PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 52 (66), 1992, 27-33

ON A CLASS OF p-VALENT ANALYTIC FUNCTIONS
DEFINED BY RUSCHEWEYH DERIVATIVE

K.S. Padmanabhan and M. Jayamala

Introduction. Let A(p) denote the class of functions of the form f(z) =
2P+ Y pe aprezPtF, (p € N = {1,2,3,...}) which are analytic in the unit disk
E = {z:|z| < 1}. We denote by f * g(z) the Hadamard product of two functions
f(z) and g(z) in A(p). Following Goel and Sohi [2] we put,

zP

m*f(z), (n > —p)

for the (n + p — 1)-th order Ruscheweyh derivative of f(z) € A(p). Let h be convex
univalent in E with h(0) = 1.

Definition 1. We say that a function f(z) € A(p) is in T, ,(h) if and only if
(D™7f(2))'/(p2P~") < h(2), z € E.
We will prove that T), p(h) C Tp—1,(h) and that f is preserved under the

Bernardi integral operator under certain conditions. Finally some coefficient esti-
mates for the class will be also obtained.

D f(z) =

We require the following theorems which provide a method for finding the
best dominant for certain differential subordinations.

THEOREM A [1]. Let 3 and v be complex constants and let h be convex
(univalent) in E with h(0) = 1 and Re[Bh(z) ++] > 0. Ifp(z) =14+ p1z+--- is
2p/(2)

Bp(z) +~

THEOREM B [1]. Let 8 and v be complex constants and let h be convex in E
with h(0) = 1 and Re[Bh(z) +7] > 0. Let p(z) = 1+p1z+--- be analytic in E and
let it satisfy the differential subordination

analytic in E, then p(z) + < h(z) implies p(z) < h(z).

zp'(2) ;
(1) p(2) + T Oreh h(z).
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zp'(2)

If the differential equation q(z) + = h(z) with ¢(0) = 1 has a univalent

solution q(z), then p(z) < q(z) < h(z) and q(z) is the best dominant of (1).

COROLLARY A [1]. Let p(z) be analytic in E and let it satisfy the differential
subordination,

2p'(2) 1—(1-26)z
Bp(z) + v 142
Then the differential equation

p(z) + h(z) with 3 > 0 and —Re(y/B) < 4§ < 1.

2q'(2)
q(z) + ————— = h(z), q(0) =1,
O R N
has a univalent solution q(z). In addition p(z) < q(z) < h(z) and q(z) is the best
dominant.

THEOREM 1. If (n+p) > 0, then T, ,(h) C Tp—1,(h), where h is a convez
univalent function in E with h(0) = 1.

Proof. Set g = (D"*P~1f)'/(pzP~1). Taking logarithmic derivatives and
multiplying by z we get

2g'(z) _ (DETLE)”

® o) oy TP

Using the fact
(3) 2(D"PLf) = (n 4 p) D f —n DL f
(2) can be reduced to

zg’(z) B (Dnerf(Z))/
(4) nt ) +g(z) = S

since f € T, p(h). Now if (n + p) > 0, we can conclude, by Theorem A, that
g(z) < h(z), that is f € T),_1 ,(h).

Choosing n = —p + 1, we get the inclusion relations, T}, ,(h) C Ty,—1 (k) C
DO ! i

( fz <h01rM < h. IfReh >0,
pzP~ pzP~!
it follows that f is p-valent, by a result due to Umezawa [6]. Hence we have the
following

< h(2),

. CT_py1p(h). So f € T_py1 (k) implies

COROLLARY 1. Let f € Ty, p(h), n+p > 0, where Reh >0, h(0) =1 and h
is univalently convex in E. Then f is p-valent.

