime}(2)=(4 / 3-\log 3) k+(4 / 3-\log 3)+\log d=0.235 k+0.235+\log d \gtrless 0 .
$$

Corollary 2. Let $P(z)$ be a polynomial as in Theorem 1. Then for every $d \in] 0,1]$ and $k>7$ for which $\log \left(3^{k+1} / d\right)$ is a rational number, there exists a $\left.\left.t_{k} \in\right] 1,3\right], t_{k} \neq 2$, such that

$$
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq f_{d, k}\left(t_{k}\right)>f_{d, k}(2), \quad 1 \leq p \leq 2 .
$$

Proof. In both cases $(1<p \leq 2, p=1)$ we have that $f_{d, k}^{\prime}(2)=0$ iff $\frac{4}{3} k-\frac{2}{3}=\log \frac{3^{k+1}}{d}$, that is $\frac{4}{3} k+\frac{4}{3}=\log \frac{3^{k+1}}{d}$.

Corollary 3. Let $P(z)$ be a polynomial as in Theorem 1. Then for every $d \in] 0,1]$ there exists a $k_{1} \in \mathbb{N}$ such that for $k>k_{1}$:

$$
\begin{aligned}
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} & \geq f_{d, k}(3)= \begin{cases}3 \log \frac{d}{e^{3 / 2} 2^{k+1}}, & 1<p \leq 2 \\
3 \log \frac{d}{2^{k+1}}, & p=1\end{cases} \\
& > \begin{cases}2 \log \frac{d}{e \cdot 3^{k+1}}, & 1<p \leq 2 \\
2 \log \frac{d}{3^{k+1}}, & p=1 .\end{cases}
\end{aligned}
$$

Proof. Since

$$
f_{d, k}^{\prime}(3)=\frac{3}{4} k-\frac{9}{4}-(k+1) \log 2+\log d=0.057 k-2.943+\log d,
$$

we have that $\max _{1<t \leq 3} f_{d, k}(t)=f_{d, k}(3)(1<p \leq 2)$ iff $f_{d, k}^{\prime}(3) \geq 0$. Hence, it follows that

$$
k_{1}=\left[\frac{(9 / 4)+\log 2-\log d}{(3 / 4)-\log 2}\right]=[51.634-17.543 \log d] .
$$

Similarly, for $p=1$ there exists the corresponding number k_{1}.

Corollary 4. Let $P(z)$ be a polynomial as in Theorem 1. Then, for every $d \in] 0,1]$ and $k \in\{0,1,2, \ldots, 51\}$, there exists a $\left.\left.t_{k} \in\right] 1,3\right]$, such that

$$
\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi} \geq f_{d, k}\left(t_{k}\right)>f_{d, k}(3)=3 \log \frac{d}{e^{3 / 2} 2^{k+1}}, \quad 1<p \leq 2
$$

Proof. This is clear from the equality

$$
f_{d, k}^{\prime}(3)=\frac{3}{4} k-\frac{9}{4}-(k+1) \log 2=0.057 k-2.943+\log d, \quad 1<p \leq 2
$$

Since for $p=1$ we have that $f_{d, k}^{\prime}(3)=0.057 k+0.057+\log d$, it follows that the conclusion is not the same as in the case $1<p \leq 2$.

We shall now analyse the estimate of the integral $\int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}$ with the function $f_{d, k, p}(t)$ as in Theorem 2. The following results can be compared with [2, Th. 2, Lemmas 3 and 4]. Firstly, we represent $f_{d, k, p}(t)$ in the form:

$$
f_{d, k, p}=h_{d, p}(t)+g_{k}(t)-\frac{1}{p} \cdot t \cdot \log \left[1-\left(\frac{t-1}{t+1}\right)^{p(k+1)}\right]
$$

where (see [2])

$$
\begin{aligned}
h_{d, p} & =t \log d-\frac{1}{2} t^{2}+\frac{t}{p} \log \left[(t+1)^{p}-(t-1)^{p}\right] \\
g_{k}(t) & =k t \log (t-1)-(k+1) t \log (t+1)
\end{aligned}
$$

It is clear that $f_{d, k, p}(t)>h_{d, p}(t)+g_{k}(t), t>1$. We shall now prove the following.
Proposition 2. The function $h_{d, p}(t)+g_{k}(t)$ takes its maximum value at a point (unique) t_{k} such that $t_{k} \rightarrow+\infty$, when $k \rightarrow+\infty$.

