PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 51 (65), 1992, 101–114

ON HYPERCYLINDERS IN CONFORMALLY SYMMETRIC MANIFOLDS

Ryszard Deszcz

Abstract. Hypercylinders in conformally symmetric manifolds are considered. The main result is the following theorem: Let (M, g) be a hypercylinder in a parabolic essentially conformally symmetric manifold (N, \tilde{g}) , dim $N \geq 5$ and let \tilde{U} be the subset od N consisting of all points of N at which the Ricci tensor \tilde{S} of (N, \tilde{g}) is not recurrent. If $\tilde{U} \cap M$ is a dense subset of M, then (M, g) is a conformally recurrent manifold.

1. Introduction. Totally umbilical submanifolds in locally symmetric, recurrent, conformally flat, conformally symmetric and conformally recurrent manifolds were investigated by many authors (e.g. [6], [10], [19], [21], [24]–[27], [29], [33]). An important part of these investigation treats problems concerneing totally umbilical hypersurfaces in these classes of manifolds (e.g. [7], [8], [20], [28], [30]). On the other hand, totally umbilical hypersurfaces, as well as hypercylinders, are special examples of quasi-umbilical hypersurfaces. Certain results on quasi-umbilical hypersurfaces in locally symmetric, recurrent and conformally flat manifolds are presented in [3], [34] and [22] respectively. Moreover, hypercylinders in locally symmetric and conformally flat manifolds were studied in [9] and [37] (see also [2]) respectively. We shall continue study in this direction considering hypercylinders in conformally symmetric manifolds.

Let (N, \tilde{g}) be an *n*-dimensional, $n \geq 4$, semi-Riemannian manifold with the metric tensor \tilde{g} and let $\tilde{\nabla}$ be the Levi-Civita connection of (N, \tilde{g}) . Let (N, \tilde{g}) be covered by a system of charts $\{\tilde{U}; x^r\}$. We denote by $\tilde{g}_{rs}, \left\{\begin{smallmatrix} \tilde{r} \\ s t \end{smallmatrix}\right\}, \tilde{\nabla}_s, \tilde{R}_{rstu}, \tilde{C}_{rstu}, \tilde{S}_{ts}$ and \tilde{K} the local components of the metric tensor \tilde{g} , the Christoffel symbols, the operator of covariant differentiation, the Riemann-Christoffel curvature tensor \tilde{R} , the Weyl conformal curvature tensor \tilde{C} , the Ricci tensor \tilde{S} and the scalar curvature \tilde{K} of (N, \tilde{g}) respectively, where $r, s, t, u, v, w \in \{1, 2, \ldots, n\}$.

AMS Subject Classification (1985): Primary 53 B 25, 53 B 20

We have

$$\widetilde{C}_{rstu} = \widetilde{R}_{rstu} + \frac{\widetilde{K}}{(n-1)(n-2)} (\widetilde{g}_{ru}\widetilde{g}_{st} - \widetilde{g}_{rt}\widetilde{g}_{su}) - \frac{1}{n-2} (\widetilde{g}_{ru}\widetilde{S}_{ts} + \widetilde{g}_{ts}\widetilde{S}_{ru} - \widetilde{g}_{rt}\widetilde{S}_{su} - \widetilde{g}_{su}\widetilde{S}_{rt}).$$
(1.1)

A (0, k)-tensor field T on N is said to be recurrent [36] if the condition

 $T(X_1,\ldots,X_k)\widetilde{\nabla}T(Y_1,\ldots,Y_k;Z)=T(Y_1,\ldots,Y_k)\widetilde{\nabla}T(X_1,\ldots,X_k;Z)$

holds on N, where $X_1, \ldots, X_k, Y_1, \ldots, Y_k, Z \in \mathfrak{X}(N), \mathfrak{X}(N)$ being the Lie algebra of vector fields on N. In particular, if $\widetilde{\nabla}T$ vanishes on N, then T is called parallel. A manifold $(N, \tilde{g}), n \geq 4$, is said to be locally symmetric [**31**] (resp. conformally symmetric [**4**]) if its tensor \widetilde{R} (resp. tensor \widetilde{C}) is parallel with respect to $\widetilde{\nabla}$. Further, a manifold $(N, \tilde{g}), n \geq 4$, is said to be recurrent [**38**] (resp. conformally recurrent [**1**] or Ricci recurrent [**32**]) if its tensor \widetilde{R} (resp. tensor \widetilde{C} or tensor \widetilde{S}) is recurrent. A conformally symmetric manifold (N, \tilde{g}) which is neither locally symmetric nor conformally flat is called essentially conformally symmetric or shortly e.c.s. manifold. Various examples of e.c.s. manifolds are given in [**35**], [**11**] and [**18**]. All e.c.s. metrics are indefinite ([**16**, Theorem 2]). Any e.c.s. manifold (N, \tilde{g}) satisfies the following equation ([**18**], [**17**])

