ON THE CLASSIFICATION OF TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD

M. A. Bashir

Abstract

We show that three-dimensional totally umbilical proper CR-submanifolds of a Kaehler manifold are extrinsic spheres. Thus we extend a classification theorem of these submanifolds for dimension less than five.

1. Introduction. The notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [1]. Let \bar{M} be an m-dimensional Kaehler manifold with almost complex structure J. A $(2 p+q)$-dimensional submanifold M of \bar{M} is called a CR-submanifold if there exists a pair of orthogonal complementary distributions D and D^{\perp} such that $J D=D$ and $J D^{\perp} \subset \nu$, where ν is the normal bundle of M and $\operatorname{dim} D=2 p, \operatorname{dim} D^{\perp}=q$. Thus the normal bundle ν splits as $\nu=J D^{\perp} \oplus \mu$, where μ is an invariant sub-bundle of ν under J. A CR-submanifold is said to be proper if neither $D=\{0\}$ nor $D^{\perp}=\{0\}$.

Bejancu considered totally umbilical CR-submanifolds of a Kaehler manifold. he proved that if $\operatorname{dim} D^{\perp}>1$, then these submanifolds ar totally geodesic [2]. Blair and Chen [3] and later Deshmukh and Husain have also studied these submanifolds. In fact Deshmukh and Husain have proved a classification theorem for totally umbilical CR-submanifolds provided that $\operatorname{dim} M \geq 5$. Their theorem is the following [4].

Theorem 1. Let M, ($\operatorname{dim} M \geq 5)$ be a complete simply connected totally umbilical CR-submanifold of a Kaehler manifold \bar{M}. Then M is one of the following:
(i) locally the Riemannian product of a holomorphic and a totally real submanifold of \bar{M};
(ii) totally real submanifold;
(iii) isometric to an ordinary sphere;
(iv) homothetic to a Sasakian manifold.

In this paper we consider the case where $\operatorname{dim} M=3$. For this case we obtain the following theorem:

Theorem 2. Let M be a 3-dimensional totally umbilical proper CRsubmanifold of a Kaehler manifold \bar{M}. Then M is an extrinsic sphere.

Note that, since M in the above theorem is proper and 3-dimensional, then $\operatorname{dim} D^{\perp}=1$. However if $\operatorname{dim} M=4$ and M is proper, then $\operatorname{dim} D^{\perp}=2$, and in this case one may use the result in [2] to conclude that M is totally geodesic. Using this and a result in [3] we conclude that if $\operatorname{dim} M=4$, then M is locally a Riemannian product of a holomorphic submanifold and a totally real submanifold of \bar{M}. If $\operatorname{dim} M=3$, then Theorem 2 and a result in [5] imply that M is either (iii) or (iv) of Theorem 1. Note that for $\operatorname{dim} M=2$ or $1, M$ is either a holomorphic submanifold or a totally real submanifold. Thus a complete classification of totally umbilical CR-submanifolds of a Kaehler manifold is obtained.
2. Preliminaries. We shall denote by $\bar{\nabla}, \nabla, \nabla^{\perp}$ the Riemannian connection on \bar{M}, M and the normal bundle respectively. They are related as follows:

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N, \quad N \in \nu \tag{2.2}
\end{align*}
$$

where $h(X, Y)$ and $A_{N} X$ are the second fundamental forms which are related by

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) \tag{2.3}
\end{equation*}
$$

where X and Y are vector fields on M.
Now let \bar{R}, R and R^{\perp} be the curvature tensors associated with $\bar{\nabla}, \nabla$ and ∇^{\perp} respectively. The curvature tensor \bar{R} satisfies

$$
\begin{equation*}
\bar{R}(J X, J Y) Z=\bar{R}(X, Y) Z, \quad \bar{R}(X, Y) J Z=J \bar{R}(X, Y) Z \tag{2.4}
\end{equation*}
$$

If X, Y, Z, W are vector fields on M, then Gauss and Codazzi equations are respectively given by

$$
\begin{align*}
R(X, Y ; Z, W)= & \bar{R}(X, Y ; Z, W)+g(h(X, W), h(Y, Z)) \tag{2.5}\\
& -g(h(X, Z), h(Y, W)) \\
\bar{R}(X, Y ; Z, N)= & g\left(\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) N\right) \tag{2.6}
\end{align*}
$$

where

$$
\begin{aligned}
\bar{R}(X, Y ; Z, N) & =g(\bar{R}(X, Y) Z, N) \\
\left(\bar{\nabla}_{X} h\right)(Y, Z) & =\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(\nabla_{X} Z, Y\right)
\end{aligned}
$$

A CR-submanifold is said to be totally umbilical if $h(X, Y)=g(X, Y) H$, where $H=($ trace $h) / n$ is the mean curvature vector.

