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ON THE FEKETE-SZEG}O THEOREM

FOR CLOSE-TO-CONVEX FUNCTIONS

A. Chonweerayoot, D.K. Thomas and W. Upakarnitikaset

Abstract. Let K(�) be the class of normalised close-to-convex functions with order � � 0,
de�ned in the unit disc D by �

�
�
�
arg ei�

zf 0(z)

g(z)

�
�
�
�
�

��

2
;

for j�j < �=2 and g starlike in D. For f 2 K(�) with f(z) = z + a2z2 + a3z3 + ::: and z 2 D,
sharp bounds are given for ja3 � �a2

2
j for real �.

Let S denote the class of analytic univalent functions f , de�ned for z 2 D =
fz : jzj < 1g by

f(z) = z +

1X
n=2

anz
n: (1)

Fekete and Szeg�o [6], showed that for f 2 S, given by (1),

ja3 � �a22j �

8><
>:

3� 4�; if � � 0

1 + 2e�2�=(1��); if 0 � � < 1

4�� 3; if � � 1:

The inequalities are sharp in the sense that for each �, there exists a function in
S such that equality holds. P
uger [11], [12] has recently considered the problem
for complex �.

Let S� and K denote the classes of normalised starlike and close-to-convex
functions respectively. Thus f 2 K if, and only if, there exists g 2 S� and a real �,
with j�j < �=2, such that for z 2 D,

Re ei�
zf 0(z)

g(z)
> 0:
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Let K0 be the subset of K when � = 0. For f 2 K0, Keogh and Merkes [8]
showed that

ja3 � �a22j �

8>>><
>>>:

3� 4�; if � � 1=3;

1=3 + 4=9�; if 1=3 � � � 2=3;

1; if 2=3 � � � 1;

4�� 3; if � � 1:

Again, for each �, there are functions in K0 such that equality holds in all cases.

Eenigenburg and Silvia [5] were able to extend the result of Keogh and Merkes
to the whole class K, whilst Koepf [9], apparently unaware of [5] and [8], gave a
proof for � 2 [0; 1].

Denote by K(�) the class of close-to-convex functions of order � � 0. Thus
f 2 K(�), if, and only if, for � � 0, there exists g 2 S� and a real �, with j�j < �=2,
such that for z 2 D, ����arg ei� zf 0(z)g(z)

���� � ��

2
: (2)

Clearly for 0 � � � 1, K(�) is a subset of S, whilst for � > 1, K(�) can
contain functions with in�nite valence [7]. We also note that K(0) = C, the class
of normalised convex functions. For C, the Fekete-Szeg�o problem has been solved
in [8]. Let K0(�) be the subset of K(�) when � = 0. Then in [1] it was shown that
the result of Keogh and Merkes extends to:

Theorem A. Let f 2 K0(�) and be given by (1). Then for 0 � � � 1,

ja3 � �a22j �

8>>>>>>>>>>><
>>>>>>>>>>>:

1� �+
�(2� 3�)(� + 2)

3
; if � � 2�

3(� + 1)
;

1� �+
2�

3
+

�(2� 3�)2

3[2� �(2� 3�)]
; if

2�

3(� + 1)
� � � 2

3
;

2� + 1

3
; if

2

3
� � � 2(� + 2)

3(� + 1)
;

�� 1 +
�(3�� 2)(� + 2)

3
; if � � 2(� + 2)

3(� + 1)
;

whilst for � > 1, the �rst two inequalities hold. For each � there are functions in

K0(�) such that equality holds in all cases.

Koepf [10] considered the problem for the class K(�) and gave the solution
when � = 2=3. He also showed that the �rst inequality in Theorem A extends to
K(�) in the case � � 1, for all j�j < �=2, and established the sharp inequalities

ja3 � a22j �

8><
>:

2� + 1

3
; if 0 � � � 1

�(� + 2)

3
; if � � 1:

(3)
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The purpose of this paper is to examine the question of extending Theorem
A to K(�).

Results

Theorem 1. Let f 2 K(�) and be given by (1), then for � � 0,

ja3 � �a22j �

8>><
>>:

1� �+
�(2� 3�)(� + 2)

3
; if � � 2�

3(� + 1)
;

1� �+
2�

3
+

�(2� 3�)2

3[2� �(2� 3�)]
; if

2�

3(� + 1)
� � � 2

3
;

provided cos2 � � 1=2 or � = 0.

The inequalities are sharp in the sense that for each �, there exists a function

in K(�), such that equality holds.

