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ON A CLASS OF p-VALENT ANALYTIC FUNCTIONS

DEFINED BY RUSCHEWEYH DERIVATIVE

K.S. Padmanabhan and M. Jayamala

Introduction. Let A(p) denote the class of functions of the form f(z) =
zp +

P
1

k=1 ap+kz
p+k, (p 2 N = f1; 2; 3; . . .g) which are analytic in the unit disk

E = fz : jzj < 1g. We denote by f � g(z) the Hadamard product of two functions
f(z) and g(z) in A(p). Following Goel and Sohi [2] we put,

Dn+p�1f(z) =
zp

(1� z)n+p
� f(z); (n > �p)

for the (n+ p� 1)-th order Ruscheweyh derivative of f(z) 2 A(p). Let h be convex
univalent in E with h(0) = 1.

De�nition 1. We say that a function f(z) 2 A(p) is in Tn;p(h) if and only if�
Dn+pf(z)

�
0

=(pzp�1) � h(z), z 2 E.

We will prove that Tn;p(h) � Tn�1;p(h) and that f is preserved under the
Bernardi integral operator under certain conditions. Finally some coeÆcient esti-
mates for the class will be also obtained.

We require the following theorems which provide a method for �nding the
best dominant for certain di�erential subordinations.

Theorem A [1]. Let � and  be complex constants and let h be convex

(univalent) in E with h(0) = 1 and Re[�h(z) + ] > 0. If p(z) = 1 + p1z + � � � is

analytic in E, then p(z) +
zp0(z)

�p(z) + 
� h(z) implies p(z) � h(z).

Theorem B [1]. Let � and  be complex constants and let h be convex in E
with h(0) = 1 and Re[�h(z)+] > 0. Let p(z) = 1+p1z+ � � � be analytic in E and

let it satisfy the di�erential subordination

(1) p(z) +
zp0(z)

�p(z) + 
� h(z):
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If the di�erential equation q(z) +
zp0(z)

�q(z) + 
= h(z) with q(0) = 1 has a univalent

solution q(z), then p(z) � q(z) � h(z) and q(z) is the best dominant of (1).

Corollary A [1]. Let p(z) be analytic in E and let it satisfy the di�erential

subordination,

p(z) +
zp0(z)

�p(z) + 
�

1� (1� 2Æ)z

1 + z
� h(z) with � > 0 and �Re(=�) � Æ < 1.

Then the di�erential equation

q(z) +
zq0(z)

�q(z) + 
= h(z); q(0) = 1;

has a univalent solution q(z). In addition p(z) � q(z) � h(z) and q(z) is the best

dominant.

Theorem 1. If (n + p) > 0, then Tn;p(h) � Tn�1;p(h), where h is a convex

univalent function in E with h(0) = 1.

Proof. Set g = (Dn+p�1f)0=(pzp�1). Taking logarithmic derivatives and
multiplying by z we get

(2)
zg0(z)

g(z)
= z

(Dn+p�1f)00

(Dn+p�1f)0
� (p� 1):

Using the fact

(3) z(Dn+p�1f)0 = (n+ p)Dn+pf � nDn+p�1f

(2) can be reduced to

(4)
zg0(z)

(n+ p)
+ g(z) =

(Dn+pf(z))0

pzp�1
� h(z);

since f 2 Tn;p(h). Now if (n + p) > 0, we can conclude, by Theorem A, that
g(z) � h(z), that is f 2 Tn�1;p(h).

Choosing n = �p+ 1, we get the inclusion relations, Tn;p(h) � Tn�1;p(h) �

. . . � T�p+1;p(h). So f 2 T�p+1;p(h) implies
(D0f)0

pzp�1
� h or

f 0(z)

pzp�1
� h. If Reh > 0,

it follows that f is p-valent, by a result due to Umezawa [6]. Hence we have the
following

Corollary 1. Let f 2 Tn;p(h), n+ p > 0, where Reh > 0, h(0) = 1 and h
is univalently convex in E. Then f is p-valent.

Remarks . However, we observe that h need not be the best dominant for g
in Theorem 1. We proceed to �nd the best dominant for g using Theorem B. In
fact if q is the best dominant for g in (4), then q should satisfy,

(5) zq0=(n+ p) + q = h
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and q should be univalent. Hence, q0+ (n+ p)z�1q = (n+ p)z�1h. Solving, we get
the best dominant,

(6) q(z) =
(n+ p)

zn+p

Z z

0

h(z)zn+p�1 dz;

h is univalently convex with h(0) = 1. We show that q is also univalently convex.
Set Q = 1 + zq00=q0. Taking logarithmic derivative and multiplying by z we get,

zQ0

Q� 1
= 1 +

zq000

q00
�
zq00

q0
:

Q+
zQ0

Q� 1
= 2 +

zq000

q00
:(7)

From (5) we get,

zh00

h0
=

Q+
zQ0

Q� 1
+ (n+ p)

1 +
(n+ p+ 1)

Q� 1

:

Using (7) this reduces to

1 +
zh00

h0
= Q+

zQ0

Q+ (n+ p)
:

Since h is convex, we have (1 + zh00=h0) � (1� z)=(1 + z), therefore

�
1 +

zq00

q0

�
�

1� z

1 + z
; if Re

�
1� z

1 + z
+ (n+ p)

�
> 0;

which is true; hence q is convex univalent.