A totally umbilical submanifold of a Riemannian manifold which has nonzero parallel mean curvature vector (i.e. $\nabla \frac{1}{X} H=0$) is called an extrinsic sphere. If M is totally umbilical CR-submanifold, the equations (2.1), (2.2) and (2.6) become

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+g(X, Y) H \tag{2.7}\\
\bar{\nabla}_{X} N & =-g(H, N) X+\nabla_{X}^{\perp} N \tag{2.8}\\
\bar{R}(X, Y ; Z, N) & =g(Y, Z) g\left(\nabla_{X}^{\perp} H, N\right)-g(X, Z) g\left(\nabla_{Y}^{\perp} H, N\right) . \tag{2.9}
\end{align*}
$$

Bianchi's first and second identities are given respectively by

$$
\begin{align*}
R(X, Y, Z)+R(Y, Z, X)+R(Z, X, Y) & =0 \tag{2.10}\\
\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y) & =0 \tag{2.11}
\end{align*}
$$

3. Three-dimensional totally umbilical CR-submanifold of Kaehler manifold. We consider a 3-dimensional totally umbilical proper CR-submanifold M of a Kaehler manifold \bar{M}. Then we prove the following lemmas

Lemma 1. $H \in J D^{\perp}$, and for $z \in D^{\perp}, \nabla \frac{\perp}{X} H=0$.
Proof. Since M is proper and 3 -dimensional, $\operatorname{dim} D=2$ and $\operatorname{dim} D^{\perp}=1$. For X, Y in D the equation $J \bar{\nabla}_{X} Y=\bar{\nabla}_{X} J Y$ and (2.7) give

$$
J \nabla_{X} Y+g(X, Y) J H=\nabla_{X} J Y+g(X, J Y) H
$$

Taking inner product with $N \in \mu$, we get

$$
g(X, Y) g(J H, N)=g(X, J Y) g(H, N)
$$

With $Y=J X$ in the above equation, we have

$$
\|X\| g(H, N)=0, \quad \text { i.e. } \quad H \in J D^{\perp}
$$

To prove the second part of the Lemma, let $N \in \mu$. Then it follows from (2.9) that $\bar{R}(Z, X ; J X, J N)=0$ for $X \in D$. Using (2.4) in this equation we get $\bar{R}(Z, X ; X, N)=0$. Using (2.9) in this last equation we have $g\left(\nabla \frac{1}{Z} H, N\right)=0$, from which it follows that $\nabla \frac{1}{Z} H \in J D^{\perp}$. We need to show that $\nabla \frac{1}{Z} H \in \mu$. From (2.9) and (2.4) we get $\bar{R}(Z, X ; X, Z)=\bar{R}(Z, X ; J X, J Z)=0$. Using linearity of \bar{R}, we then get $\bar{R}(Z, X ; J X, Z)=0$. From this it follows that $\bar{R}(Z, X, X, J Z)=0$. Now using (2.9) the last equation gives $g\left(\nabla \frac{1}{Z} H, J Z\right)=0$, i.e. $\nabla \frac{1}{Z} H \in \mu$. Thus $\nabla \frac{1}{Z} H \in J D \cap \mu=\{0\}$. This finishes the proof of Lemma 1.

Lemma 2. Let $\{X, J X, Z\}$ be an orthonormal frame field on M where $X \in D$ and $Z \in D^{\perp}$. Then we have the following equations

$$
\begin{aligned}
\nabla_{X} X & =a J X, & \nabla_{J X} X & =-b J X+\alpha Z, \\
\nabla_{X} J X & =-a X-\alpha Z, & \nabla_{J X} J X & =b X, \\
\nabla_{X} Z & =\alpha J X, & \nabla_{J X} Z & =-\alpha X,
\end{aligned}
$$

where a, b, c are smooth functions on M and $\alpha=\|H\|$.

