PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 52 (66), 1992, 1-4

FRAGMENTS OF COMPLETE EXTENSIONS OF PA AND McDOWELL-SPECKER'S THEOREM

Ilijas Farah

Abstract. We generalise Theorem 1.4 of [2] and prove that for every complete extension **T** of **PA** and any $n \in \omega$ there exists a model for Σ_n -fragment of **T** that is not extendable (that is, a model with no proper strong elementary end-extension.) This is accomplished using a model called Σ_n -atomic. This result can be interpreted as "McDowell-Specker's Theorem does not hold for Σ_n -fragments of **PA**".

Basic definitions and notation. The notation is the same as in [2]. PA stands for the axiom system of Peano arithmetic (e.g. as described in [1, p. 40]). A formula is Σ_n (Π_n) iff the string of quantifiers in one of its prenex normal forms, begins with \exists (\forall), and has no more than n-1 quantifier alternations. A sentence is Δ_n iff it is both Σ_n and Π_n . $\mathbf{T_n}$ stands for the Σ_n -fragment of the theory \mathbf{T} , that is a theory consisting of all the consequences of \mathbf{T} that are Σ_n sentences.

The notations \mathfrak{A} (A), \mathfrak{B} (B), ... denote models (their universes), and the notations \mathfrak{M} (M) and \mathfrak{N} (N) denote models of **PA** (their universes.) The letters x, y, z, \ldots denote variables, while the letters $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ denote constants. For a model \mathfrak{A} of some language \mathfrak{L} , the theory of \mathfrak{A} (denoted $\operatorname{Th}(\mathfrak{A})$) is the set of all the sentences φ of \mathfrak{L} such that $\mathfrak{A} \models \varphi$. Models \mathfrak{A} and \mathfrak{B} are elementarily equivalent iff $\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{B})$ (denoted $\mathfrak{A} \equiv \mathfrak{B}$.) For some set of sentences Φ (some model \mathfrak{A}), \mathfrak{L}_{Φ} ($\mathfrak{L}_{\mathfrak{A}}$) denotes the language of Φ (of \mathfrak{A} .) If z codes an ordered pair $\langle x, y \rangle$ we write $(z)_0$ for x and $(z)_1$ for y.

Definition 1. A model \mathfrak{A} is said to be a Σ_n -elementary extension of a model \mathfrak{B} $(\mathfrak{B} \prec_n \mathfrak{A})$ iff for any Σ_n -formula φ with *m* free variables and any *m*-tuple $\mathbf{a} \in B^m$,

$$\mathfrak{A} \models \varphi(\mathbf{a}) \quad \text{ iff } \quad \mathfrak{B} \models \varphi(\mathbf{a}).$$

A Σ_n -elementary extension is a Σ_n -elementary end-extension iff it is also an endextension. We say that a complete theory **T** contains some formula schemata iff **T** contains it as a set of formulas.

AMS Subject Classification (1990): Primary 03 C 20, 03 C 62

Farah

In [2, Theorem 1.6] it is shown that for some complete theory \mathbf{T} with binary relational symbol ρ the existence of ω_1 -like models for a first-order theory \mathbf{T} and extendability of all (or any) countable models for \mathbf{T} are equivalent to the same first-order property, certain scheme denoted by \mathcal{R}^+ . It consists of the following sentences:

C1.
$$\forall x \exists y \neg \rho(x, y)$$

C2. $\forall x \forall y \exists z (\rho(x, z) \land \rho(y, z)),$

and for all formulas $\varphi(x, u)$ of \mathfrak{L} :

$$\begin{array}{lll} \mathbf{C3.} & \forall v [\forall x \exists y \forall u (\rho(x,v) \rightarrow (\varphi(x,u) \rightarrow \rho(u,y))) \rightarrow \\ & \exists y \forall x \forall u (\rho(x,v) \rightarrow (\varphi(x,u) \rightarrow \rho(u,y)))]. \end{array}$$

These axioms first appeared in [3], where a proof is given that every countable model satisfying C1, C2 and C3 is extendable. In [2, Theorem 1.4] it is shown that for every $n \in \omega$ the theory \mathbf{PA}_n does not contain the scheme \mathcal{R}^+ . Actually, a somewhat stronger result is given — any Σ_n -fragment of True Arithmetic (that is, $\mathrm{Th}(\omega, S, +, \cdot, 0)$) does not contain \mathcal{R}^+ .