Proof. From (2) write

zf 0(z) = g(z)~p(z)� ; (4)

for g 2 S� given by g(z) = z + b2z
2 + b3z

3 + � � � and Re ei�~p(z) > 0 with ~p(z) =
1 + ~p1z + ~p2z

2 + � � � . Thus for some p satisfying Re p(z) > 0 and given by p(z) =
1+ p1z + p2z

2+ � � � , we have ~pn = pne
�i� cos�, so that j~pnj = jpnj cos� for n � 1.

Equating coeÆcients in (4) we have

2a2 = b2 + �~p1;

3a3 = b3 +
�(� � 1)

2
~p21 + �~p2 + �~p1b2:

and so

a3 � �a22 =
1

3

�
b3 � 3

4
�b22

�
+
�

3

�
~p2 +

�
�(2� 3�)

4
� 1

2

�
~p21

�

+ �

�
1

3
� �

2

�
~p1b2: (5)

Since
2�

3(� + 1)
� � � 2

3
, it follows from (5) that

ja3 � �a22j � 1� �+
� cos�

3

�
2� jp1j2

2
(1� j sin�j)

�

+
�2

12
(2� 3�)jp1j2 cos2 �+ �(2� 3�)

3
jp1j cos�; (6)

where we have used the inequalities jb3 � �b22j � maxf1; j4� � 3jg for g 2 S� with
� real [8], jb2j � 2 and����~p2 � ~p21

2

���� � cos�

�
2� jp1j2

2
(1� j sin�j)

�
;
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proved in [9].

Now write u = jp1j and v = cos�. Then (6) can be written as ja3 � �a22j �
�(u; v), where

�(u; v) =1� �+
�v

3

�
2� u2

2

�
1�

p
1� v2

��

+
�2u2v2

12
(2� 3�) +

�uv

3
(2� 3�);

where, since jp1j � 2, it follows that (u; v) 2 [0; 2]� [0; 1].

Fix v = v0 and assume �rst that �(u; v0) has a turning point at u. Then
�0(u; v0) = 0 implies that

2u
�
1�

q
1� v20

�
= �uv0X + 2X; (7)

where X = 2� 3�, so that 0 � X � 2=(1 + �).

From (6) and (7) one obtains

�(u; v0) = 1� �+
2�v0
3

+
�uv0
6

X

� 1� �+
2�v0
3

+
�v0X

3

� 1� �+
2�

3
+

�X2

3[2� �X ]
;

if

v0 � 2(2� �X) +X2

(2 +X)(2� �X)
= 	(�;X) say.

An elementary argument shows that 	(�;X) has a minimum value of 2
p
2�2 when

� � 0. Next suppose that u = 0. Then �(0; v) = 1 � � + 2�v=3 � 1 � � + 2�=3.

Finally let u = 2. Then if v � 1=
p
2,

�(2; v) = 1� �+
2�v

3

p
1� v2 +

�2v2

3
X +

2�v

3
X;

� 1� �+
�

3
+
�2

6
X +

p
2�

3
X;

� 1� �+
2�

3
+

�X2

3[2� �X ]
;

since 0 � X � 2=(1 + �).

Thus in all cases, the second inequality in Theorem 1 is established, provided
v � 1=

p
2.

Choosing � = 0, b2 = p2 = 2, b3 = 3 and p1 =
2(2� 3�)

2� �(2� 3�)
shows that the

inequality is sharp on the interval
2�

3(� + 1)
� � � 2

3
, since jp1j � 2.
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Next consider the case � � 2�

3(� + 1)
. Then

ja3 � �a22j �
����a3 � 2�

3(� + 1)
a22

����+
�

2�

3(� + 1)
� �

�
ja2j2;

� 1 +
2�

3
+

�
2�

3(� + 1)
� �

�
(� + 1)2

= 1� �+
�(2� 3�)(� + 2)

3
;

for � � 0, where we have used the result already proved in the case � = 2�=3(�+1),
and the fact that for f 2 K(�), the inequality ja2j � �+1 holds [2], [3], [4]. Equality
is attained on choosing � = 0, p1 = p2 = b2 = 2 and b3 = 3.

Remark 1. As mentioned above, Koepf [10] established the �rst inequality of
Theorem 1 for all �, such that j�j < �=2, provided � � 1 and � � 0. We note that
maximising the expression for H�(y) on page 424 gives another proof of the same
inequality when 0 � � � 1, provided cos2 � � 1=2 or � = 0.