Proof. We know from Lemma 1 that $H \in J D^{\perp}$. Since $\operatorname{dim} J D^{\perp}=1$, one can write $H=\alpha J Z$ for some smooth function α on M. Since M is totally umbilical we get

$$
\begin{gather*}
h(X, X)=h(J X, J X)=h(Z, Z)=\alpha J Z \tag{3.1}\\
A_{J Z} X=\alpha X, \quad A_{J Z} J X=\alpha J X, \quad A_{J Z} Z=\alpha Z \tag{3.2}\\
h(X, J X)=h(X, Z)=h(Z, J X)=0
\end{gather*}
$$

Using the equation (2.7) and (2.8) in the equation $\bar{\nabla}_{Z} J Z=J \bar{\nabla}_{Z} Z$ and taking inner product with $W \in D$, we get $g\left(\nabla_{Z}, W\right)=0$, i.e. $\nabla_{Z} Z \in D^{\perp}$. Since $g(Z, Z)=1$ we also have $\nabla_{Z} Z \in D$. Therefore we have

$$
\begin{equation*}
\nabla_{Z} Z=0 \tag{3.3}
\end{equation*}
$$

Using (3.3) we have

$$
\begin{equation*}
g\left(\nabla_{Z} X, Z\right)=0, \quad g\left(\nabla_{Z} J X, Z\right)=0 \tag{3.4}
\end{equation*}
$$

Also using the equation $\left(\bar{\nabla}_{X} J\right)(Z)=0$ and (3.2) we get

$$
\begin{equation*}
g\left(\nabla_{X} Z, X\right)=0, \quad g\left(\nabla_{X} Z, J X\right)=\alpha \tag{3.5}
\end{equation*}
$$

Now using the equation $\left(\bar{\nabla}_{J X} J\right)(Z)=0$ we have

$$
\begin{equation*}
g\left(\nabla_{J X} Z, X\right)=-\alpha, \quad g\left(\nabla_{J X} Z, J X\right)=0 \tag{3.6}
\end{equation*}
$$

Similarly the equations $\left(\bar{\nabla}_{X} J\right)(X)=0,\left(\bar{\nabla}_{J X} J\right)(X)=0$ with the help of (3.1) give

$$
\begin{equation*}
g\left(\nabla_{X} X, Z\right)=0, \quad g\left(\nabla_{J X} J X, Z\right)=0 \tag{3.7}
\end{equation*}
$$

The lemma follows from the equations, (3.3), (3.4), (3,5), (3.6) and (3.7).
Lemma 3. Let $\{X, J X, Z\}$ be the orthonormal frame field on M. Then we have the following expressions for the curvature tensor of M

$$
\begin{aligned}
R(X, Z, Z) & =\alpha^{2} X, \quad R(J X, Z, Z)=\alpha^{2} J X \\
R(J X, Z, X) & =(J X(c)+\alpha a-c a+Z(b)) J X \\
R(X, J X, Z) & =-X(\alpha) X-J X(\alpha) J X \\
R(Z, X, J X) & =(X(c)-Z(a)+\alpha b-c b) X \\
R(Z, X, X) & =-(X(c)+\alpha b-Z(a)-c b) J X+\alpha^{2} Z \\
R(Z, J X, J X) & =(J X(c)+Z(b)+\alpha a-c a) X+\alpha^{2} Z
\end{aligned}
$$

Proof. Using Lemma 2 and the definition of the curvature tensor R, $R(X, Y, Z)=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$, we get Lemma 3 .

Proof of Theorem 2. Using the expressions for the curvature tensor given by Lemma (3) in Bianchi first identity (2.10) we get

$$
[X(c)-Z(a)+\alpha b-c b-X(\alpha)] X+[J X(c)+\alpha a-c a+Z(b)-J X(\alpha)] J X=0
$$

from which it follows that

$$
\begin{align*}
X(c)-Z(a)+\alpha b-c b-X(\alpha) & =0 \tag{3.8}\\
J X(c)+\alpha a-c a+Z(b)-J X(\alpha) & =0 \tag{3.9}
\end{align*}
$$

Applying Bianchi's second identity (2.11) to Z we have

$$
\begin{equation*}
\left(\nabla_{X} R\right)(J X, Z) Z+\left(\nabla_{J X} R\right)(Z, X) Z+\left(\nabla_{Z} R\right)(X, J X) Z=0 \tag{3.10}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(\nabla_{X} R\right)(J X, Z) Z= & \nabla_{X} R(J X, Z) Z-R\left(\nabla_{X} J X, Z\right) Z \\
& -R\left(J X, \nabla_{X} Z\right) Z-R(J X, Z) \nabla_{X} Z
\end{aligned}
$$

