
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 52 (66), 1992, 10{12

POWER MOMENTS OF THE ERROR TERM

FOR THE APPROXIMATE FUNCTIONAL EQUATION

OF THE RIEMANN ZETA-FUNCTION

Isao Kiuchi

Abstract. Let �(s) be the Riemann zeta-function, d(n) the number of positive divisors of
the integer n, and

R(s; t=2�) = �2(s)�
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We obtain the following power moment estimates:

Z T

1

��R� 1
2
+ it; t=2�

���A dt�

(
T 1�

1

4
A+"; 0 � A � 4;

1; A > 4:

1. Statement of results. Let d(n) denote the number of positive divisors
of n,  the Euler constant, and let

�(x) =
X
n�x

0
d(n)� x(log x+ 2 � 1)� 1

4
(1)

where the symbol
P0 indicates that the last term is to be halved if x is an integer.

Kolesnik [7] proved the sharper estimate of (1):

�(x)� x35=108+": (2)

Recently this was improved by Iwaniec and Mozzochi [3].

The asymptotic formula
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was proved by Tong [10], who improved an earlier result of Cram�er (see [2, Theorem
13.5]). The error term of (3) has been improved to O(T log4 T ) by Preissmann [9].
Now we suppose that A is a �xed positive number (not necessarily an integer). Ivi�c
[1] has shown the power moment estimates for �(x):
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(4)

(5)

by using Kolesnik's result (2).

Let s = �+it (0 � � � 1, t � 1) be a complex variable, and �(s) the Riemann
zeta-function. We now de�ne

R(s; t=2�) = �2(s)�
X

n�t=2�

0 d(n)n�s � �2(s)
X

n�t=2�

0 d(n)ns�1;

where �(s) = 2s�s�1 sin
�
1
2�s

�
�(1� s). It has been shown by Motohashi [8] that

�(1� s)R(s; t=2�) = �
p
2(t=2�)�1=2�(t=2�) +O(t�1=4): (6)

We note that Jutila [4] gives another proof of Motohashi's result (6). The asymp-
totic formula
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was proved by Kiuchi and Matsumoto [5], and the error term has been improved

to O(log5 T ) by Kiuchi [6], where

h(n) = (2=�)1=2
Z 1

0

(y + �n)�1=2 cos
�
y + 1

4�
�
dy:

The purpose of this paper is to prove the power moment estimates for��R�12 + it; t=2�
���. In view of the relation (6), to search analogues of (4) and (5)

for R(s; t=2�) is an interesting problem in itself and we can prove the following
estimates:

Theorem. For T � 1, we have
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2. Proof of Theorem. In case � = 1=2 from the inequality (a + b)A �
aA + bA (a > 0, b > 0), and (6), it follows that

��R�12 + it; t=2�
���A � (t=2�)�A=2j�(t=2�)jA + t�A=4 (7)

where A is a �xed positive number.
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From (7) and Schwarz's inequality, it follows that
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+ T 1�A=4:

From (4) and (5), we have the following estimates:
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Replacing T by T=2, T=4, and so on, and adding we have the theorem.
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