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SOME ESTIMATES OF THE INTEGRAL [ ™ Log|P(e)|(27)~! df

Stojan Radenovié

27 . do
Abstract. We investigate some estimates of the integral / Log \P(e“g)|2—, if the poly-
™

0
nomial P(z) has a concentration at low degrees measured by the [,-norm, 1 < p < 2. We also
obtain better estimates for some concentrations than those obtained in [1].

Let P(z) = Z?:o a;jz? be a polynomial with complex coefficients and let d
be a real number such that 0 < d < 1. We say that P(z) has a concentration d of
degrees of at most k, measured by the I,-norm (p > 1), if

(S tanr) " oS o) " 1)

i<k j20

Polynomials with concentrations of low degrees were introduced by B. Beauzamy
and P. Enflo; this plays an important role in the construction of an operator on

a Banach space with no non-trivial invariant subspace. We investigate here the
2T
gy dO
estimates of the integral Log |P(e’9)|2— of such polynomials. In the following,
™

0
we shall normalize P(z) under the /,-norm and also assume that
1/p
(Z Iajlp) =1. (2)
j20

Otherwise, the concentration of polynomials is measured by some of the well-
known norms: |P|, (p > 1), |P|> = ||P|ly, |Plso, ||Plls --- - For details see [1].

Similarly, as in [1, Lemme 3] (case p = 2) and [2, Theorem 1] (case p = 1)
we have the following results:
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TueEOREM 1. Let P(2) = 3.5 a;jz? be a polynomial which satisfies (1) and
(2). Then:

2m
0, A0
/ Log |P(e?)| == > sup fax(t), where
0 2 T 1<t<3

t—1 k+1
tLogd| —= — =2, 1 <2
8 <t+1> 5t LS<PS

k+1
t—1
tLogd( == -1
8 <t+1> ’ p

far(t) =

(see also [3, Lemma 3.2; p. 28, 29]).

THEOREM 2. Let P(z) be a polynomial as in Theorem 1. Then:

27T
oo df
/ L0g|P(e’9)|—> sup  farp(t), where
0 2m

T l<i<+oo
( <t+1>p 1
t t—1 1,
1—)L0gdp P Sy _§t’ 1<p<2
— -1
Jara(t) = 4 (t - 1)
2d
t Log 1\ P , p=1
t—1) | —— -1
| en[(F)

(for the case p = 1 see [2, Theorem 1]).

For proofs of the Theorems 1 and 2 we use (as in [1, Lemme 3] and [2,
Theorem 1] (see also [3])) the following well known facts
T P(ret?) df

— = . —if0<r <1
o ried? 2r

1
2° Ja;| < |P(z0)|ﬁ, where |P(zp)| = max |P(2)].

|z[=r

o R
1° a; =

3° The classical Jensen’s inequality and the known transformation:

27 i0 27T 2
z0te de / 0 1—r do
Log | P < Log|P| —— || — = Log |P(e")|——= —
Og| (ZO)| _/0 0g (1_'_2067,0)‘ 27 0 Og| (6 )||1_20619|2 27{"
where |zo| = 7.

1—r 1—1r2 1+r
T4+7r = |1 —Ze?2 — 1 -1

2w " de
50 / Log [Py & :/ +/ and
0 2m Log |P|<0 Log |P|>0

1 1 1 [ de
[ =5 wewpp<g [ pp<g [ PRy
Log |P|>0 2 JLog |P|>0 2 JLog |P|>0 2 Jo 2m

1
2

4° If0<r <1 then

1, 1 1
= §||P||2 :§|P|§ < §|P|12):
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because the [,-norm decreases with p.

Finally, we get the functions fgx(t) and fqr »(t) after the change of variables
t=1+r)/(1-r).

Taking t = 2 and 1 < p < 2, we have the Beauzamy-Enflo’s estimate from [1]:
2T
. d0 d
0

From the following proposition and Corollaries 1 and 3, it follows that this is
not the best possible estimate.

PROPOSITION 1. Let P(z) be a polynomial as in Theorem 1. Then there
exists a ty € ]1,3] such that

2 Log 1<p<2

d
am ., df 3k+L)
| Lo PEI 5] > fartte) > ¢3
0 7T

d

Proof . First observe that 1tlirﬁ far(t) = —oo and the function fq 5 (t) has the
—

form
far(t) =tLogd+t(k+ 1) Log(t — 1) —t(k + 1) Log(t + 1) —#*/2, 1<p<2.
We find derivatives:

far =Logd+ (k+ 1) Log(t — 1) — (k + 1) Log(t + 1)
—t+t(k+1)<L _ L)

t—1 t+1
. 2k+1) 2k+1) 1 1
e | _1+t(k+1)<(t+1)2_(t—1)2>
o 3(k+1) 3(k+1) 1 1
P R +2t(k+1)<(t—1)3 - (t+1)3>'

It is clear that tlirgr fir = —oo and f7,(3) < 0. Since f}(t) >0, t € ]1,3], it
— ’ ) b
follows that fY . (t) < 0, hence f} ,(t) decreases. We also observe that 1tlirﬁ MO
: , 4 ,

+00. Hence, there exists exactly one t; € |1, 3] such that fj , (tx) = 0 or fj ,(t) >0
for each t € |1,3]. This proves the proposition. The case p = 1 can be treated
similarly.

COROLLARY 1. Let P(z) be a polynomial as in Theorem 1. Then for every
d€]0,1] and k € {0,1,2,3,4,5,6,7} there exists a ty € ]1,2[, such that

27
114
/0 Log |P(e )|—2ﬂ_Zfd,k(tk)>2L0g76_3k+1; l<p<2

For the case p =1 a similar result does not hold.
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Proof . Since
fix(3) = %k: - % —(k+1)Log3+ Logd =0.235k — 1.7734+ Logd, Log3 = 1.098
it follows that fj ,(2) <0, for each d € ]0,1] and k € {0,1,...,7}. Hence,
d
1r2tagx3 far(2) > far(2) = 2Log Ty

If p=1, we have

far(2) = (4/3 —Log3)k + (4/3 — Log3) + Logd = 0.235k + 0.235 + Log d = 0.