Proof. We essentially use the same argument as in [2]. From [2] it follows that $g_{k}^{\prime \prime}(t)<0, t>1$. Now, we find derivatives for $h_{d, p}(t)$

$$
\begin{aligned}
h_{d, p}^{\prime}(t)= & \log d-t+\frac{1}{p} \log \left[(t+1)^{p}-(t-1)^{p}\right]+t \cdot \frac{(t+1)^{p-1}-(t-1)^{p-1}}{(t+1)^{p}-(t-1)^{p}} \\
h_{d, p}^{\prime \prime}(t)= & -1+2 \cdot \frac{(t+1)^{p-1}-(t-1)^{p-1}}{(t+1)^{p}-(t-1)^{p}} \\
& +\frac{t(p-1)}{A^{2}(t)}\left(\left[(t+1)^{p-2}-(t-1)^{p-2}\right] A(t)-p\left[(t+1)^{p-1}-(t-1)^{p-1}\right]^{2}\right)
\end{aligned}
$$

where $A(t)=(t+1)^{p}-(t-1)^{p}$.
Since $p \in] 1,2], t>1$, it is clear that

$$
h_{d, p}^{\prime \prime}(t)<0 \quad \text { iff } \quad-1+2 \cdot \frac{(t+1)^{p-1}-(t-1)^{p-1}}{A(t)}<0
$$

But, this is true iff $\varphi_{p}(t)<0$, where $\varphi_{p}(t)=2(t+1)^{p-1}-2(t-1)^{p-1}-(t+1)^{p}+$ $(t-1)^{p}$. Hence, we find that

$$
\varphi_{p}^{\prime}(t)=2(p-1)\left[(t+1)^{p-2}-(t-1)^{p-2}\right]+p\left[(t-1)^{p-1}-(t+1)^{p-1}\right]<0
$$

This shows that $h_{d, p}^{\prime \prime}(t)+g_{k}^{\prime \prime}(t)<0$. Since

$$
\lim _{t \rightarrow 1+}\left(h_{d, p}^{\prime}(t)+g_{k}^{\prime}(t)\right)=+\infty \quad \text { and } \quad \lim _{t \rightarrow+\infty}\left(h_{d, p}^{\prime}(t)+g_{k}^{\prime}(t)\right)=-\infty
$$

equation $h_{d, p}^{\prime}(t)+g_{k}^{\prime}(t)=0$ has exactly one solution t_{k}. From the equality $h_{d, p}^{\prime}(t)+$ $g_{k}^{\prime}(t)=0$ we get with $t=t_{k}$,

$$
k=\frac{\left(t^{2}-1\right) \log (t+1)+t^{2}-t-\left(t^{2}-1\right) h_{d, p}^{\prime}(t)}{2 t+\left(t^{2}-1\right) \log (t-1)-\left(t^{2}-1\right) \log (t+1)}
$$

wherefrom we easily deduce that $t_{k} \rightarrow+\infty$.
Remark 1. From the Proposition 1 it follows that the function $f_{d, k, p}(t)$ $(1<p \leq 2)$ has the same behaviour as the function $f_{d, k}(t)$ from [2]. If $p=2$ we get

$$
f_{d, k, 2}(t)=t \log \frac{2 d}{t-1} \sqrt{\frac{t}{((t+1) /(t-1))^{2 k+2}-1}}-\frac{1}{2} t^{2}
$$

which is the answer to the remark from [2, p. 223].
For the function $f_{d, k, 2}(t)$ we have the following results
Proposition 3. Let $f_{d, k, 2}(t)$ be the function from Theorem $2(p=2)$. Then, when $k \rightarrow+\infty$
$1^{\circ} \frac{4}{3} \frac{k}{t_{k}^{4}} \rightarrow 1 ;$
$2^{\circ} t_{k} \log \left[1-\left(\frac{t_{k}-1}{t_{k}+1}\right)^{2(k+1)}\right] \rightarrow 0 ;$
$3^{\circ} f_{d, k, 2}\left(t_{k}\right)$ and $h_{d, 2}\left(t_{k}\right)+g_{k}\left(t_{k}\right)$ are asymptotically equivalent.
Namely, $f_{d, k, 2}(t)=t \log d-\frac{1}{2} t^{2}+\frac{t}{2} \log 4 t+g_{k}(t)$, where $g_{k}(t)$ is same as in [2]. The proof is similar as in [2], i.e. it uses the Taylor expansion of $\log (1 \pm x)$, $x \rightarrow 0$.

Acknowledgement. The autor takes this opportunity to express his sincere thanks to Professor B. Beauzamy for providing him with the reprints of his papers.

REFERENCES

[1] B. Beauzamy et P. Enflo, Estimations de produits de polynômes, J. Number Theory 21 (1985), 390-412.
[2] B. Beauzamy, Jensen's Inequality for polynomials with concentration at low degrees, Numer. Math. 49 (1986), 221-225.
[3] B. Beauzamy, Estimates for H^{2} functions with concentration at low degrees and applications to complex symbolic computation, (to appear).

Prirodno matematički fakultet
(Received 1004 1991)
34000 Kragujevac, p.p. 60
Jugoslavija