$$F\widetilde{C}(X,Y,Z,W) = \widetilde{S}(X,W)\widetilde{S}(Y,Z) - \widetilde{S}(X,Z)\widetilde{S}(Y,W)$$

for some function F, where $X, Y, Z, W \in \mathfrak{X}(M)$. F is called the fundamental function of (N, \tilde{g}) . All e.c.s. manifolds can be divided into the following five nonempty and mutually disjoint classes (according to the behaviour of the Ricci tensor and the fundamental function F [12]):

Class I. Ricci recurrent ones (they all satisfy F = 0).

Class II. Parabolic e.c.s. manifold [15] (satisfying F = 0 identically but not Ricci recurrent).

Class III. Elliptic ones [14] ($F = \text{constant} \neq 0$, semidefinite everywhere).

Class IV. Hyperbolic ones [13] ($F = \text{constant} \neq 0$, semidefinite nowhere)

Class V. Those with F non-constant.

LEMMA 1 (Theorem 7, 8, 9 and formula (6) of [17] and Theorem 7 of [18]). Let (N, \tilde{g}) be an e.c.s. manifold and let $\{\tilde{U}; x^r\}$ be a chart on N. Then the following relations are satisfied on \tilde{U} :

$$\widetilde{\nabla}_v \widetilde{C}_{rstu} = 0, \tag{1.2}$$

$$F\widetilde{C}_{rstu} = \widetilde{S}_{ur}\widetilde{S}_{ts} - \widetilde{S}_{tr}\widetilde{S}_{us}, \qquad (1.3)$$

$$\widetilde{\nabla}_r \widetilde{S}_{ts} = \widetilde{\nabla}_t \widetilde{S}_{rs}, \tag{1.4}$$

$$\tilde{K} = 0, \tag{1.5}$$

On hypercylinders in conformally symmetric manifolds

$$\widetilde{S}^{v}{}_{r}\widetilde{C}_{vstu} = 0, \qquad \widetilde{S}^{v}{}_{r} = \widetilde{g}^{vt}\widetilde{S}_{tr}, \qquad (1.6)$$

$$\widetilde{\nabla}_{w}\widetilde{\nabla}_{v}\widetilde{R}_{rstu} - \widetilde{\nabla}_{v}\widetilde{\nabla}_{w}\widetilde{R}_{rstu} = 0, \qquad (1.7)$$

$$\widetilde{S}_{vw}\widetilde{C}_{rstu} + \widetilde{S}_{vr}\widetilde{C}_{swtu} + \widetilde{S}_{vs}\widetilde{C}_{wrtu} = 0.$$
(1.8)

2. Hypercylinders. Let M be a hypersurface in an n-dimensional, $n \ge 4$, semi-Riemannian manifold (N, \tilde{g}) and let the tensor g, induced by the metric tensor \tilde{g} , be the metric tensor of M. Moreover, let $x^r = x^r(y^a)$ be the local expression of M in N. Then we have $g_{ab} = \tilde{g}_{rs} B_{ab}^{rs}$, where

$$B_{a_1\dots a_k}^{r_1\dots r_k} = B_{a_1}^{r_1}\dots B_{a_k}^{r_k}, \qquad B_a^r = \partial_a x^r, \qquad \partial_a = \partial/(\partial y^a),$$

and g_{ab} are the local components of the tensor g. Further, we denote by $\begin{cases} a \\ b c \end{cases}$, R_{abcd} , S_{ad} , C_{abcd} and K the local components of the Christoffel symbols, the curvature tensor R, the Ricci tensor S, the Weyl conformal curvature tensor C and the scalar curvature K of (M,g) respectively. Here and below, $a, b, c, d, e, f, h, i, j \in \{1, 2, \ldots, n-1\}$. Let N^r be the local components of a local unit vector field normal to M. Then we have the following relations

$$\widetilde{g}_{rs}N^rN^s = \varepsilon, \quad \widetilde{g}_{rs}N^rB^s_a = 0, \quad g^{ab}B^{rs}_{ab} = \widetilde{g}^{rs} - \varepsilon N^rN^s, \quad \varepsilon = \pm 1.$$
(2.1)

