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SOME ESTIMATES OF THE INTEGRAL
R 2�
0
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Stojan Radenovi�c

Abstract. We investigate some estimates of the integral

Z
2�

0

Log jP (ei�)j
d�

2�
, if the poly-

nomial P (z) has a concentration at low degrees measured by the lp-norm, 1 � p � 2. We also
obtain better estimates for some concentrations than those obtained in [1].

Let P (z) =
Pn

j=0 ajz
j be a polynomial with complex coeÆcients and let d

be a real number such that 0 < d � 1. We say that P (z) has a concentration d of
degrees of at most k, measured by the lp-norm (p � 1), if

�X
j�k

jakj
p

�1=p
� d

�X
j�0

jaj j
p

�1=p
: (1)

Polynomials with concentrations of low degrees were introduced by B. Beauzamy
and P. En
o; this plays an important role in the construction of an operator on
a Banach space with no non-trivial invariant subspace. We investigate here the

estimates of the integral

Z 2�

0

Log jP (ei�)j
d�

2�
of such polynomials. In the following,

we shall normalize P (z) under the lp-norm and also assume that

�X
j�0

jaj j
p

�1=p

= 1: (2)

Otherwise, the concentration of polynomials is measured by some of the well-
known norms: jP jp (p � 1), jP j2 = kPk2, jP j1, kPk1, . . . . For details see [1].

Similarly, as in [1, Lemme 3] (case p = 2) and [2, Theorem 1] (case p = 1)
we have the following results:
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Theorem 1. Let P (z) =
P

j�0 ajz
j be a polynomial which satis�es (1) and

(2). Then : Z 2�

0

Log jP (ei�)j
d�

2�
� sup

1<t�3
fd;k(t); where

fd;k(t) =

8>>><
>>>:

tLog d

�
t� 1

t+ 1

�k+1

�
1

2
t2; 1 < p � 2

tLog d

�
t� 1

t+ 1

�k+1

; p = 1

(see also [3, Lemma 3.2; p. 28, 29]).

Theorem 2. Let P (z) be a polynomial as in Theorem 1. Then :Z 2�

0

Log jP (ei�)j
d�

2�
� sup

1<t<+1
fd;k;p(t); where

fd;k;p(t) =

8>>>>>>>>>><
>>>>>>>>>>:

t

p
Log dp

�
t+ 1

t� 1

�p

� 1

�
t+ 1

t� 1

�p(k+1)

� 1

�
1

2
t2; 1 < p � 2

tLog
2d

(t� 1)

��
t+ 1

t� 1

�k+1

� 1

� ; p = 1

(for the case p = 1 see [2, Theorem 1]).

For proofs of the Theorems 1 and 2 we use (as in [1, Lemme 3] and [2,
Theorem 1] (see also [3])) the following well known facts

1Æ aj =

Z 2�

0

P (rei�)

rjeij�
�
d�

2�
if 0 < r < 1.

2Æ jaj j � jP (z0)j
1

rj
, where jP (z0)j = max

jzj=r
jP (z)j.

3Æ The classical Jensen's inequality and the known transformation:

Log jP (z0)j �

Z 2�

0

Log

����P
�

z0 + ei�

1 + �z0ei�

����� d�2� =

Z 2�

0

Log jP (ei�)j
1� r2

j1� �z0ei�j2
d�

2�
;

where jz0j = r.

4Æ If 0 < r < 1 then
1� r

1 + r
�

1� r2

j1� �z0ei�j2
�

1 + r

1� r
.

5Æ
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Z
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+

Z
Log jP j>0

, and

Z
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2
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2
jP j2p =
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because the lp-norm decreases with p.

Finally, we get the functions fd;k(t) and fd;k;p(t) after the change of variables
t = (1 + r)=(1� r).

Taking t = 2 and 1 < p � 2, we have the Beauzamy-En
o's estimate from [1]:Z 2�

0

Log jP (ei�)j
d�

2�
� 2Log

d

e � 3k+1
:

From the following proposition and Corollaries 1 and 3, it follows that this is
not the best possible estimate.

