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ON MEASURABILITY OF UNCOUNTABLE UNIONS

OF MEASURABLE SETS

Alexander Abian and Paula Kemp

Abstract. This paper deals exclusively with the question of Lebesgue measurability of
subsets of the set R of all real numbers that are the unions of measurable subsets of R. Thus, in
what follows every set is a set of real numbers and all references to measure are in the sense of
Lebesgue.

It is well known that a countable union of measurable sets is measurable.
However, there also exist uncountable unions of measurable sets which are measur-
able. For instance, the closed unit interval [0; 1] which is measurable is the union
of uncountably, in fact 2@0 many of its singletons each of which is measurable.

On the other hand, in the setting of ZFC (Zermelo-Fraenkel Set Theory with
the Axiom of Choice), there exist also nonmeasurable sets which are also unions of
uncountably many measurable sets. For instance, the well known classical examples
of nonmeasurable sets [3, p. 135] are unions of 2@0 many of their singletons.

However, it is also well known that there exist set-theoretical models [5] of
ZF (with the negation of the Axiom of Choice) in which every set is measurable.
Thus in these models any union of measurable sets is measurable. From the above
it follows that the question of measurability of unions of measurable sets depends
on the underlying Set Theory and consequently on the Set-theoretical models to
which these sets belong.

Since the presence of the Axiom of Choice is desirable, in view of the existence
of nonmeasurable sets which are unions of 2@0 many measurable sets, the question
referred to in the above acquires the following form:

In which Set-theoretical models for ZFC is the following a valid statement:

(1)
For every cardinal k < 2@0 the union

S
u<k

Mu

of k many measurable sets Mu is measurable.

First however, we observe that by virtue of the following theorem (which is
valid in ZF), it suÆces to answer the above question exclusively for the case of sets
of measure zero.
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Theorem 1. For every cardinal k if the union of k many sets of measure

zero is of measure zero, then the union of k many measurable sets is measurable.

Proof. Assume that the union of k many sets of measure zero is of measure
zero. We show that the set M =

S
u<k

Mu where each Mu is a measurable set is
measurable. It is well known [1] thatM has a measurable kernel L, i.e., L �M such
that every measurable subset of M �L is of measure zero. Clearly, Mu � L (since
it is the di�erence of two measurable sets) is a measurable subset of M � L. Thus
for every u < k, it is the case that Mu�L is of measure zero. Consequently, by our
assumption

S
u<k

(Mu�L) is of measure zero. But then M = L[
�S

u<k
(Mu�L)

�
and thus M is the union of two measurable sets. Hence, the set M is measurable,
as desired.

Now returning to statement (1), let us observe that it is valid in every model
for ZFC + CH (where CH is the Continuum Hypothesis). Clearly in every model
for ZFC + CH if k < 2@0 then k is a countable cardinal. However, since every
countable union of measurable sets is measurable, statement (1) is trivially valid in
these models.

In view of the above, we are led to consider models for ZFC + :CH (i.e., ZFC
with the negation of the Continuum Hypothesis). Indeed in Theorem 2 below, we
prove that statement (1) is valid in every model for ZFC + :CH + MA, where MA
is the Martin's Axiom. The latter states:

(2)

Let (P;�) be a partially ordered set with the c.i.c. property and let

(Du)u<k with k < 2@0 be a family of k many dense subsets Du

of P . Then there exists a �lter F of P such that F has a nonempty

intersection with every Du.

For the sake of completeness of the paper we recall the de�nitions of \c.i.c.",
\dense", and \�lter" mentioned in (2).

Let (P;�) be a partially ordered set. Two elements X and Y od P are called
incompatible i� X and Y have no nonzero lower bound, where by zero (0) we mean
the minimum element of P (if P has a minimum element at all).

The partially ordered set (P;�) has the c.i.c. property i� every subset of P
of pairwise incompatible elements is countable.

A subset D of the partially ordered set (P;�) is called a dense subset of P
i� for every p 2 P there exists a d 2 D such that d � p.

A subset F of the partially ordered set (P;�) is called a �lter of P i�

(i) 0 2 F and every �nite subset of F has a lower bound in F(3)

(ii) if x 2 F and y � x then y 2 F .

Property (ii) is not used in this paper.

Before proving Theorem 2, we give some examples to show that the restric-
tions on the partially ordered set (P;�) to have the c.i.c. property and for the
cardinal k to be < 2@0 are essential in (2).
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First, we show that the c.i.c. property in (2) cannot be dropped.

To this end, we consider the following example. Let (P;�) be the set of all
�nite functions from ! into !1 (i.e., f 2 P i� Domain of f is a �nite subset of !)
and let f � g in P i� f is an extension of g i.e., f � g.

We observe that (P;�) does not have the c.i.c. property. This is because�
f(0; u)g : u 2 !1

	
is an uncountable set of pairwise incompatible elements of P .

Now, we show that in this example, statement (2) does not hold even though
k = !1 < 2@0 . Indeed, for every u 2 !1 it can be readily seen that

(4) Du =
�
p : p 2 P and u 2 Range of p

	

is a dense subset of P . Now consider the family (Du)u<!1 of dense subsets of P ,
where !1 < 2@0 since (2) refers to ZFC + :CH + MA.

We show that there cannot be a �lter F in P which has a nonempty intersec-
tion with every dense subset Du of P . This is because otherwise,

S
F by (4) would

be a function from ! onto !1 which is a contradiction. Therefore, we have shown
that the c.i.c. property is essential in (2).