The hypersurface (M, g) is said to be a cylindrical hypersurface or shortly a hypercylinder (cf. [5, pp. 147–148], [9]) in (N, \tilde{g}) if the second fundamental tensor H of (M, g) satisfies on M the condition $H = \beta u \otimes u$, where β is a function and u a 1-form on M, respectively. Let p be a point of the hypercylinder (M, g). Then the following equality

$$H_{ad} = \beta u_a u_d \tag{2.2}$$

holds on some neighbourhood $U \subset M$ of p, where H_{ad} and u_a are the local components of H and u on U, respectively. We denote by ∇ the operator of the van der Waerden-Bortolotti covariant derivative. Then, in virtue of (2.2), the Gauss and Weingarten formulas for (M, g) in (N, \tilde{g}) take on U the following form

$$\nabla_a B_d^r = \varepsilon H_{ad} N^r = \varepsilon \beta u_a u_d N^r, \qquad (2.3)$$

$$\nabla_a N^r = -H_{ac} g^{cd} B^r_d = -\beta u_a u^d B^r_d, \qquad u^d = g^{da} u_a, \tag{2.4}$$

respectively. Furthermore, by (2.2), the Gauss and Codazzi equations for (M, g) in (N, \tilde{g}) can be expressed on U as follows:

$$R_{abcd} = \widetilde{R}_{rstu} B_{abcd}^{rstu} + \varepsilon (H_{ad} H_{bc} - H_{ac} H_{bd}) = \widetilde{R}_{rstu} B_{abcd}^{rstu}, \tag{2.5}$$

$$V_{abcd} = N^r \widetilde{P}_{abcd} + \varepsilon (H_{ad} H_{bc} - H_{ac} H_{bd}) = \widetilde{R}_{rstu} B_{abcd}^{rstu}, \tag{2.5}$$

$$V_{bcd} = N^r \hat{R}_{rstu} B^{stu}_{bcd} = \nabla_d H_{bc} - \nabla_c H_{bd} = u_b (\beta_d u_c - \beta_c u_d) + \beta (u_c \nabla_d u_b - u_d \nabla_c u_b + u_b (\nabla_d u_c - \nabla_c u_d)), \quad \beta_c = \nabla_c \beta.$$
(2.6)

From this, by contraction with g^{bc} and making use of (2.1), we obtain

$$v_d = g^{bc} V_{bcd} = N^r \widetilde{S}_{rs} B^s_d$$

= $g^{bc} u_b u_c \beta_d - u^h \beta_h u_d + \beta (-u^h \nabla_h u_d - (\nabla_h u^h) u_d + 2u^h \nabla_d u_h).$ (2.7)

LEMMA 2. Let (M, g) be a hypercylinder in a semi-Riemannian manifold $(N, \tilde{g}), n \geq 4$. If p is a point of M such that the relations (2.2) and $\beta \neq 0$ are satisfied at every point of some neighbourhood $U \subset M$ of p then the equality

$$V_{bcd} = u_b u^h V_{hcd} + u_d (u^h V_{bch} + u_b v_c) - u_c (u^h V_{bdh} + u_b v_d)$$
(2.8)

holds on U.

Proof. From (2.5), by making use of (2.3) and (2.6), it follows that

$$\nabla_e R_{abcd} = B_{eabcd}^{vrstu} \widetilde{\nabla}_v \widetilde{R}_{rstu} + \varepsilon \beta u_e (u_a V_{bcd} - u_b V_{acd} + u_c V_{dab} - u_d V_{cab}).$$
(2.9)

