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OPTIMAL CONTROL OF A CLASS OF DEGENERATE

NONLINEAR EVOLUTION EQUATIONS

Nikolaos S. Papageorgiou�

Abstract. We examine problems of optimal control of systems driven by a nonlinear,
degenerate evolution equation. First we establish two existence results for two di�erent types of
integral cost criteria. Then we examine the sensitivity of the optimal value on variations of the
data. Finally we present an example of a degenerate, nonlinear parabolic optimal control system.

1. Introduction. In this paper we examine optimal control problems
governed by a nonlinear degenerate evolution equation. First we establish two
existence results for two di�erent integral cost functionals. Then we study the
changes in the optimal value, as the data of the problem vary. Finally we present
an example illustrating the applicability of our results.

The mathematical setting is the following. Let T = [0; b], H a separable
Hilbert space and X a subspace of H carrying the structure of a separable, reexive
Banach space, which embeds continuously and densely into H . Identifying H
with its dual (pivot space), we have X ,! H ,! X�, with all embeddings being
continuous and dense. Such a triple of spaces is usually called in the literature
\Gelfand triple" or \evolution triple" or \spaces in normal position". By k � k
(resp. j � j, k � k�) we will denote the norm of X (resp. of H , X�), by ( � ; � ) the
inner product in H and by h � ; � i the duality brackets for the pair (X;X�). The last
two are compatible in the sense that h � ; � ijX�H = ( � ; � ). Also, let Y be a separable
reexive Banach space, modelling the control space. By Pwkc(Y ) we will denote
the set of nonempty, weakly compact and convex subsets of Y . A multifunction
U : T ! Pwkc(Y ) is said to be L2-integrably bounded if and only if U( � ) is
measurable and t ! jU(t)j = supfkuk : u 2 U(t)g 2 L2+ . Recall that U( � ) is
measurable if and only if for every v 2 Y , t! d(v; U(t)) = inffkv � uk : u 2 U(t)g
is measurable.
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Finally let Z be a Banach space and let fAn; Agn�1 � 2Z n f?g. We set

s- limAn = fz 2 Z : z = s- lim zn; zn 2 An; n � 1g and w- limAn = fz 2 Z :

z = w- lim znk ; znk 2 Ank ; n1 < n2 < . . . < nk < . . . g, where s denotes the
strong topology on Z and w the weak topology on Z. It is clear from these two
de�nitions that s- limAn � w- limAn. We will say that the An's converge to A in

the \Kuratowski-Mosco" sense, denoted by An
K-M

�! A, if and only if s- limAn =

A = w- limAn. Next let fn; f : Z ! R = R [ f+1g. We set epi fn = f(z; �) 2
Z � R : fn(z) � �g (the epigraph of fn( � )). Similarly we de�ne epi f . We say

that the fn's epi-converge to f , denoted by fn
�
�! f if and only if epi fn

K-M

�! epi f .
From Mosco [5] we know that this is equivalent to saying that for every subsequence

ffnkgk�1, if zk
s
�! z, then f(z) � lim fnk(zk) and for every z 2 Z there exists a

sequence zn
w
�! z s.t. lim f(zn) = f(z).

2. Existence theorems. The �rst optimal control problem that we will
examine is the following:

J1(x; u) =

Z b

0

L(t; x(t); u(t)) dt! inf = m1

s.t. (d=dt)(Ex(t)) +A(t; x(t)) = (Bu)(t) a.e.

x(0) = x0 2 H

u(t) 2 U(t) a.e.; u( � ) is measurable

(�)1

We will need the following hypotheses on the data of (�)1.

H(A): A : T � T ! X� is an operator s.t.

(1) t! A(t; x) is measurable,

(2) x! A(t; x) is hemicontinuous, monotone,

(3) hA(t; x); xi � ckxk2, t 2 T , c > 0,

(4) kA(t; x)k� � a(t) + bkxk a.e. with a( � ) 2 L2+, b � 0.

H(E): E 2 L(H)+ is self-adjoint.

H(B): B : L2(H)! L2(H) is completely continuous.

H(U): U : T ! Pwkc(Y ) is an L
2-integrably bounded multifunction.