Remarks. However, we observe that h need not be the best dominant for g
in Theorem 1. We proceed to find the best dominant for g using Theorem B. In
fact if ¢ is the best dominant for g in (4), then ¢ should satisfy,

(5) zq' /(n+p)+q=h
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and ¢ should be univalent. Hence, ¢' + (n+p)z 1q = (n + p)z~th. Solving, we get
the best dominant,

©) a(z)="tP / T h(z)2

Zn+p

h is univalently convex with h(0) = 1. We show that ¢ is also univalently convex.
Set @ =1+ zq"/q'. Taking logarithmic derivative and multiplying by z we get,

z ! " "
Q _q4 % 2q

Q-1 ¢ q
! "
(7) Q+QZC_21:2+qu”.
From (5) we get,
2@’
2B Q+m+(n+p)
W 14 (n+p+1)
Q-1
Using (7) this reduces to
2R ZQI
145 =Q+ —
w0t o)

Since h is convex, we have (1 + zh"/h') < (1 — 2z)/(1 + z), therefore

zq" 1—2 . 1—2
1+ — f Re|l—— 0
<+q’><1+z’ i e<1+z+(n+p) > 0,

which is true; hence ¢ is convex univalent.

Set h(z) =1+ (2a—1)z]/(1+2),0 < a < 1, in (6) so that Reh(z) > «. The
best dominant ¢ for g in this case is given by,

_(n+p) [7 n+p711+(2a—1)z
q(z) - Zn+p 0 z 1 + > dZ.

By integration we get,

(8) q(z)zl—W[log(l—%z)— (z—%2+—;n:;>]

when (n + p) is even,
_ 2(1 —a)(n +p) 22 Plaxy
when (n + p) is odd.

So we obtain the following
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COROLLARY 2. Setp=1,n=0 and a =0 in (9). Then the best dominant
q(2) reduces to q(z) = 2z tlog(l + z) — 1.

We note that Req(e??) = Req(e™%) and Img(e?’) = —Imq(e~%). Further-
more Re g(—1) = +o00. Hence the curve given by the set of points g(e?’), 0 < 8 < 27
is symmetrical about the real axis and since ¢ is convex, Re g(e?) is minimum at
f = 0 and the minimum value is Req(1) =2log2 —1=.38...

THEOREM 2. If f(z) € Ty—1,(h), then

c+p
ZC

z
(10) F(z) = / t=Lf(t)dt € Ty 1 p(h) forc+p>0.
0
Proof. From (10) we have,
(1) AD™IIEY = (o4 p) (D7 f) = o(DHIF).
Differentiating (11) we get,
(12) 2D LR (DPRY = (c+ p) (DMLY — o(DTLRY.

Set G = (D"P=1F)"/(pzP~!). Taking logarithmic derivatives and multiplying by
z we get,
2G'(z) _ z(D"tPotR)!

G - (oiEy @b
Using (12) this reduces to,
G) | ) (D)

Since f € Ty—1p(h). If (¢ + p) > 0, we conclude, by Theorem A, that G < h, that
is (D"tP=LF) /(pzP~1) < h. If q is the best dominant for G in (13), then ¢ should
satisfy zg'(z)/(c+ p) + q(z) = h(z). Solving it we get the best dominant
q(z) = (c+p) / h(z)z°TP 1 dz.
0

zctp

If we choose

14+ 2a—-1
ey = 12 Ze=bz o
142
then the best dominant in this case is given by,
_ . 2(1-a)(c+p) 22 Zetp
(14) q(z)_l_zc—+plog(1+z)_ Z—?+..._C+p ,

when (c + p) is even,

_ 2(1 —a)(c+p) 22 Py

(15) q(z)—1+zc—+p10g(l+z)— z—?+...+c+p
when (¢ + p) is odd.

)

Evidently ¢(z) is convex, since h is so.
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COROLLARY 3. Taking a = 0, p = 1 and ¢ = 1, (14) reduces to q(z) =
427" — 427 21og(1 + 2) — 1. Here again we can show that Req(e?’) = Req(e™),
Imq(e?) = —Img(e™*) and Req(—1) = +oo. Hence the curve extends to oo
and since the curve is convex, it is minimum at 0 = 0 and the minimum value is
Reg(l) =3 —4log2 = .227....

This is an improvement of the results of Goel and Sohi [3, Remarks (i)

and (ii)].

THEOREM 3. The class T, p(h) is closed with respect to convex combination,
where h is univalently convex and h(0) = 1.