Using Lemma 3 and Lemma 2 we obtain

$$
\begin{align*}
\left(\nabla_{X} R\right)(J X, Z) Z & =2 \alpha X(\alpha) J X+\alpha[J X(c)+Z(b)+\alpha a-c a] X \tag{3.11}\\
& =2 \alpha X(\alpha) J X+\alpha J X(\alpha) X
\end{align*}
$$

where we have used (3.9) to get the last equality. Similarly we get

$$
\begin{align*}
\left(\nabla_{J X} R\right)(Z, X) Z & =-2 \alpha J X(\alpha) X \tag{3.12}\\
\left(\nabla_{Z} R\right)(X, J X) Z & =(c J X(\alpha)-Z X(\alpha)) X-(c X(\alpha)+Z J X(\alpha)) J X \tag{3.13}
\end{align*}
$$

Now using (3.11), (3.12) and (3.13) in (3.10) we found that the X-components and the $J X$ components give respectively

$$
\begin{align*}
(c-\alpha) J X(\alpha)-Z X(\alpha) & =0 \tag{3.14}\\
(2 \alpha-c) X(\alpha)-Z J X(\alpha) & =0 \tag{3.15}
\end{align*}
$$

Using the equation $\bar{\nabla}_{V} J Z=J \bar{\nabla}_{V} Z$, where $V=X, J X$ or Z with the help of (3.2) and Lemma 2 we get $\nabla_{V}^{\perp} J Z=0$. Since $\nabla_{Z}^{\perp} H=0$, from Lemma 1, and $H=\alpha J Z$ we have

$$
\begin{equation*}
Z(\alpha)=0 \tag{3.16}
\end{equation*}
$$

Therefore, the equation $[Z, J X](\alpha)=\left[\nabla_{Z} J X-\nabla_{J X} Z\right](\alpha)$ implies that $Z J X(\alpha)=$ $\left(\nabla_{Z} J X-\nabla_{J X} Z\right)(\alpha)$. Using Lemma 2 in this equation we get

$$
\begin{equation*}
Z J X(\alpha)=(\alpha-c) X(\alpha) \tag{3.17}
\end{equation*}
$$

Using (3.17) in (3.15) we have

$$
\begin{equation*}
\alpha X(\alpha)=0 \tag{3.18}
\end{equation*}
$$

Now if we repeat the above arguments for the orthonormal frame field $\{W, J W, Z\}$, where $W=-J X$, we get the result in (3.18) for W with the same α as M is totally umbilical i.e. we get $\alpha W(\alpha)=0$, or

$$
\begin{equation*}
\alpha J X(\alpha)=0 \tag{3.19}
\end{equation*}
$$

Equations (3.16), (3.18) and (3.19) imply that α^{2} is constant. i.e. α is constant. Using this and $\nabla_{V}^{\perp} J Z=0$ for $V=X, J X$ or Z we get $\nabla_{V}^{\perp} H=0$ i.e. M is an extrinsic sphere.

Now we have the following theorem.

Theorem 3 [2]. Let M be a totally umbilical 4-dimensional proper $C R$ submanifold of a Kaehler manifold \bar{M}. Then M is totally geodesic.

Corollary. Let M be as in Theorem 2 or Theorem 3. If $\operatorname{dim} M=4$, then M is locally the Riemannian product of a holomorphic submanifold and a totally real submanifold of \bar{M}. If $\operatorname{dim} M=3$ then M is either (iii) or (iv) of Theorem 1 .

Proof. The first part of the corollary follows from Theorem 3 and a result of [3]. The second part follows from Theorem 2 and a result of [5].

Thus Theorem 1 is extended for $\operatorname{dim} M<5$.

REFERENCES

[1] A. Bejancu, CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc. 69 (1978), 135-142.
[2] A. Bejancu, Umbilical CR-submanifolds of a Kaehler manifold, Rend. Mat. (6) (13) $\mathbf{1 5}$ (1980), 431-446.
[3] D.E. Blair and B. Y. Chen, On CR-submanifold of Hermitian manifolds, Israel J. Math. 34 (1980), 353-363.
[4] Sharief Deshmukh and S.I. Husain, Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J. 9 (1986), 425-429.
[5] S. Yamajuchi, H. Nemoto and N. Kawabata, Extrinsic spheres in a Kaehler manifold, Michigan Math. J. 31 (1984), 15-19.