H(L)1: L : T �H � Y ! R = R [ f+1g is a proper integrand (i.e. L 6� +1) s.t.

(1) L( � ; � ; � ) is measurable,

(2) L(t; � ; � ) is convex and l.s.c.,

(3) �(t) �M(jxj+ kuk) � L(t; x; u) a.e. with �( � ) 2 L1, M � 0.

Since our cost integrand is R-valued, to avoid trivial situations, we need the
following feasibility hypothesis:

Ha: There exists an admissible \state-control" pair (x; u) s.t. J1(x; u) <1.
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Theorem 2.1. If the hypotheses H(A), H(E), H(B), H(U), H(L)1 and Ha

hold, then the problem (�)1 admits a solution.

Proof . We will start by determining some a priori bounds for the trajectories
of our system. So let x( � ) 2 L2(X) be such a solution. Multiply the evolution
equation with x(s) and then integrate over [0; t], t 2 T . Using Theorem 2 od
Brezis [3] and the integration by parts formula (see Zeidler [10, Proposition 23.23,
p. 432]), we have

jE1=2x(t)j2 � jE1=2x(0)j2 = 2

Z t

0

hdEx(s)=ds; x(s)i ds

and so

jE1=2x(t)j2 + 2

Z t

0

hA(s; x(s)); x(s)i ds = jE1=2x0j
2 + 2

Z t

0

((Bu)(s); x(s)) ds

=) jE1=2x(t)j2 + 2c

Z t

0

kx(s)k
2
ds � jE1=2x0j

2 + 2

Z t

0

k(Bu)(s)k�kx(s)k ds: (1)

Applying Cauchy's inequality with " > 0, we getZ t

0

k(Bu)(s)k�kx(s)k ds �
"

2

Z t

0

k(Bu)(s)k2� ds+
1

2"

Z t

0

kx(s)k2 ds: (2)

Let " = 1=c and use inequality (2) in inequality (1). This way we get,

jE1=2x(t)j2 + c

Z t

0

kx(s)k
2
ds � jE1=2x0j

2 +
1

c
kBk

2
L

Z t

0

jU(s)j2 ds (3)

=) kxkL2(X) �M1: (4)

Also recall that E1=2x( � ) 2 C(T;H) (see Brezis [3]). So from (3) above we
also have that

kE1=2x( � )kC(T;H) �M2: (5)

Finally note that
Z b

0

kdEx(t)=dtk
2
� dt �

Z b

0

kA(t; x(t))k
2
� dt+

Z b

0

j(Bu)(t)j2 dt

�

Z b

0

(2a(t)2 + 2b2kx(t)k2) dt+ kBk2L

Z b

0

jU(t)j2 dt: (6)

Using bound (4) in inequality (6), we get

kdEx( � )=dtkL2(X�) � 2kak2 + 2b2M2
1 + kBk

2
Lk jU j k

2
2

=) kdEx( � )=dtkL2(X�) �M3: (60)

Now that we have all the above a priori bounds, let f(xn; un)gn�1 be a
minimizing sequence of admissible \state-control" pairs. Because of (4), hypothesis
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H(U) and the Eberlein-Smulian theorem, by passing to a subsequence if necessary,

we may assume that xn
w
�! x in L2(X) and un

w
�! u in S2U � L2(Y ). We will

show that the limit pair (x; u) is admissible too. Recall that S2U is convex, closed
and bounded. So u 2 S2U . Let �( � ) 2 L

2(X) s.t. _� 2 L2(H) and �(b) = 0 (note that
our hypotheses on �( � ), _�( � ) imply that �( � ) 2 C(T;H) and so �(b) = 0 makes
sense). Then from Brezis [3], we know that for every n > 1

�

Z b

0

(xn(t); dE�(t)=dt) dt +

Z b

0

hA(t; xn(t)); �(t)i dt

= (E1=2x0; R
1=2�(0)) +

Z b

0

((Bun)(t); �(t)) dt: (7)

Note that since xn
w
�! x in L2(X) and un

w
�! u in L2(Y ), we have

Z b

0

(xn(t); dE�(t)=dt) dt !