Set h(z) = [1+(2��1)z]=(1+ z), 0 � � < 1, in (6) so that Reh(z) > �. The
best dominant q for g in this case is given by,

q(z) =
(n+ p)

zn+p

Z z

0

zn+p�1
1 + (2�� 1)z

1 + z
dz:

By integration we get,

q(z) = 1�
2(1� �)(n+ p)

zn+p

�
log(1 + z)�

�
z �

z2

2
+ � � � �

zn+p

n+ p

��
;(8)

when (n+ p) is even,

q(z) = 1 +
2(1� �)(n+ p)

zn+p

�
log(1 + z)�

�
z �

z2

2
+ � � �+

zn+p

n+ p

��
;(9)

when (n+ p) is odd.

So we obtain the following
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Corollary 2. Set p = 1, n = 0 and � = 0 in (9). Then the best dominant

q(z) reduces to q(z) = 2z�1 log(1 + z)� 1.

We note that Re q(ei�) = Re q(e�i�) and Im q(ei�) = � Im q(e�i�). Further-
more Re q(�1) = +1. Hence the curve given by the set of points q(ei�), 0 � � � 2�
is symmetrical about the real axis and since q is convex, Re q(ei�) is minimum at
� = 0 and the minimum value is Re q(1) = 2 log 2� 1 = :38 . . .

Theorem 2. If f(z) 2 Tn�1;p(h), then

(10) F (z) =
c+ p

zc

Z z

0

tc�1f(t) dt 2 Tn�1;p(h) for c+ p > 0.

Proof. From (10) we have,

(11) z(Dn+p�1F )0 = (c+ p)(Dn+p�1f)� c(Dn+p�1F ):

Di�erentiating (11) we get,

(12) z(Dn+p�1f)00 + (Dn+p�1F )0 = (c+ p)(Dn+p�1f)0 � c(Dn+p�1F )0:

Set G = (Dn+p�1F )0=(pzp�1). Taking logarithmic derivatives and multiplying by
z we get,

zG0(z)

G(z)
=

z(Dn+p�1F )00

(Dn+p�1F )0
� (p� 1):

Using (12) this reduces to,

(13)
zG0(z)

(c+ p)
+G(z) =

(Dn+p�1f)0

pzp�1
� h:

Since f 2 Tn�1;p(h). If (c+ p) > 0, we conclude, by Theorem A, that G � h, that
is (Dn+p�1F )0=(pzp�1) � h. If q is the best dominant for G in (13), then q should
satisfy zg0(z)=(c+ p) + q(z) = h(z). Solving it we get the best dominant

q(z) =
(c+ p)

zc+p

Z z

0

h(z)zc+p�1 dz:

If we choose

h(z) =
1 + (2�� 1)z

1 + z
; 0 � � < 1;

then the best dominant in this case is given by,

q(z) = 1�
2(1� �)(c+ p)

zc+p

�
log(1 + z)�

�
z �

z2

2
+ � � � �

zc+p

c+ p

��
;(14)

when (c+ p) is even,

q(z) = 1 +
2(1� �)(c+ p)

zc+p

�
log(1 + z)�

�
z �

z2

2
+ � � �+

zc+p

c+ p

��
;(15)

when (c+ p) is odd.

Evidently q(z) is convex, since h is so.
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Corollary 3. Taking � = 0, p = 1 and c = 1, (14) reduces to q(z) =
4z�1 � 4z�2 log(1 + z) � 1. Here again we can show that Re q(ei�) = Re q(e�i�),
Im q(ei�) = � Im q(e�i�) and Re q(�1) = +1. Hence the curve extends to 1
and since the curve is convex, it is minimum at � = 0 and the minimum value is

Re q(1) = 3� 4 log 2 = :227 . . . .

This is an improvement of the results of Goel and Sohi [3, Remarks (i)
and (ii)].

Theorem 3. The class Tn;p(h) is closed with respect to convex combination,

where h is univalently convex and h(0) = 1.

Proof. Let f; g 2 Tn;p(h). Therefore (Dn+pf)0=(pzp�1) � h and (Dn+pg)0=
(pzp�1) � h. Hence there exist points z1; z2 in E such that

(Dn+pf)0

pzp�1
= h(z1) and

(Dn+pg)0

pzp�1
= h(z2):

Let F = tf + (1� t)g, 0 < t < 1. Then

(Dn+pF )0

pzp�1
= t

(Dn+pf)0

pzp�1
+ (1� t)

(Dn+pg)0

pzp�1
= th(z1) + (1� t)h(z2) = h(z3)

for some z3 in E, because h is convex. In other words F 2 Tn;p(h).