In that proof a kind of definable ultraproduct is used. It is Σ_n -definable ultrapower of a model \mathfrak{N} of **PA**, a model that consists of Σ_n -definable functions modulo some ultrafilter G of Σ_n -definable sets. This model is denoted by $F_{\Sigma_n}(\mathfrak{N})/G$, and for such models a variant of Fundamental Theorem for Ultraproducts holds, namely $\mathfrak{N} \prec_n F_{\Sigma_n}(\mathfrak{N})/G$.

We will prove that the scheme \mathcal{R}^+ is not contained in any Σ_n -fragment of **T** (from now on, **T** stands for some (fixed) complete extension of **PA**.) From this we have our

MAIN THEOREM. For any theory \mathbf{T}_n (**T** is some complete extension of **PA**) there is a model that is not extendable.

Let \mathfrak{M} be a model for **PA**. An element $\mathbf{a} \in M$ is said to be Σ_n -definable in the model \mathfrak{M} iff there exists a Σ_n -formula $\varphi_{\mathbf{a}}$ of $\mathfrak{L}_{\mathbf{PA}}$ such that the following holds:

$$\mathfrak{M} \models \varphi_{\mathbf{a}}(\mathbf{a}) \land \forall x (\varphi_{\mathbf{a}}(x) \to x = \mathbf{a})$$

(We will usually say " Σ_n -definable" instead of " Σ_n -definable in a model \mathfrak{M} " when no ambiguity occurs.)

By $\Sigma_n^{\mathfrak{M}}$ we denote a countable submodel of \mathfrak{M} that consists of exactly those elements **a** that are Σ_n -definable in \mathfrak{M} . It is easily verified that $\Sigma_n^{\mathfrak{M}}$ is closed under the operations + and \cdot .

LEMMA 1. For any model $\mathfrak{M} \models \mathbf{PA}$ the following holds:

$$\mathfrak{M} \prec_n \Sigma_n^{\mathfrak{M}}$$

so $\Sigma_n^{\mathfrak{M}} \models \operatorname{Th}_n(\mathfrak{M}).$

Proof. Suppose that $\varphi(x, y)$ is Σ_n -formula and $\mathbf{a} \in \Sigma_n^{\mathfrak{M}}$ is such that

$$\mathfrak{M} \models \exists x \varphi(x, \mathbf{a}).$$

It is enough to show that there is a Σ_n -definable $\mathbf{b} \in M$ such that $\mathfrak{M} \models \varphi(\mathbf{b}, \mathbf{a})$. Note that for some Σ_n -formula $\varphi_{\mathbf{a}}(x)$ the following holds

$$\mathfrak{M} \models \exists x \exists y (\varphi(x, y) \land \varphi_{\mathbf{a}}(y))$$

If we encode the pair $\langle x, y \rangle$ by z, then the formula above becomes:

$$\mathfrak{M} \models \exists z (\varphi((z)_0, (z)_1) \land \varphi_{\mathbf{a}}((z)_1))$$

It is clear that the formula $\psi(z)$ defined as

$$\varphi((z)_0, (z)_1) \land \forall x < z \neg \varphi((x)_0, (x)_1)$$

is again Σ_n , and that $\mathfrak{M} \models \exists y \psi(y)$. So there is some Σ_n -definable $\mathbf{c} \in M$ such that $\mathfrak{M} \models \psi(\mathbf{c})$ and $\mathfrak{M} \models \varphi((\mathbf{c})_1, \mathbf{a})$, and we just set $\mathbf{b} = (\mathbf{c})_1$. \Box

Remark. In $\Sigma_n^{\mathfrak{M}}$ every element is Σ_n -definable, so we may say that $\Sigma_n^{\mathfrak{M}}$ is Σ_n -atomic. It can easily be shown that this model is also Σ_n -prime (that is, Σ_n -elementarily embeddable in every model for \mathbf{T}_n), so this construction might be of interest in its own right.