Z b

0

(x(t); dE�(t)=dt) dt (8)

and

Z b

0

((Bun)(t); �(t)) dt !

Z b

0

((Bu)(t); �(t)) dt: (9)

Also note that kA(t; xn(t))k� � a(t)+bkxn(t)k a.e. So if Â : L2(X)! L2(X�)
is the Nemitsky (superposition) operator corresponding to A( � ; � ), then we get

kÂ(xn)kL2(X�) � kak2 + bM1; n � 1:

So by passing to a further subsequence if necessary, we may assume that

Âxn
w
�! v in L2(X�). (10)

Next for m;n � 1 we have

hd(Exn(t)�Exm(t)); xn(t)� xm(t)i

+ hA(t; xn(t))�A(t; xm(t)); xn(t)� xm(t)i

= ((Bun)(t)� (Bum)(t); xn(t)� xm(t)) a.e.

=) jE1=2xn(t)�E1=2xm(t)j
2 +

Z t

0

hA(s; xn(s))�A(s; xm(s)); xn(s)� xm(s)i ds

=

Z t

0

((Bun)(s)� (Bum)(s); xn(s)� xm(s)) ds

=) jE1=2xn(t)�E1=2xm(t)j
2 � (Bun �Bum; �[0;1](xn � xm))L2(H) ! 0

(since B is, by hypothesis H(B), completely continuous).

Therefore for every t 2 T , fE1=2xn(t)gn�1 is strongly Cauchy in H . Let

measurable function y : T ! H be the limit function, i.e. E1=2xn(t)
s
�! y(t) in

H for all t 2 T . From (5) we know that kE1=2xn(t)k � M2 for all n � 1 and all
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t 2 T . So applying the dominated convergence theorem, we get E1=2xn
s
�! y in

L2(H). On the other hand we already know that E1=2xn
w
�! E1=2x in L2(H).

Hence y(t) = E1=2x(t) a.e. and by modifying y( � ) on a Lebesgue null set, we have
equality everywhere.

Next for every n � 1, we have

hdExn(t)=dt; xn(t)� x(t)i+ hA(t; xn(t)); xn(t)� x(t)i

= ((Bun)(t); xn(t)� x(t)) a.e.

=)
1

2
jE1=2xn(b)�E1=2x(b)j+

Z b

0

hdEx(t)=dt; xn(t)� x(t)i dt

+ (Â(xn); xn � x)L2(X�);L2(X) =

Z b

0

((Bun)(t); xn(t)� x(t)) dt:

Note that as n!1

jE1=2xn(b)�E1=2x(b)j=2! 0;
R b
0
hdEx(t)=dt; xn(t)� x(t)i dt ! 0

and
R b
0 ((Bun)(t); xn(t)�x(t)) dt! 0 (since B( � ) is completely continuous). There-

fore we get lim(Ân(xn); xn � x)L2(X�);L2(X) = 0. But because of the hypothesis

H(A), Â : L2(X) ! L2(X�) is hemicontinuous, monotone and so it has property

(M) (see Zeidler [10, pp. 583{584]). Therefore Âx = v; i.e. Âxn
w
�! Âx in L2(X�).

Then, going back to (7) and using convergences (8) and (9), in the limit, we getZ b

0

hx(t); dE�(t)=dti dt +

Z b

0

hA(t; x(t)); �(t)i dt

= (E1=2x0; E
1=2�(0)) +

Z b

0

((Bu)(t); �(t)) dt: (11)

Also because of inequality (60), we know that we may assume that dExn=dt
w
�! z

in L2(X�).

On the other hand, viewed as X�-valued distributions, in the distributional
sense dExn=dt ! dEx=dt. Hence dEx=dt = z 2 L2(X�). Since x 2 L2(X),
dEx=dt 2 L2(X�) and satis�es (11) above, from Brezis [3, Theorem 2, p. 31] we
deduce that E1=2x( � ) 2 C(T;H) and (x; u) is admissible. Finally note that J1( � ; � )
is convex and l.s.c. So we have J1(x; u) � lim J1(xn; un) = m1. Since (x; u) is an
admissible pair, we have J1(x; u) = m1 and hence (x; u) is the desired optimal
pair.Q.E.D.