In the next example, we show also that k < 2@0 in (2) cannot be dropped,
even though the partial order involved has the c.i.c. property. To this end, let
(P;�) be the set of all �nite dyadic sequences (i.e., �nite sequences whose terms
consist only of 0's or 1's) and let s � q in P i� \s is an extension of q". Clearly,
(P;�) has the c.i.c. property since P itself is countable. Moreover, (P;�) has 2@0

dense subsets since (P;�) has an in�nite descending chain [2]. But then (P;�)
cannot have a �lter F which intersects every dense subset of P . This is because,
as is easily veri�ed, the complement P � F of F is a dense subset of P . Therefore,
the condition k < 2@0 in (2) cannot be dropped.

Next, we prove the main preliminary Theorem.

Theorem 2. In every set-theoretical model for ZFC + MA, for every cardinal

k < 2@0 the union
S
u<k

Zu of k many sets Zu of measure zero is of measure zero.

Proof . Let Z =
S
u<k

Zu be a union of k many sets of measure zero. To show
that Z is of measure zero, it suÆces to show that for every " > 0 there exists an
open set V such that Z � V and m(V ) � " (where m is the Lebesgue measure).
We show this based on Martin's Axiom in connection with the partially ordered
set (P;�) described below:

Let P be the set of all open sets X of R each of measure < " i.e.,

(5) P =
�
X : X � R and m(X) < "

	
:

We partially order P by reverse inclusion, i.e.

(6) X � Y if X � Y for every X;Y 2 P:

Thus for every two elements X and Y of P

(7) X is incompatible with Y i� m(X [ Y ) � ".
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We �rst observe that (P;�) has the c.i.c. property. Let I be a set of pairwise
incompatible elements of P and let

(8) In =
�
X : X 2 I and m(X) <

�
1� 1

n

�
"
	

with n � 2:

Clearly,

(9) I =
1S
n=2

In:

To prove that (P;�) has the c.i.c. property, in view of (9) it suÆces to show
that In as given in (8) is a countable set for every n � 2.

To this end, let us observe that to every X 2 In there corresponds a subset
X of X such that X is a �nite union of open intervals with rational endpoints and

(10) m(X �X) < "=n:

This is because X 2 In is an open set of �nite measure say, q, and hence X
is a countable union of pairwise disjoint open intervals Hi each of �nite measure.
Consequently, q is the sum of a convergent series of real numbers and therefore has
a partial sum p such that (q�p) < "=(2n) and where p corresponds to the measure
of the union of some �nitely many, say, H1; . . . ; Hk open sets Hi. But then each Hi

with i = 1; . . . ; k can be replaced by a subintervalWi of Hi with rational endpoints
in such a way that their union X satis�es (10).

Next, based on (8) and (10), we observe that for every two elements X and
Y of In

(11) X 6= Y implies X 6= Y :

To prove (11), let us assume to the contrary that X = Y . But then since
X = Y and Y � Y , we have X � Y and therefore Y [X = Y [(X�X), wherefrom
it readily follows that m(X [ Y ) � m(Y ) +m(X �X) and since Y 2 In from (8)
and (10) we obtain m(Y [X) <

�
1� 1

n

�
"+ 1

n
" = " which contradicts (7).

From (11) it follows, that for every element X in In the correspondence X
to X is one to one. Since every X is a �nite union of open intervals with rational
endpoints, we see that In as given in (8) is a countable set. Therefore, I as given
in (9) is also a countable set. Thus (P;�) as given by (5) and (6) has the c.i.c.
property, as desired.

Next, for every set Zu of measure zero, we de�ne the set Du given by

(12) Du =
�
X : X 2 P and X � Zu

	
with u < k < 2@0 :

We show that for every u < k it is the case that Du is a dense subset of P .
To this end, we show that if Y 2 P , then there exists an X 2 Du such that

(13) X � Y:
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Since Y is an open set in P , it follows from (5) that m(Y ) < " and since
m(Zu) = 0, we see that Zu can be covered with an open setH such thatm(H[Y ) <
". But then we let X = H [ Y . Clearly, this X satis�es (13). Thus Du as given in
(12) is a dense subset of P for every u < k < 2@0 .

Now we invoke Martin's Axiom and assert the existence of a �lter F of (P;�)
which has a nonempty intersection with every Du for u < k < 2@0 , where for
convenience we let Xu stand for an element X of Du mentioned in (12). From (12)
it follows that Xu � Zu and therefore

S
u<k

Xu � Z =
S
u<k

Zu. Thus
S
u<k

Xu is
an open cover of Z and hence by the Lindel�of property it has a countable subcover,
say

S
u<!

Xu � Z. But the Xu's are elements of the �lter F and therefore, by (3)
for every natural number n, we see that (Xu)u<n has a nonempty lower bound, say,
B in F . Thus, B � Xu for every u < n and m(B) < " since B 2 P as given in (5).
But then m

�S
u<n

Xn

�
< " from which it follows that

(14) m
� 1S
u=1

Xu

�
= lim

n!1
m
�[
u<n

Xu

�
� ":

Clearly, (14) shows that the open set V =
�S
1

u=1Xu

�
covers Z and from (14) it

follows that m(V ) � ". Hence, Z is of measure zero, as desired. Thus Theorem 2
is proved. Combining Theorem 2 with Theorem 1, we have the following theorem
which answers our question (1).

Theorem 3. In every Set-theoretical model for ZFC + MA, any union of

k < 2@0 many measurable sets is measurable.

The proofs given above are adaptations from Schoen�eld [4].
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