Proposition 1. Let P (z) be a polynomial as in Theorem 1. Then there

exists a tk 2 ]1; 3] such that

Z 2�

0

Log jP (ei�)j
d�

2�
� fd;k(tk) �

8><
>:

2Log
d

e � 3k+1
; 1 < p � 2;

2 Log
d

3k+1
; p = 1:

Proof . First observe that lim
t!1+

fd;k(t) = �1 and the function fd;k(t) has the

form

fd;k(t) = tLog d+ t(k + 1)Log(t� 1)� t(k + 1)Log(t+ 1)� t2=2; 1 < p � 2:

We �nd derivatives:

f 0d;k = Log d+ (k + 1)Log(t� 1)� (k + 1)Log(t+ 1)

� t+ t(k + 1)

�
1

t� 1
�

1

t+ 1

�

f 00d;k =
2(k + 1)

t� 1
�

2(k + 1)

t+ 1
� 1 + t(k + 1)

�
1

(t+ 1)2
�

1

(t� 1)2

�

f 000d;k =
3(k + 1)

(t+ 1)2
�

3(k + 1)

(t� 1)2
+ 2t(k + 1)

�
1

(t� 1)3
�

1

(t+ 1)3

�
:

It is clear that lim
t!1+

f 00d;k = �1 and f 00d;k(3) < 0. Since f 000d;k(t) > 0, t 2 ]1; 3], it

follows that f 00d;k(t) < 0, hence f 0d;k(t) decreases. We also observe that lim
t!1+

f 0d;k(t) =

+1. Hence, there exists exactly one tk 2 ]1; 3] such that f 0d;k(tk) = 0 or f 0d;k(t) > 0

for each t 2 ]1; 3]. This proves the proposition. The case p = 1 can be treated
similarly.

Corollary 1. Let P (z) be a polynomial as in Theorem 1. Then for every

d 2 ]0; 1] and k 2 f0; 1; 2; 3; 4; 5; 6; 7g there exists a tk 2 ]1; 2[, such thatZ 2�

0

Log jP (ei�)j
d�

2�
� fd;k(tk) > 2Log

d

e � 3k+1
; 1 < p � 2:

For the case p = 1 a similar result does not hold.
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Proof . Since

f 0d;k(3) =
4

3
k�

2

3
� (k+1)Log 3+Log d = 0:235k� 1:773+Log d; Log 3 = 1:098

it follows that f 0d;k(2) < 0, for each d 2 ]0; 1] and k 2 f0; 1; . . . ; 7g. Hence,

max
1<t�3

fd;k(2) > fd;k(2) = 2Log
d

e � 3k+1
:

If p = 1, we have

f 0d;k(2) =
�
4=3� Log 3

�
k +

�
4=3� Log 3

�
+ Log d = 0:235k+ 0:235 + Log d ? 0:

Corollary 2. Let P (z) be a polynomial as in Theorem 1. Then for every

d 2 ]0; 1] and k > 7 for which Log(3k+1=d) is a rational number, there exists a

tk 2 ]1; 3], tk 6= 2, such thatZ 2�

0

Log jP (ei�)j
d�

2�
� fd;k(tk) > fd;k(2); 1 � p � 2:

Proof . In both cases (1 < p � 2, p = 1) we have that f 0d;k(2) = 0 i�

4

3
k �

2

3
= Log

3k+1

d
, that is

4

3
k +

4

3
= Log

3k+1

d
.

Corollary 3. Let P (z) be a polynomial as in Theorem 1. Then for every

d 2 ]0; 1] there exists a k1 2 N such that for k > k1 :

Z 2�

0

Log jP (ei�)j
d�

2�
� fd;k(3) =

8><
>:

3Log
d

e3=22k+1
; 1 < p � 2

3Log
d

2k+1
; p = 1

>

8><
>:

2Log
d

e � 3k+1
; 1 < p � 2

2Log
d

3k+1
; p = 1:

Proof . Since

f 0d;k(3) =
3

4
k �

9

4
� (k + 1)Log 2 + Log d = 0:057k� 2:943 + Log d;

we have that max1<t�3 fd;k(t) = fd;k(3) (1 < p � 2) i� f 0d;k(3) � 0. Hence, it
follows that

k1 =

�
(9=4) + Log 2� Log d

(3=4)� Log 2

�
= [51:634� 17:543Logd]:

Similarly, for p = 1 there exists the corresponding number k1.
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Corollary 4. Let P (z) be a polynomial as in Theorem 1. Then, for every

d 2 ]0; 1] and k 2 f0; 1; 2; . . . ; 51g, there exists a tk 2 ]1; 3], such thatZ 2�

0

Log jP (ei�)j
d�

2�
� fd;k(tk) > fd;k(3) = 3Log

d

e3=22k+1
; 1 < p � 2:

Proof . This is clear from the equality

f 0d;k(3) =
3

4
k �

9

4
� (k + 1)Log 2 = 0:057k� 2:943 + Log d; 1 < p � 2:

Since for p = 1 we have that f 0d;k(3) = 0:057k + 0:057 + Log d, it follows that the
conclusion is not the same as in the case 1 < p � 2.