We have a second existence result for a functional involving the degeneracy
operator E. Speci�cally we consider the following optimal control problems:

J2(x; u) =

Z b

0

L(t; Ex(t); u(t)) dt! inf = m2

s.t. _x(t) +A(t; x(t)) = (Bu)(t) a.e.

x(0) = x0

u(t) 2 U(t) a.e.; u( � ) is measurable

(�)2
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Now the hypothesis on the cost integrand is the following:

H(L)2: L : T �H � Y ! R = R [ f+1g is an integrand s.t.

(1) L( � ; � ; � ) is measurable,

(2) for every t 2 T , L(t; � ; � ) is l.s.c. on H � Y ,

(3) for every (t; x) 2 T �H , L(t; x; � ) is convex,

(4) �(t) �M(jxj+ kuk) � L(t; x; u) a.e. for some �( � ) 2 L1, M � 0.

Theorem 2.2. If the hypotheses H(A), H(E), H(B), H(U), H(L)2 and Ha

hold, then the problem (�)2 admits an optimal \state-control" pair.

Proof . Let f(xn; un)gn�1 � L2(X) � L2(Y ) be a minimizing sequence of
admissible \state-control" pairs. From the proof of Theorem 2.1, we know that,

by passing to a subsequence if necessary, we may assume that xn
w
�! x in L2(X),

un
w
�! u in L2(Y ), (x; u) is admissible too and for every t 2 T , E1=2xn(t)

s
�!

E1=2x(t) in H . So Exn(t)
s
�! Ex(t) in H for all t 2 T . Invoking Theorem 2.1 of

Balder [2], we get

J2(x; u) � lim J2(xn; un) = m2

=) J2(x; u) = m2

=) (x; u) is the desired optimal pair for (�)2 Q.E.D.

3. Sensitivity analysis. In this section we present a sensitivity (stability)
result of the optimal value, as the data of the problem change. Consider the
following sequence of optimal control problems:

Jn(xn; un) =

Z b

0

Ln(t; Exn(t); un(t)) dt! inf = mn

s.t. dExn(t)=dt+An(t; xn(t)) = (B̂nun)(t) a.e.

xn(0) = xn0 2 H

un(t) 2 Un(t) a.e.; un( � ) is measurable

(��)n

and the limit problem

J(x; u) =

Z b

0

L(t; Ex(t); u(t)) dt! inf = m

s.t. dEx(t)=dt+A(t; x(t)) = (B̂u)(t) a.e.

x(0) = xn0 2 H

u(t) 2 U(t) a.e.; u( � ) is measurable

(��)

We will need the following hypotheses on the data of the above problems:

H(A)1: An; A : T �X ! X� are operators s.t.
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(1) t! An(t; x); A(t; x) are measurable,

(2) x! An(t; x); A(t; x) are hemicontinuous, strictly monotone,

(3) kAn(t; x)k�; kA(t; x)k� � a(t) + bkxk a.e. a( � ) 2: L2+, b > 0,

(4) hAn(t; x); xi; hA(t; x); xi � ckxk
2
a.e., c > 0,

(5) for every x( � ) 2 L2(X) s.t. E1=2x( � ) 2 C(T;H) and d(Ex( � ))=dt 2

L2(X�) we have An( � ; x( � ))
s
�! A( � ; x( � )) in L2(X�).

H(B)1: Bn; B : L2(Y ) ! L2(H) are completely continuous and Bn
o
�! B

(o denoting the operator norm topology).

H(U)1: Un; U : T ! Pfc(Y ) are measurable multifunctions, L2-integrably bounded

by  ( � ) 2 L2+ (i.e. for all n � 1, jUn(t)j �  (t) a.e.) and Un(t)
K-M

�! U(t)
a.e.

H(L)3: Ln; L : T �H � Y ! R are integrands s.t. for all n � 1

(1) t! Ln(t; x; u) measurable

(2) (x; u)! Ln(t; x; u) is convex,

(3) �1(t) +M1(jxj
2 + kuk2) � Ln(t; x; u) � �2(t) +M2(jxj

2 + kuk2) a.e.
with �1; �2 2 L

2, M1;M2 2 R+ .

