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INDEPENDENT VERTEX SETS IN SOME COMPOUND GRAPHS

Ivan Gutman

Abstract. Let G be an n-vertex graph and R1; R2; . . . ; Rn distinct rooted graphs. The
compound graph G[R1; R2; . . . ; Rn] is obtained by identifying the root of Ri with the i-th vertex
of G, i = 1; 2; . . . ; n. We determine the number of independent vertex sets and the independence
polynomial of G[R1; R2; . . . ; Rn]. Several special cases of these results are pointed out.

1. Introduction

Consider �nite graphs without loops. If G is such a graph, then V (G) will
denote its vertex set. Any subset of V (G), such that no two elements of it are
mutually adjacent, is called an independent vertex set of the graph G. Let Ind(G)
be the set of all independent vertex sets of G.

The number �(G) of independent vertex sets of the graph G, i.e. the car-
dinality of Ind(G), has been examined in a number of recent papers [1{11]. In
particular, Prodinger and Tichy [7, 11] called the quantity �(G) \the Fibonacci
number of the graph G". The motivation for this was the fact that if Pn is the
path-graph with n vertices, then �(Pn) is equal to the (n+1)-th Fibonacci number.

In the present paper we determine the number of independent vertex sets of
the compound graph G[R1; R2; . . . ; Rn] constructed in the following manner.

Let G be a graph with the vertex set V (G) = fv1; v2; . . . ; vng. Let further
R1; R2; . . . ; Rn be distinct rooted graphs; the root of Ri is denoted by ri, i =
1; 2; . . . ; n. Then G[R1; R2; . . . ; Rn] is the graph obtained by identifying the vertex
vi of G with the root ri of Ri, simultaneously for i = 1; 2; . . . ; n (see Fig. 1).

Denote by RÆ
i the graph obtained by deleting from Ri the root-vertex ri and

the edges incident to it. Denote by R�
i the graph obtained by deleting from Ri the

root-vertex ri, the vertices adjacent to ri and all the incident edges. Then the main
result of our work can be formulated as follows.
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Fig. 1

Theorem 1. Let I be an independent vertex set of the graph G. De�ne

�i(I) =

�
�(RÆ

i ) if vi =2 I,

�(R�
i ) if vi 2 I.

Then

�(G[R1; R2; . . . ; Rn]) =
X

I2Ind(G)

nY
i=1

�i(I):

Instead of Theorem 1 we prove a somewhat stronger result, namely Theo-
rem 2. In order to do this we need some preparations.

2. The independence polynomial

Denote by n(G; k) the number of distinct k-element independent vertex sets
of the graph G. Then the polynomial

!(G) = !(G; x) =
P
k�0

n(G; k)xk (1)

is called the independence polynomial of the graph G [3, 5, 6]. Evidently, !(G; 1) =
�(G).

The basic properties of the independence polynomial have been determined
by Gutman and Harary [5] and recently by Hoede and Li [6].

Two of these properties will be needed in the subsequent considerations:

(a) If v is a vertex of the graph G and Nv is the set containing v and its �rst
neighbors, then

!(G) = !(G� v) + x!(G�Nv): (2)

(b) If G1 [G2 is the graph composed of components G1 and G2, then

!(G1 [G2) = !(G1)!(G2): (3)
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Theorem 2. Let I be an independent vertex set of the graph G. De�ne

!i(I) =

�
!(RÆ

i ) if vi =2 I,

!(R�
i ) if vi 2 I.

(4)

Then

!(G[R1; R2; . . . ; Rn]; x) =
X

I2Ind(G)

xjIj
nY
i=1

!i(I) (5)

where jI j stands for the number of elements of I .

Evidently, Theorem 1 is a special case of Theorem 2, obtained by setting
x = 1 in formula (5).

3. Proof of Theorem 2

We demonstrate the validity of Theorem 2 by induction on the number
n of vertices of the graph G. If n = 1, then V (G) = fv1g and therefore
G[R1; R2; . . . ; Rn] coincides with R1. On the other hand, for n = 1 the set Ind(G)
consists of only two elements, namely I1 = ? and I2 = fv1g. Bearing in mind (4)
we have !1(I1) = !(RÆ

1) and !1(I2) = !(R�
1). Consequently, the right-hand side of

(5) is equal to !(RÆ
1) + x!(R�

1). Because of (2) this latter expression is equal to
!(G).

Thus the statement of Theorem 2 is true for n = 1. In a similar manner one
can check that Theorem 2 is satis�ed for n = 2 and n = 3.

Assume now that Theorem 2 holds for all graphs G with less than n vertices.
In order to accomplish the inductive proof we have to show that this assumption
implies the validity of Theorem 2 for the graphs G having n vertices.