We now consider the case � � 2=3. We prove:

Theorem 2. Let f 2 K(�) and be given by (1). Then

ja3 � �a22j �

8>><
>>:

2� + 1

3
; if

2

3
� � � 2(� + 2)

3(� + 1)
;

�� 1 +
�(3�� 2)(� + 2)

3
; if � � 2(� + 2)

3(� + 1)
;

for 0 � � � 1 if cos2 � � 1=2 or if � = 0. For � � 1, the inequalities hold if

cos2 � � (3�p
5)=2. The inequalities are sharp.

Proof. We �rst deal with the case when � =
2(� + 2)

3(� + 1)
. In [8] it was shown

that for g 2 S� given by g(z) = z + b2z
2 + b3z

3 + � � �����b3 � 3�

4
b22

���� � 1 +
jb22j
4
(3j�� 1j � 1): (8)

Also, since Re p(z) > 0, it follows that (see e.g. [8])����p2 � p21
2

���� � 2� jp21j
2
: (9)

Thus with � =
2(� + 2)

3(� + 1)
we have from (8) that if 0 � � � 1,

����b3 � 3�

4
b22

���� � 1� �jb22j
2(1 + �)

; (10)
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and so from (5), (9) and (10) we obtain����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3

�
1� �

2(1 + �)
jb22j
�
+
� cos�

3

�
2� jp21j

2

�

+
�jp21j cos�

6

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

�jp1b2j cos�
3(1 + �)

=
2� cos�+ 1

3
� �

6(1 + �)
(jb2j � jp1j cos�)2 � �jp21j cos�

6

+
�jp21j cos�

6

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

�jp21j cos2 �
6(1 + �)

� 2� cos�+ 1

3
+
�jp21j cos�

6

"
�1 +

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

cos�

1 + �

#

� 2� + 1

3
;

if cos2 � � (1 + �)=2, or if cos2 � = 1, where we have used the inequality jp1j � 2.
Since (1+�)=2 increases for 0 � � � 1, the above inequality is valid for cos2 � � 1=2.

For � � 1 and � =
2(� + 2)

3(� + 1)
, it follows from (8) that

����b3 � 3�

4
b22

���� � 1� jb22j
2(1 + �)

;

and so again using (5) and (9) we obtain����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3

�
1� jb22j

2(1 + �)

�
+
� cos�

3

�
2� jp21j

2

�

+
�jp21j cos�

6

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

�jp1b2j cos�
3(1 + �)

=
2� cos�+ 1

3
� 1

6(1 + �)
(jb2j � �jp1j cos�)2 � �jp21j cos�

6

+
�jp21j cos2 �

6

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

�2jp21j cos2 �
6(1 + �)

� 2� cos�+ 1

3
+
�jp21j cos�

6

"
�1 +

s
1�

�
1 + 2�

(1 + �)2

�
cos2 �+

� cos�

1 + �

#

� 2� + 1

3
;

if cos2 � � �
1 + 3� �p(5� + 3)(� � 1)

�
=
�
2(1 + �)

�
, again since jp1j � 2. Since�

1+3��p5(� + 3)(� � 1)
�
=
�
2(1+�)

�
decreases for � � 1, the inequality is valid

for cos2 � � (3�p
5)=2.
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Next suppose that
2

3
� � � 2(� + 2)

3(� + 1)
. Then writing

a3 � �a22 =
(� + 1)(3�� 2)

2

�
a3 � 2(� + 2)

3(� + 1)
a22

�

+
3(� + 1)

2

�
2(� + 2)

3(� + 1)
� �

��
a3 � 2

3
a22

�
;

the result follows on using the Theorem already proved at the end points � = 2=3

and � =
2(� + 2)

3(� + 1)
.

Finally let � � 2(� + 2)

3(� + 1)
. Then, since

a3 � �a22 =

�
a3 � 2(� + 2)

3(� + 1)
a22

�
+

�
2(� + 2)

3(� + 1)
� �

�
a22;

the result follows again on using the case � =
2(� + 2)

3(� + 1)
already established and

the inequality ja2j � 1 + �, proved in [7]. Equality is attained when � = 0,
p1 = p2 = b2 = 2 and b3 = 3.