(4) Ln(t; � ; � )
�
�! L(t; � ; � ) a.e.

Theorem 3.1. If the hypotheses H(A)1, H(B)1, H(U)1, H(L)3 hold and

xn0
s
�! x0 in H, then mn ! m as n!1.

Proof . Let (x; u) be an optimal admissible pair for the limit problem (��).
Its existence is guaranteed by Theorem 2.2. From the hypothesis H(L)3 and

Theorem 3.1 of Salvadori [9], we know that Jn
�
�! J . Then from the de�nition of

� -convergence (Mosco [5]), we know that we can �nd (yn; vn) 2 L
2(H)�L2(Y ) s.t.

(yn; vn)
s�s
�! (x; u) in L2(H)� L2(Y ) s.t.

lim Jn(yn; vn) = J(x; u):

Also from Theorem 4.4 of [6], we know that S2Un
K-M

�! S2U . Hence Theorem 3.33

of Attouch [1], tells us that un = proj(vn;S
2
Un
)

s
�! u in L2(Y ). Let xn( � ) 2 L

2(X)

be the unique trajectory of (��)n generated by the admissible control un( � ) 2 L
2(Y )

(uniqueness follows from the strict monotonicity of An(t; � )). Then we have:

hd(Exn(t)�Ex(t))=dt; xn(t)� x(t)i

+ hAn(t; xn(t))�A(t; x(t)); xn(t)� x(t)i

= ((Bnun)(t)� (Bu)(t); xn(t)� x(t)) a.e.

=) hdE(xn(t)� x(t))=dtxn(t)� x(t)i

+ hAn(t; xn(t))�An(t; x(t)); xn(t)� x(t)i

+ hAn(t; x(t)) �A(t; x(t)); xn(t)� x(t)i
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= ((Bnun)(t)� (Bu)(t); xn(t)� x(t)) a.e.

=) hdE(xn(t)� x(t))=dt; xn(t)� x(t)i

+ hAn(t; x(t)) �A(t; x(t)); xn(t)� x(t)i

� ((Bnun)(t)� (Bu)(t); xn(t)� x(t)) a.e.

Integrating over [0; t] and performing integration by parts, we get,

jE1=2xn(t)�E1=2x(t)j � jE1=2xn0 � E1=2x0j

+ 2

Z t

0

kAn(s; x(s)) �A(s; x(s))k� � kxn(s)� x(s)k ds

+ 2

Z t

0

j(Bnun)(s)� (Bu)(s)j � kxn(s)� x(s)k ds:

Applying the Cauchy-Schwartz inequality on the integrals of the right-hand
side, we get

jE1=2xn(t)�E1=2x(t)j � jE1=2xn0 � E1=2x0j

+ 2kÂn(x)� Â(x)kL2(X�) � 2M
0
1 + 2kBnun �BukL2(H) � 2M

0
1

(recall that from the proof of Theorem 2.1 | in particular inequality (3) | we
have kxnkL2(X); kxkL2(X) �M 0

1 for all n � 1).

From hypothesis H(A)1(5) we have 2kÂn(x) � Â(x)kL2(X�) ! 0 as n ! 1.

Also note that (see hypothesis H(B)1)

kBnun �BukL2(H) � kBnun �BunkL2(H) + kBun �BukL2(H)

� kBn �BkLk k2 + kBun �BukL2(H) ! 0:

So E1=2xn( � ) ! E1=2x( � ) in C(T;H) implies that Exn( � ) ! Ex( � ) in
C(T;H). Furthermore fJngn�1 is a sequence of convex integral functionals,
uniformly bounded in every ball in L2(H)�L2(Y ). So, from a well known result of
convex analysis (see for example Rockafellar [8]), we know that fJngn�1 is locally
equi-Lipschitzian. Thus we have:

jJn(yn; vn)� Jn(xn; un)j � k[ kEyn �ExnkL2(H) + kvn � unkL2(Y )]! 0; k > 0

=) lim Jn(xn; un) = J(x; u) = m

=) limmn � m: (1)