LEMMA 2 (cf. [2, Lemma 1.1]). For any $n \in \omega$ there exists a Δ_{n+1} -formula $\varphi(x, y)$ in $\mathfrak{L}_{\mathbf{PA}}$ and a model $\mathfrak{M}_1 \models \mathbf{T}_n \cup \{\neg \mathcal{R}(\varphi)\}.$

Proof. Let \mathfrak{M} be a model for \mathbf{T} . By Lemma 1 we have $\Sigma_n^{\mathfrak{M}} \models \mathbf{T}_n$. Let G be a nonprincipal ultrafilter in $\mathcal{D}_n(\Sigma_n^{\mathfrak{M}})$, the set of Σ_n -definable subsets of $\Sigma_n^{\mathfrak{M}}$. Now we construct a model $\mathfrak{M}_1 = F_{\Sigma_n}(\Sigma_n^{\mathfrak{M}})/G$. By Lemma 1 this is also a model for \mathbf{T}_n . Fix some $\mathbf{b} \in M_1$. It is a $=_G$ -equivalence class of some function f that is Σ_n -definable without parameters (remember that $\Sigma_n^{\mathfrak{M}}$ is Σ_n -atomic) in $\Sigma_n^{\mathfrak{M}}$. So we have a Σ_n -formula $\psi_f(x, y)$ such that fm = n iff $\Sigma_n^{\mathfrak{M}} \models \psi_f(m, n)$ for all $m, n \in \Sigma_n^{\mathfrak{M}}$. And now,

$$B = \{ n \in \Sigma_n^{\mathfrak{M}} | \Sigma_n^{\mathfrak{M}} \models \mathrm{SAT}_{\Sigma_n} (\ulcorner \theta \urcorner, n, fn) \}$$
$$= \{ n \in \Sigma_n^{\mathfrak{M}} | \Sigma_n^{\mathfrak{M}} \models \theta(n, fn) \}$$
$$= \Sigma_n^{\mathfrak{M}},$$

and $\mathfrak{M}_1 \models \operatorname{SAT}_{\Sigma_n}(\lceil \theta \rceil, i_G, \mathbf{b})$, where i_G stands for the $=_G$ -equivalence class of the diagonal i of $\Sigma_n^{\mathfrak{M}}$. We conclude that for every \mathbf{b} in M_1 there exists some $\mathbf{e} \in \omega$ such that

$$\mathfrak{M}_1 \models \operatorname{SAT}_{\Sigma_n}(\mathbf{e}, i_G, \mathbf{b}).$$

Farah

It remains to show that wanted Δ_{n+1} formula is $\psi(x, y)$, defined as

 $\operatorname{SAT}_{\Sigma_n}(x, i_G, y) \land (\forall z < x) \neg \operatorname{SAT}_{\Sigma_n}(z, i_G, y),$

"x is the least Gödel's number of a formula that defines y". From the previous discussion it is evident that $\mathfrak{M}_1 \models \psi(x, y)$ only if x is standard, and that the set of all $x \in \omega$ such that $\mathfrak{M}_1 \models \exists y \psi(x, y)$ is cofinal in ω . Now we check that ψ is not regular in \mathfrak{M}_1 , i.e. that the following holds:

$$\mathfrak{M} \models \exists v [\forall x \exists y \forall u (x < v \to (\phi(x, u) \to u < y)) \land \\ \forall y \exists x \exists u (x < v \land \phi(x, u) \land y \le u)].$$

For v we fix some nonstandard element \mathbf{v} of M_1 . To prove the first part of the statement, fix any $\mathbf{x} < \mathbf{v}$. The set $\{u \in M_1 | \mathfrak{M}_1 \models \psi(\mathbf{x}, u)\}$ has at most one element, thus it is bounded by some \mathbf{y} . To check the second part, note that for any $\mathbf{y} \in M_1$ there is an $\mathbf{x} \in \omega$ (thus $\mathbf{x} < \mathbf{v}$) and $\mathbf{u} > \mathbf{y}$ such that $\mathfrak{M}_1 \models \psi(\mathbf{x}, \mathbf{u})$. \Box

Note that the minor modification of the proof that ψ is not regular in \mathfrak{M}_1 gives the following semantical characterization of **C3** for every model \mathfrak{M} with built-in Skolem functions:

 $\mathfrak{M} \models \mathbf{C3}$ iff there is no definable (in \mathfrak{M}) function mapping a bounded subset of M cofinally into M.

Proof of the Main Theorem. The model \mathfrak{M}_1 from Lemma 2 is not extendable.

REFERENCES

[1] C.C. Chang, H.J. Keisler, Model Theory, North-Holland, Amsterdam, 1973.

- [2] I. Farah, Existence and nonexistence of some elementary end-extensions, Math. Logic Quarterly, to appear.
- [3] Ž. Mijajlović, A note on elementary end extension, Publ. Inst. Math. (Beograd) 21 (1977), 141-144.

Matematički fakultet 11001 Beograd, p.p. 550 Jugoslavija (Received 17 02 1992)