Remark 2. An examination of the proof of Theorem 2 in the case 0 � � � 1

when � =
2(� + 2)

3(� + 1)
shows that

����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3
+

2�

3
 1(cos�);

where

 1(t) = t

"s
1�

�
1 + 2�

(1 + �)2

�
t2 +

t

1 + �

#
:

An elementary argument shows that  1 attains its maximum at t0 2 (0; 1) when

t20 =
2(1 + �)2 + (1 + �)

p
2(1 + �)

4(1 + 2�)
;

and that

 1(t0) =
(1 + �)[

p
2(1 + �) + 1]

2(1 + 2�)
:

Thus if 0 � � � 1 and j�j < �=2,����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3
+
�(1 + �)[

p
2(1 + �) + 1]

3(1 + 2�)
: (11)

Similarly, for � � 1, one obtains����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3
+

2�

3
 2(cos�);
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where

 2(t) = t

"s
1�

�
1 + 2�

(1 + �)2

�
t2 +

�t

1 + �

#
:

It is easy to see that  2 increases on [0; 1] and so for j�j < �=2,����a3 � 2(� + 2)

3(� + 1)
a22

���� � 1

3
+

4�2

3(1 + �)
: (12)

It is unlikely that either of (11) or (12) is sharp.

Finally, it is easy to see that, using (3), the following result obtains:

Theorem 3. Let f 2 K(�) and be given by (1). Then if 0 � � � 1,

ja3 � �a22j �

8><
>:

2� + 1

3
; if

2

3
� � � 1

2� + 1

3
+ (�� 1)(1 + �)2; if � � 1;

and if � � 1,

ja3 � �a22j �

8><
>:

2� + 1

3
+

(�2 � 1)(3�� 2)

3
; if

2

3
� � � 1

�� 1 +
�(3�� 2)(� + 2)

3
; if � � 1:

We note that if 0 � � � 1, the inequality for 2=3 � � � 1 is sharp when
� = 0, b2 = 0, b3 = 1, p1 = 0 and p2 = 2. When � � 1, the inequality for � � 1
is sharp for � = 0, p1 = p2 = b2 = 2 and b3 = 3. The inequality for 0 � � � 1
and � � 1 appears sharp only when � = 1, and the inequality for � � 1 when
2=3 � � � 1 appears sharp only at the end points � = 2=3 and � = 1. However,
in view of Theorem A, splitting the real line at � = 1 is probably not optimum,
unless � = 1.

REFERENCES

[1] H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szeg}o problem for strongly close-to-
convex functions, Proc. Amer. Math. Soc. 114 (1992), 345{349.

[2] D. Aharonov and S. Friedland, On an inequality connected with the coeÆcient conjecture for
functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. A1 524 (1972), 14pp.

[3] D. A. Brannan, On coeÆcient problems for certain power series, London Math. Soc. Lecture
Series Notes 12 (1974), 17{27.

[4] D. A. Brannan, J. G. Clunie and W. E. Kirwan, On the coeÆcient problem for functions of
bounded boundary rotation, Ann. Acad. Sci. Fenn. A1 523 (1973), 1{18.

[5] P. J. Eenigenburg. and E. M. Silvia, A coeÆcient inequality for Bazilevi�c functions, Ann.
Univ. Mariae Curie-Sk lodowska Sect. A 27 (1973), 5{12.

[6] Fekete and Szeg}o, Eine Bermerkung �uber ungerade schlichte Funktionen, J. London Math.
Soc. 8 (1933), 85{89.

[7] A. W. Goodman, On close-to-convex functions of higher order, Ann. Univ. Sci. Budapest.
E�otv�os Sect. Math. 15 (1972), 17{30.



26 Chonweerayoot, Thomas and Upakarnitikaset

[8] F. R. Keogh and E. P. Merkes, A coeÆcient inequality for certain classes of analytic func-
tions, Proc. Amer. Math. Soc. 20 (1969), 8{12.

[9] W. Koepf, On the Fekete-Szeg�o problem for close-to-convex functions, Proc. Amer. Math.
Soc. 101 (1987), 89{95.

[10] W. Koepf, On the Fekete-Szeg�o problem for close-to-convex functions 2, Arch. Math. 49
(1987), 420{433.

[11] A. P
uger, The Fekete-Szeg}o inequality for complex parameters, Complex Variables 7 (1986),
149{160.

[12] A. P
uger, On the functional ja3��a2
2
j in the class S, Complex Variables 10 (1988), 83{95.

D. K. Thomas, (Received 20 01 1992)
Department of Mathematics and Computer Science,
University of Wales,
Swansea SA2 8PP, Wales, U.K.

A. Chonweerayoot and W. Upakarnitikaset
Department of Mathematics, Faculty of Science,
Chulalongkorn University,
Bangkok 10330, Thailand