On the other hand let f(xn; un)gn�1 be a sequence of optimal pairs for the
approximating problems (��)n. By passing to a subsequence if necessary, we may

assume that un
w
�! u in L2(Y ). Since S2Un

K-M

�! S2U , we will have that u 2 S
2
U . Let

x( � ) be the unique trajectory of the limit problem (��), generated by the admissible

control u( � ). As before, we can show that Exn ! Ex in C(T;H). Since Jn
�
�! J ,

from the de�nition of the � -convergence, we have

J(x; u) � lim Jn(xn; un) =) m � limmn: (2)

From (1) and (2) above, we conclude that mn ! m. Q.E.D.
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4. An example. In this section, we present an example of a degenerate
parabolic optimal control problem, illustrating the applicability of our work. So,
let Z be a bounded domain in Rn with smooth boundary � = @Z. The optimal
control problem under consideration, is the following:

J(x; u) =

Z b

0

Z
Z

L(t; z; �(z)x(t; z); u(t; z)) dzdt! inf = m

s.t. �(z)
@x(t; z)

@t
+

P
jaj�m

(�1)jajDaAa(t; z; �(x(t; z)))

=

Z b

0

Z
Z

k(t; s; z; z0)u(s; z0) dz0ds;

D�xjT�� = 0; j�j � m� 1; x(0; z) = x0(z)Z
Z

u(t; z)2 dz � r(t)2; u( � ; � ) | measurable.

(���)

Here � = (�1; . . . ; �n) is a multi-index, j�j =
Pn

k=1 �k is the length of the multi-
index and �(x(z)) = fD�x(z) : j�j � mg. We will need the following hypotheses
concerning the data of (���):

H(A)2: A� : T � Z � Rnm ! R (nm = (n+m)!=(n!m!)) are functions s.t.

(1) for every �, (t; z)! A�(t; z; �) is measurable,

(2) for every (t; z) 2 T � Z, � 2 A(t; z; �) is continuous,

(3) jA�(t; z; �)j � a(t; z) + b(z)k�k a.e. with a( � ; � ) 2 L2(T � Z)+, b( � ) 2
L1(Z)+,

(4)
P

j�j�m(A�(t; z; �) � A�(t; z; �
0))(�� � �0�) � 0 for all (t; z) 2 T � Z

and �; �0 2 Rnm ,

(5)
P

j�j�mA�(t; z; �)�� � c
P
j�j�m �

2
� a.e., c > 0.

H(k): k 2 L2(T � T � Z � Z),

H(r): r( � ) 2 L2(T )+,

H(�): �( � ) 2 L1(Z), � � 0,

H(L)4: L : T � Z � R � R ! R is an integrand s.t.

(1) L( � ; � ; � ; � ) is measurable,

(2) for every (t; z) 2 T � Z, (x; u)! L(t; z; x; u) is l.s.c and convex in u,

(3) �(t; z) �M(z)(jxj + juj) � L(t; z; x; u) a.e. with � 2 L1(T � Z), M 2
L1(Z)+.

Here H = L2(Z), X = Hm
0 (Z) and X� = H�m(Z) = (Hm

0 (Z))�. From the
well known Sobolev embedding theorem, we know that (X;H;X�) is a Gelfand
triple with all embeddings being compact.
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Let a : T�Hm
0 (Z)�Hm

0 (Z) be the time dependent Dirichlet form, associated
with the nonlinear, elliptic partial di�erential operator of our problem. So we have

a(t; x; y) =
P

j�j�m

Z
Z

A�(t; z; �(x(z)))D
�y(z) dz

Using Cauchy's and Minkowski's inequalities, we getZ
Z

A�(t; z; �(x(z)))D
�y(z) dz

�

�Z
Z

jA�(t; z; �(x(z)))j
2 dz

�1=2�Z
Z

jD�y(z)j2 dz

�1=2

�

��Z
Z

a(t; z)2 dz

�1=2
+ kbk1

P
jj�m

�Z
Z

Dx(z)2 dz

�1=2��Z
Z

jD�y(z)j2 dz

�1=2
:

Summing over j�j � m, we get ja(t; x; y)j � (â(t)+ b̂(t)kxkHm
0
(Z)) � kykHm

0
(Z) where

â( � ) = ka(t; � )k2 2 L2(T )+ and b̂ = kbk1. So there exists a generally nonlinear

operator Â(t; � ) : X ! X� s.t. a(t; x; y) = hA(t; x); yi, where h � ; � i denotes the
duality brackets for (Hm

0 (Z); H�m(Z)).