Suppose that n � 3 and apply formula (2) to the vertex vn of the graph G.
Without loss of generality we may label the vertices of G so that vn is adjacent to
vn�1; . . . ; vn�d. Then by using (3),

!(G[R1; R2; . . . ; Rn]) = !(RÆ
n)!((G� vn)[R1; R2; . . . ; Rn])

+ !(R�
n)!(R

Æ
n�1) � . . . � !(R

Æ
n�d)!((G�Nvn)[R1; R2; . . . ; Rn]): (6)

The subgraphs G� vn and G�Nvn have n� 1 and n� 1� d vertices, respectively.
Therefore according to the induction hypothesis:

!((G� vn)[R1; R2; . . . ; Rn]) =
X

I2Ind(G�vn)

xjIj
n�1Y
i=1

!i(I) (7)

!((G�Nvn)[R1; R2; . . . ; Rn]) =
X

I2Ind(G�Nvn
)

xjIj
n�d�1Y
i=1

!i(I): (8)

The set Ind(G) can be partitioned into two disjoint subsets IndÆ(G) and Ind�(G),
such that IndÆ(G) is the set of independent vertex sets of G which do not contain
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the vertex vn whereas Ind�(G) is the set of those independent vertex sets of G
which do contain vn. It is easy to see that

IndÆ(G) = Ind(G� vn) (9)

Ind�(G) =
�
I [ fvng j I 2 Ind(G�Nvn)

	
: (10)

Bearing in mind (7){(10), the relation (6) is transformed into

!(G[R1; R2; . . . ; Rn]) = !(RÆ
n)

X
I2IndÆ(G)

xjIj
n�1Y
i=1

!i(I)

+ x!(R�
n)!(R

Æ
n�1) � . . . � !(R

Æ
n�d)

X
I2Ind�(G)

xjIj�1
n�d�1Y
i=1

!i(I): (11)

For all I 2 IndÆ(G), vn =2 I and therefore !n(I) = !(RÆ
n). For similar reasons,

the relations !n(I) = !(R�
n) and !j(I) = !(RÆ

j ), j = 1; . . . ; d, are satis�ed for all

I 2 Ind�(G). Consequently, equation (11) becomes

!(G[R1; R2; . . . ; Rn]) =
X

I2IndÆ(G)

xjIj
nY
i=1

!i(I) +
X

I2Ind�(G)

xjIj
nY
i=1

!i(I)

and formula (5) follows from the fact that IndÆ(G) [ Ind�(G) = Ind(G). This
completes the proof of Theorem 2.

4. Special cases

4.1. All Ri are isomorphic. The graph G[R1; R2; . . . ; Rn] in which all Ri,
i = 1; 2; . . . ; n are isomorphic to the rooted graph R is denoted by G[R]. For the
compound graphs G[R] formula (5) is much simpli�ed by the fact that the productQn

i=1 !i(I) depends only on the cardinality k of the independent vertex set I and

is equal to !(R � r)n�k !(R � Nr)
k where r stands for the root of R. Since the

number of k-element independent vertex sets of the graph G is equal to n(G; k) we
further have

!(G[R]) =
P
k�0

xk n(G; k)!(R� r)n�k !(R�Nr)
k : (12)

This, bearing in mind the de�nition of !(G), immediately leads to Corollary 2.1.

Corollary 2.1. !(G[R]; x) = !(R� r; x)n !(G;!(R�Nr)=!(R� r)).

Corollary 2.2. If k� is the maximum cardinality of an independent ver-

tex set of the graph G, then the polynomial !(R � r)n�k
�

divides the polynomial

!(G[R]).

4.2. The corona. The corona G ÆQ of the graphs G and Q is obtained from
G and n copies of Q, so that each vertex of G is joined to all vertices of a copy
of Q. Whence, G ÆQ is a special case of G[R] when the root r of R is adjacent to
all other vertices of R. In this notation, Q = R� r.



Independent vertex sets in some compound graphs 9

Corollary 2.3. !(G ÆQ; x) = !(Q; x)n !(G; 1=!(Q)).

Corollary 2.4. If k� is the maximum cardinality of an independent vertex

set of the graph G, then the polynomial !(Q)n�k
�

divides the polynomial !(G ÆQ).

4.3. Some more special cases. If G is the complete graphKn then Ind(G)
consists of n+ 1 elements: the empty set and n one-element sets, each containing
one vertex of G. Formula (5) gives then

!(Kn[R1; R2; . . . ; Rn]) = x0
nY
i=1

!i(?) +

nX
j=1

nY
i=1

!i(fvjg):

Bearing in mind (4) we arrive at

Corollary 2.5. !(Kn[R1; R2; . . . ; Rn]) =

�
1 + x

nX
j=1

!(R�
j )

!(RÆ
j )

� nY
i=1

!(RÆ
i ).

It is easy to deduce combinatorial formulas for the n(G; k)-numbers of the
path Pn and the circuit Cn [2, 5]. Then equations (12) and (2) lead to

Corollary 2.6.

!(Pn(R)) =
X
k�0

�
n� 1� k

k

�
!(R� r)n�k [!(R)� !(R� r)]k ,

!(Cn(R)) =
X
k�0

n

n� k

�
n� k

k

�
!(R� r)n�k [!(R)� !(R � r)]k .
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