Proof. Let f,g € Ty p(h). Therefore (D"?f)'/(pzP~1) < h and (D"?g)'/
(pzP~1) < h. Hence there exist points zy, z2 in E such that

Dntp £y DnPg)!
(WT{) = h(z1) and (m% = h(z2).
Let F=tf+(1—1t)g,0<t<1. Then
Dntpe gy pntp Dn+
( e A = D= t)(pz% = th(z1) + (1 — H)h(2) = h(zs)

for some z3 in E, because h is convex. In other words F' € T}, ,(h).

A connection between the classes T,,_1,(h) and T,,_1 ,(h). We now
prove the following

THEOREM 4. Let f € Tp—1 p(h) and let
(16) g(z) = (m +p+ 1)l "x

Z [ Tmgp—1 w2 gh lf(ml)](n+p_1)
— dzidzs ... dxmsp—1.
// / {(n+p—1>z o S
Then g € Tr—1,(h).

Proof. From (16) we have,

e A =

Differentiating (m + p — 1) times we get
(9202 ) ™ )Y

(n+p—1)
dl’ldl’g N dl‘erp,l.

(m+p-1!  — (n+p-1)!
Since
D”*Pflf(z) B 2P (Zn—lf(z))(nﬂ)—l)
(n+p-1)! ’
it follows that
(Dmtr=lg(z)) (D™=t f(2))
pzP! pzP!

Therefore f € T,_1 ,(h) if and only if g € Tpy—1 p(h).
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Coefficient estimates. THEOREM 5. If f € T, p(h), where h is univa-
lently convez in E with h(z) = 1+ Y pe | hyz", then

|h1|p
< = e
(17) |a’P+k| = n+p+k—1 I k 172737
(p+k)
k
Proof. Our hypothesis implies
(Drtp=tfy /n+p+k—1\(p+k) f

Let h(2) =1+ hyz + he2? + -+, z € E. From (18) we have, for k = 1,2,3, ...

p+kn+p+k—-1
T( A laptx| < |hi

using a result due to Rogosinski [5]. Choosing h(z) = [1 + (2a — 1)z]/(1 + 2),
0 < a <1, we get the sharp coefficient estimate

2p(l — )
|ap+k| <
n+p+k—-1
(p+k) < k >
attained for
e (_1)k Ptk

f(z) =27 +2p(1 - a) Z

P (p+k)<n+p7€-k—1>

THEOREM 6. If f € T,,_1 »(h), where h is convex univalent in E, with h(z) =
14 220:1 hiz*, then for any complex number -,

2p|ha | max(1, |p)

(19) |apya — yag,,| < m+p+1)(n+p)(p+2)
where

~ (v(n+p+1)(p+2)ph?
(20) k= ( 2n+p)(p+1)2 h2>-

The result is sharp.

Proof. Our hypothesis on f enables us to write
(21) (D7) [ (p2P ) = h(w(2)),

where w is analytic and |w(2)] <[2| in |2] < 1. Let w = 3777, cjz7; then,

/n4+p+k—1 +k
{1+Z<n pk )al’ﬁc(pp )zk}:{1+h1(612+02z2+-..)
k=1

+ho(crz + 22 +---)2 4+ L
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Equating the same powers of z we get

_(tp)p+)

22
( ) hlp ap-i-l
1[(n+p+1)(n+p)(p+2) ha
(23) cy = ™ [ o Qpt2 — —h§p2 (p+1)%(n +p)2a12)+1 .

Define p by (20). Then we have,

1 |[(n+p+1)(n+p)(p+2)
24 —uctl = —
( ) |C2 HCy | |h1 | 2p Ap+2
(hip+h2) (p+1)%(n+p)* ,
- h2 2 Gpt1
(n+p+1)(n+p)p+2)

= |h1|2p |ap+2 - ’)/Clg+1|.
Using the coefficient inequality,
(25) le2 — el | < max(1, |ul)

due to Keog and Merkes [4], in (24) we obtain (19).

The equality is attained in (19) for the function f(z) given by (21) when we

choose w(z) = z or w(z) = 22.
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