A connection between the classes Tn�1;p(h) and Tm�1;p(h). We now
prove the following

Theorem 4. Let f 2 Tn�1;p(h) and let

(16) g(z) = (m+ p+ 1)!z1�m�

�

Z z

0

Z xm+p�1

0

� � �

Z x2

0

�
xn�11 f(x1)

(n+ p� 1)!

�(n+p�1)
dx1dx2 . . . dxm+p�1:

Then g 2 Tm�1;p(h).

Proof. From (16) we have,

g(z)zm�1

(m+ p� 1)!
=

Z z

0

Z xm+p�1

0

� � �

Z x2

0

�
xn�11 f(x1)

(n+ p� 1)!

�(n+p�1)
dx1dx2 . . . dxm+p�1:

Di�erentiating (m+ p� 1) times we get�
g(z)zm�1

�(m+p�1)

(m+ p� 1)!
=

�
zn�1f(z)

�(n+p�1)
(n+ p� 1)!

:

Since

Dn+p�1f(z) =
zp
�
zn�1f(z)

�(n+p�1)
(n+ p� 1)!

;

it follows that �
Dm+p�1g(z)

�
0

pzp�1
=

�
Dn+p�1f(z)

�
0

pzp�1
:

Therefore f 2 Tn�1;p(h) if and only if g 2 Tm�1;p(h).



32 Padmanabhan and Jayamala

CoeÆcient estimates. Theorem 5. If f 2 Tn�1;p(h), where h is univa-

lently convex in E with h(z) = 1 +
P
1

k=1 hkz
k, then

(17) jap+kj �
jh1jp

(p+ k)

�
n+ p+ k � 1

k

� ; k = 1; 2; 3; . . . :

Proof. Our hypothesis implies

(18)
(Dn+p�1f)0

pzp�1
= 1 +

1X
k=1

�
n+ p+ k � 1

k

�
(p+ k)

p
ap+kz

k � h(z):

Let h(z) = 1 + h1z + h2z
2 + � � � , z 2 E. From (18) we have, for k = 1; 2; 3; . . .

p+ k

p

�
n+ p+ k � 1

k

�
jap+kj � jh1j

using a result due to Rogosinski [5]. Choosing h(z) = [1 + (2� � 1)z]=(1 + z),
0 � � < 1, we get the sharp coeÆcient estimate

jap+kj �
2p(1� �)

(p+ k)

�
n+ p+ k � 1

k

�

attained for

f(z) = zp + 2p(1� �)

1X
k=1

(�1)kzp+k

(p+ k)

�
n+ p+ k � 1

k

� :

Theorem 6. If f 2 Tn�1;p(h), where h is convex univalent in E, with h(z) =
1 +

P
1

k=1 hkz
k, then for any complex number ,

(19) jap+2 � a2p+1j �
2pjh1jmax(1; j�j)

(n+ p+ 1)(n+ p)(p+ 2)

where

(20) � =

�
(n+ p+ 1)(p+ 2)ph21

2(n+ p)(p+ 1)2
� h2

�
:

The result is sharp.

Proof. Our hypothesis on f enables us to write

(21) (Dn+p�1f)0=(pzp�1) = h(!(z));

where ! is analytic and j!(z)j � jzj in jzj < 1. Let ! =
P
1

j=1 cjz
j ; then,

�
1 +

1X
k=1

�
n+ p+ k � 1

k

�
ap+k

(p+ k)

p
zk
�
= f1 + h1(c1z + c2z

2 + � � � )

+ h2(c1z + c2z
2 + � � � )2 + � � � g:
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Equating the same powers of z we get

c1 =
(n+ p)(p+ 1)

h1p
ap+1(22)

c2 =
1

h1

�
(n+ p+ 1)(n+ p)(p+ 2)

2p
ap+2 �

h2
h21p

2
(p+ 1)2(n+ p)2a2p+1

�
:(23)

De�ne � by (20). Then we have,

jc2 � �c21j =
1

jh1j

���� (n+ p+ 1)(n+ p)(p+ 2)

2p
ap+2(24)

�
(h1�+ h2)

h21

(p+ 1)2(n+ p)2

p2
a2p+1

����
=

(n+ p+ 1)(n+ p)(p+ 2)

jh1j2p
jap+2 � a2p+1j:

Using the coeÆcient inequality,

(25) jc2 � �c21j � max(1; j�j)

due to Keog and Merkes [4], in (24) we obtain (19).

The equality is attained in (19) for the function f(z) given by (21) when we
choose !(z) = z or !(z) = z2.
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