Clearly from the Fubini's theorem, a a( � ; x; y) is measurable. So A( � ; x) is
weakly measurable and since H�m(Z) is separable, from the Pettis measurability

theorem, we deduce that A( � ; x) is measurable. Also if xn
s
�! x in Hm

0 (Z), then

hÂ(t; xn)� Â(t; x); yi

=
P

j�j�m

Z
Z

jA�(t; z; �(xn(z)))�A�(t; z; �(x(z)))j � jD
�y(z)j dz ! 0

=) Â(t; � ) is demicontinuous, hence hemicontinuous.

Furthermore from the hypothesis H(A)2(4), we have hÂ(t; x)� Â(t; y); x� yi � 0,

while from the hypothesis H(A)2(5), we have hÂ(t; x); xi � ĉkxk
2
Hm
0
(Z), ĉ > 0.

Thus we have checked that the operator Â(t; x) satis�es the hypothesis H(A).

Next let B : L2(T; L2(Z))! L2(T; L2(Z)) be de�ned by

(Bu)(t; z) =

Z b

0

Z
Z

k(t; s; z; z0)u(s; z0) dz0ds:

From the Krasnoselski-Ladyzenskaya theorem (see Martin [4]), we know that B( � )
is a completely continuous operator on L2(T; L2(Z)) = L2(T � Z). Also let E 2
L(L2(Z))+ be de�ned by (Eu)(z) = �(z)u(z) and set U(t) = fu 2 L2(Z) = Y :
kuk2 � r(t)g. Clearly U( � ) is measurable and jU(t)j � r(t) a.e. For the cost
functional we set for (x; u) 2 L2(Z)� L2(Z):

L̂(t; Ex; u) =

Z
Z

L(t; z; �(z)x(z); u(z)) dz:



Optimal control of a class of degenerate nonlinear evolution equations 135

Let Lk be Caratheodory integrands s.t. Lk " L and �(t; z) � M(z)(jxj +

juj) � Lk(t; z; x; u) � k (see for example Pappas [7]). Then let L̂k(t; Ex; u) =R
Z L(t; z; �(z)x(z); u(z)) dz. Clearly L̂k(t; y; u) is a Caratheodory function (i.e.
measurable in t, continuous in (y; u)) and so is jointly measurable. Also from

the monotone convergence theorem, we have that L̂k " L̂ and hence L̂ is jointly
measurable. Furthermore L̂(t; � ; � ) is l.s.c. Function L̂(t; x; � ) is convex and

�̂(t) � M̂(jyj + kuk) � L̂(t; y; u) a.e. with �̂(t) = k�(t; � )k2 and M̂ = kMk1.
So we have satis�ed the hypothesis H(L)2.

Rewrite the problem (���), in the following equivalent abstract form:

Ĵ(x; u) =

Z b

0

L̂(t; Ex(t); u(t)) dt ! inf = m̂

s.t. d(Ex(t))=dt + Â(t; x(t)) = (Bu)(t) a.e.

x(0) = x0( � )

u(t) 2 U(t) a.e.; u( � ) is measurable

(***)'

All the hypotheses of Theorem 2.2 have been veri�ed. So, applying Theo-
rem 2.2, we get:

Theorem 4.1. If the hypotheses H(A)2, H(k), H(r), H(�), H(L)4 hold

and x0( � ) 2 L2(Z), then (���) admits an optimal pair (x; u) 2 L2(T;Hm
0 (Z)) �

L2(T � Z) and
p
�(z)x(t; z) belongs to C(T; L2(Z)).
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