We shall now analyse the estimate of the integral

Z 2�

0

Log jP (ei�)j
d�

2�
with

the function fd;k;p(t) as in Theorem 2. The following results can be compared with
[2, Th. 2, Lemmas 3 and 4]. Firstly, we represent fd;k;p(t) in the form:

fd;k;p = hd;p(t) + gk(t)�
1

p
� t � Log

�
1�

�
t� 1

t+ 1

�p(k+1)�
;

where (see [2])

hd;p = tLog d�
1

2
t2 +

t

p
Log[(t+ 1)p � (t� 1)p]

gk(t) = ktLog(t� 1)� (k + 1)tLog(t+ 1):

It is clear that fd;k;p(t) > hd;p(t) + gk(t), t > 1. We shall now prove the following.

Proposition 2. The function hd;p(t) + gk(t) takes its maximum value at a

point (unique ) tk such that tk ! +1, when k ! +1.

Proof . We essentially use the same argument as in [2]. From [2] it follows
that g00k (t) < 0, t > 1. Now, we �nd derivatives for hd;p(t)

h0d;p(t) = Log d� t+
1

p
Log[(t+ 1)p � (t� 1)p] + t �

(t+ 1)p�1 � (t� 1)p�1

(t+ 1)p � (t� 1)p
;

h00d;p(t) = �1 + 2 �
(t+ 1)p�1 � (t� 1)p�1

(t+ 1)p � (t� 1)p

+
t(p� 1)

A2(t)

�
[(t+ 1)p�2 � (t� 1)p�2]A(t) � p[(t+ 1)p�1 � (t� 1)p�1]2

�
;

where A(t) = (t+ 1)p � (t� 1)p.

Since p 2 ]1; 2], t > 1, it is clear that

h00d;p(t) < 0 i� � 1 + 2 �
(t+ 1)p�1 � (t� 1)p�1

A(t)
< 0:
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But, this is true i� 'p(t) < 0, where 'p(t) = 2(t+ 1)p�1 � 2(t� 1)p�1 � (t+ 1)p +
(t� 1)p. Hence, we �nd that

'0p(t) = 2(p� 1)[(t+ 1)p�2 � (t� 1)p�2] + p[(t� 1)p�1 � (t+ 1)p�1] < 0:

This shows that h00d;p(t) + g00k (t) < 0. Since

lim
t!1+

�
h0d;p(t) + g0k(t)

�
= +1 and lim

t!+1

�
h0d;p(t) + g0k(t)

�
= �1;

equation h0d;p(t)+g0k(t) = 0 has exactly one solution tk. From the equality h0d;p(t)+

g0k(t) = 0 we get with t = tk,

k =
(t2 � 1) Log(t+ 1) + t2 � t� (t2 � 1)h0d;p(t)

2t+ (t2 � 1) Log(t� 1)� (t2 � 1) Log(t+ 1)
;

wherefrom we easily deduce that tk ! +1.

Remark 1. From the Proposition 1 it follows that the function fd;k;p(t)
(1 < p � 2) has the same behaviour as the function fd;k(t) from [2]. If p = 2
we get

fd;k;2(t) = tLog
2d

t� 1

s
t

((t+ 1)=(t� 1))2k+2 � 1
�

1

2
t2;

which is the answer to the remark from [2, p. 223].

For the function fd;k;2(t) we have the following results

Proposition 3. Let fd;k;2(t) be the function from Theorem 2 (p = 2). Then,

when k ! +1

1Æ
4

3

k

t4k
! 1;

2Æ tk Log

�
1�

�
tk � 1

tk + 1

�2(k+1)�
! 0;

3Æ fd;k;2(tk) and hd;2(tk) + gk(tk) are asymptotically equivalent.

Namely, fd;k;2(t) = tLog d �
1

2
t2 +

t

2
Log 4t + gk(t), where gk(t) is same as

in [2]. The proof is similar as in [2], i.e. it uses the Taylor expansion of log(1� x),
x! 0.
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