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FRAGMENTS OF COMPLETE EXTENSIONS OF PA

AND McDOWELL-SPECKER'S THEOREM

Ilijas Farah

Abstract. We generalise Theorem 1.4 of [2] and prove that for every complete extension
T of PA and any n 2 ! there exists a model for �n{fragment of T that is not extendable (that
is, a model with no proper strong elementary end-extension.) This is accomplished using a model
called �n-atomic. This result can be interpreted as \McDowell-Specker's Theorem does not hold
for �n-fragments of PA".

Basic de�nitions and notation. The notation is the same as in [2]. PA
stands for the axiom system of Peano arithmetic (e.g. as described in [1, p. 40]). A
formula is �n (�n) i� the string of quaniti�ers in one of its prenex normal forms,
begins with 9 (8), and has no more than n� 1 quanti�er alternations. A sentence
is �n i� it is both �n and �n. Tn stands for the �n-fragment of the theory T,
that is a theory consisting of all the consequences of T that are �n sentences.

The notations A (A), B (B), . . . denote models (their universes), and the
notations M (M) and N (N) denote models of PA (their universes.) The let-
ters x; y; z; . . . denote variables, while the letters a;b; c; . . . denote constants. For a
model A of some language L, the theory of A (denoted Th(A)) is the set of all the
sentences ' of L such that A j= '. Models A and B are elementarily equivalent i�
Th(A) = Th(B) (denoted A � B.) For some set of sentences � (some model A),
L� (LA) denotes the language of � (of A.) If z codes an ordered pair hx; yi we
write (z)0 for x and (z)1 for y.

De�nition 1. A model A is said to be a �n-elementary extension of a modelB
(B �n A) i� for any �n-formula ' with m free variables and any m-tuple a 2 Bm,

A j= '(a) i� B j= '(a):

A �n-elementary extension is a �n-elementary end-extension i� it is also an end-
extension. We say that a complete theory T contains some formula schemata i� T
contains it as a set of formulas.
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In [2, Theorem 1.6] it is shown that for some complete theory T with binary
relational symbol � the existence of !1-like models for a �rst-order theory T and
extendability of all (or any) countable models for T are equivalent to the same
�rst-order property, certain scheme denoted by R+. It consists of the following
sentences:

C1. 8x9y:�(x; y)

C2. 8x8y9z(�(x; z)^ �(y; z));

and for all formulas '(x; u) of L:

C3. 8v[8x9y8u(�(x; v)! ('(x; u)! �(u; y)))!

9y8x8u(�(x; v)! ('(x; u)! �(u; y)))]:

These axioms �rst appeared in [3], where a proof is given that every countable
model satisfying C1, C2 and C3 is extendable. In [2, Theorem 1.4] it is shown
that for every n 2 ! the theory PAn does not contain the scheme R+. Actually, a
somewhat stronger result is given | any �n-fragment of True Arithmetic (that is,
Th(!; S;+; �; 0)) does not contain R+.

In that proof a kind of de�nable ultraproduct is used. It is �n-de�nable ultra-
power of a model N of PA, a model that consists of �n-de�nable functions modulo
some ultra�lter G of �n-de�nable sets. This model is denoted by F�n(N)=G, and
for such models a variant of Fundamental Theorem for Ultraproducts holds, namely
N �n F�n(N)=G.

We will prove that the scheme R+ is not contained in any �n-fragment of T
(from now on, T stands for some (�xed) complete extension of PA.) From this we
have our

Main Theorem. For any theory Tn (T is some complete extension of PA)
there is a model that is not extendable.

Let M be a model for PA. An element a 2 M is said to be �n-de�nable in
the modelM i� there exists a �n-formula 'a of LPA such that the following holds:

M j= 'a(a) ^ 8x('a(x) ! x = a)

(We will usually say \�n-de�nable" instead of \�n-de�nable in a model M" when
no ambiguity occurs.)

By �Mn we denote a countable submodel of M that consists of exactly those
elements a that are �n-de�nable inM. It is easily veri�ed that �Mn is closed under
the operations + and �.

Lemma 1. For any model M j= PA the following holds :

M �n �
M

n

so �Mn j= Thn(M).
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Proof . Suppose that '(x; y) is �n-formula and a 2 �Mn is such that

M j= 9x'(x; a):

It is enough to show that there is a �n-de�nable b 2 M such that M j= '(b; a).
Note that for some �n-formula 'a(x) the following holds

M j= 9x9y('(x; y) ^ 'a(y))

If we encode the pair hx; yi by z, then the formula above becomes:

M j= 9z('((z)0; (z)1) ^ 'a((z)1))

It is clear that the formula  (z) de�ned as

'((z)0; (z)1) ^ 8x < z:'((x)0; (x)1)

is again �n, and thatM j= 9y (y). So there is some �n-de�nable c 2M such that
M j=  (c) and M j= '((c)1; a), and we just set b = (c)1. �

Remark . In �Mn every element is �n-de�nable, so we may say that �Mn is
�n-atomic. It can easily be shown that this model is also �n-prime (that is, �n-
elementarily embeddable in every model for Tn), so this construction might be of
interest in its own right.

Lemma 2 (cf. [2, Lemma 1.1]). For any n 2 ! there exists a �n+1-formula

'(x; y) in LPA and a model M1 j= Tn [ f:R(')g.

Proof . Let M be a model for T. By Lemma 1 we have �Mn j= Tn. Let G be
a nonprincipal ultra�lter in Dn(�

M
n ), the set of �n-de�nable subsets of �

M
n . Now

we construct a model M1 = F�n(�
M
n )=G. By Lemma 1 this is also a model for

Tn. Fix some b 2 M1. It is a =G-equivalence class of some function f that is
�n-de�nable without parameters (remember that �Mn is �n-atomic) in �Mn . So we
have a �n-formula  f (x; y) such that fm = n i� �Mn j=  f (m;n) for allm;n 2 �Mn .
And now,

B = fn 2 �Mn j�
M

n j= SAT�n(
d � e ; n; fn)g

= fn 2 �Mn j�
M

n j= �(n; fn)g

= �Mn ;

andM1 j= SAT�n(
d � e ; iG;b), where iG stands for the =G-equivalence class of the

diagonal i of �Mn . We conclude that for every b inM1 there exists some e 2 ! such
that

M1 j= SAT�n(e; iG;b):
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It remains to show that wanted �n+1 formula is  (x; y), de�ned as

SAT�n(x; iG; y) ^ (8z < x):SAT�n(z; iG; y);

\x is the least G�odel's number of a formula that de�nes y". From the previous
discussion it is evident that M1 j=  (x; y) only if x is standard, and that the set
of all x 2 ! such that M1 j= 9y (x; y) is co�nal in !. Now we check that  is not
regular in M1, i.e. that the following holds:

M j= 9v[8x9y8u(x < v ! (�(x; u) ! u < y))^

8y9x9u(x < v ^ �(x; u) ^ y � u)]:

For v we �x some nonstandard element v of M1. To prove the �rst part of
the statement, �x any x < v. The set fu 2 M1jM1 j=  (x; u)g has at most one
element, thus it is bounded by some y. To check the second part, note that for any
y2M1 there is an x 2 ! (thus x < v) and u > y such that M1 j=  (x;u). �

Note that the minor modi�cation of the proof that  is not regular inM1 gives
the following semantical characterization of C3 for every model M with built-in
Skolem functions:

M j=C3 i� there is no de�nable (in M) function mapping a bounded subset

of M co�nally into M .

Proof of the Main Theorem. The modelM1 from Lemma 2 is not extendable.
�
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