COROLLARY 2. Let P(2) be a polynomial as in Theorem 1. Then for every
d € 10,1] and k > 7 for which Log(3**1/d) is a rational number, there erists a
tr €]1,3], tx # 2, such that

2m ) df
| LosIPE)I 5] > far(ts) > farn(d, 1<p<2
0

Proof. In both cases (1 < p < 2, p = 1) we have that fg’l7k(2) = 0 iff
4 2 3k+1 4 4 3k+1
—k — - =Log——, thatis -k+-=L
gt Ty T o thatls gt g =Log—y

COROLLARY 3. Let P(2) be a polynomial as in Theorem 1. Then for every
d €10,1] there exists a ki € N such that for k > ki :

d
o 3Log — 1<p<?2
oy, df ) hS
| LosIPE)I 57 > far(®) = e
0 u _
3L0g W, p= 1
d
> d
2L0g W’ p= 1.
Proof . Since
, 3 9
f14(3) = Tk =5 = (k+1)Log2 + Logd = 0.057k — 2.943 + Log d,

we have that maxi<i<s fa,k(t) = far(3) (1 < p < 2) iff f},(3) > 0. Hence, it

follows that

(9/4) + Log2 — Log d
(3/4) — Log2

ky = = [51.634 — 17.543 Log ).

Similarly, for p = 1 there exists the corresponding number k;.
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COROLLARY 4. Let P(2) be a polynomial as in Theorem 1. Then, for every
d€]0,1] and k € {0,1,2,...,51}, there exists a ty € |1,3], such that

2
/0 Log|P(e’9)| o > far(tr) > farx(3) = 3Log IEYEDTESE l<p<2

Proof. This is clear from the equality

3 9
for(3) = Zk —1 (k+1)Log2 =0.057k — 2.943 + Log d, l<p<2
Since for p = 1 we have that f} (3) = 0.057k + 0.057 + Logd, it follows that the

conclusion is not the same as in the case 1 < p < 2.

2w
0\, d0
We shall now analyse the estimate of the integral / Log|P(e')] o with
0 7T

the function fu . ,(¢) as in Theorem 2. The following results can be compared with
[2, Th. 2, Lemmas 3 and 4]. Firstly, we represent fq p(t) in the form:

1 t—1\"*HY
ﬁmmzwﬂﬂ+%®—5-ﬁhgb—<__> ,

t+1

where (see [2])

1 t
hap =tLogd — 5752 + ELog[(t +1)P — (t - 1)
gr(t) = ktLog(t — 1) — (k + 1)t Log(t + 1).
It is clear that fqrp(t) > hap(t) + gr(t), t > 1. We shall now prove the following.

PROPOSITION 2. The function hqp(t) + gi(t) takes its mazimum value at a
point (unique) ty such that ty, — +oo, when k — +o0.

Proof. We essentially use the same argument as in [2]. From [2] it follows
that gj/(t) <0, t > 1. Now, we find derivatives for hq,,(t)

t+)P = (-1t
C+0p—(t—1)p

ap(t) =Logd —t + %Log[(t +1)P—(t—1)P] +¢t-

(t+1)P=t — (t —1)p~t

ap(t) =—1+2- t+1)P—(t—1)
LD+ 177 = (- 17 A0 -l 17 - (- 1),

where A(t) = (t+ 1)P — (¢t — 1)P.
Since p €]1,2], t > 1, it is clear that

(t+1)Pt—(t—1)p 1

) <0.

hy,(t) <0 iff -1+2-
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But, this is true iff ¢, (t) < 0, where ¢, (t) = 2(t+ )P~ —2(t = 1)P~! — (t+ 1) +
(t — 1)P. Hence, we find that

@) =2(p = DIt + 1P~ = (t = P +p[(t = )P~ = (¢ + 1P <.
This shows that hy ,(t) + g/ (t) < 0. Since

(Wap(®) +gk(0) = +00  and  lim_(h,(t) +g;(t)) = —o0,

lim
t>1+
equation hy (%) +g;,(t) = 0 has exactly one solution ¢x. From the equality Ay, ,(t) +
9,.(t) = 0 we get with ¢ = t,
(t* —1)Log(t + 1) + 1> —t — (> = 1)h}; (t)
~2t+ (#2—1)Log(t — 1) — (t2 — 1) Log(t + 1)’
wherefrom we easily deduce that ¢t — 4o0.

Remark 1. From the Proposition 1 it follows that the function fq ,(t)
(1 < p < 2) has the same behaviour as the function fg;(t) from [2]. If p = 2

we get
2d t 1
fak2(t) = tLog \/ - 5752,

t—1\ (t+1)/(t—1))%k+2 -1
which is the answer to the remark from [2, p. 223].
For the function fq 1 2(t) we have the following results

PROPOSITION 3. Let fq 1 2(t) be the function from Theorem 2 (p = 2). Then,
when k — +o00

4
e 2k

3t} ’
tp — 1) 2D
2° t Log|l—

k Og[ <tk+l>

3° fakz2(tr) and hqa(tr) + gx(tr) are asymptotically equivalent.

— 0

1 t
Namely, fqr2(t) = tLogd — §t2 +5 Log 4t + gi(t), where gy (t) is same as

in [2]. The proof is similar as in [2], i.e. it uses the Taylor expansion of log(1 + ),
z — 0.
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