This, by contraction with g^{bc} and an application of (2.1), (2.7) and the identity

$$\widetilde{g}^{vr}\widetilde{\nabla}_{v}\widetilde{R}_{rstu} = \widetilde{\nabla}_{u}\widetilde{S}_{ts} - \widetilde{\nabla}_{t}\widetilde{S}_{us}, \qquad (2.10)$$

yields

$$\nabla_e S_{ad} = B_{eda}^{vts} \widetilde{\nabla}_v \widetilde{S}_{ts} - \varepsilon N^s N^t B_{ead}^{vru} \widetilde{\nabla}_v \widetilde{R}_{rstu} + \varepsilon \beta u_e K_{ad}, \qquad (2.11)$$

where

$$K_{ad} = u_a v_d + u_d v_a + u^h V_{bch} + u^h V_{cbh}, (2.12)$$

$$k = g^{ad} K_{ad} = 4u^h v_h. (2.13)$$

On the other hand, contracting (2.9) with g^{ae} and using (2.10) and (2.2), we find

$$\nabla_d S_{bc} - \nabla_c S_{bd} = B^{uts}_{dcb} (\widetilde{\nabla}_u \widetilde{S}_{ts} - \widetilde{\nabla}_t \widetilde{S}_{us}) - \varepsilon N^v N^r B^{stu}_{bcd} \widetilde{\nabla}_v \widetilde{R}_{rstu} + \varepsilon \beta (V_{bcd} - u_b u^h V_{hcd} - u_c u^h V_{dbh} + u_d u^h V_{cbh}).$$
(2.14)

The following equality follows immediately from the second Bianchi identity

$$N^{v}N^{r}B^{stu}_{bcd}\widetilde{\nabla}_{v}\widetilde{R}_{rstu} = N^{v}N^{r}B^{uts}_{dcb}\widetilde{\nabla}_{u}\widetilde{R}_{tvrs} - N^{v}N^{r}B^{tus}_{cdb}\widetilde{\nabla}_{v}\widetilde{R}_{uvrs},$$

which, in virtue of (2.11) and (2.12), turns into

$$\begin{split} \varepsilon N^v N^r B_{bcd}^{stu} \widetilde{\nabla}_v \widetilde{R}_{rstu} &= B_{dcb}^{vru} (\widetilde{\nabla}_v \widetilde{S}_{ru} - \widetilde{\nabla}_r \widetilde{S}_{vu}) + \nabla_c S_{db} - \nabla_d S_{cb} \\ &+ \varepsilon \beta u_d (u^h V_{cbh} + u^h V_{bch} + u_b v_c) - u_c (u^h V_{dbh} + u^h V_{bdh} + u_b v_d). \end{split}$$

The last equation, together with (2.14), completes the proof.

LEMMA 3. Let (M, g) be a hypercylinder in a semi-Riemannian manifold $(N, \tilde{g}), n \geq 4$. If p is a point of M such that the relations (1.7) and (2.2) are fulfilled at every point of some neighbourhood $U \subset M$ of p then the equalities

$$v^h V_{hef} = 0,$$
 (2.15)

$$u^h v_h \omega_{abc} = 0 \tag{2.16}$$

hold on U, where

$$\omega_{acd} = \beta (u_a (\nabla_d u_c - \nabla_c u_d) + u_c (\nabla_a u_d - \nabla_d u_a) + u_d (\nabla_c u_a - \nabla_a u_c)).$$
(2.17)

Proof. Transvecting (1.7) with B^{rstuvw}_{abcdef} and using the Ricci identity, (2,1), (2.5) and (2.6), we find

$$\nabla_f \nabla_e R_{abcd} - \nabla_e \nabla_f R_{abcd} + \varepsilon (-V_{bcd} V_{aef} + V_{acd} V_{bef} - V_{dab} V_{cef} + V_{cab} V_{def}) = 0.$$
(2.18)

Next, contracting the above equation with g^{ad} and g^{bc} and applying (2.7) we get (2.15). Finally, (2.16) is an immediate consequence of (2.15) and the following identity

$$u_a V_{bcd} + u_c V_{bda} + u_d V_{bac} = u_b \omega_{acd} \,. \tag{2.19}$$

Our lemma is thus proved.

Remark. In the next sections we shall consider hypercylinders satisfying certain additional conditions. Let (M, g) be a hypercylinder in a manifold (N, \tilde{g}) and let p be a point of M such that the relation (2.2) is fulfilled at every point of some neighbourhood $U \subset M$ of p. We assume that at every point of U one of the following relations is satisfied:

$$g^{ad}u_a u_d = 1, (2.20)$$

$$g^{ad}u_a u_d = -1, (2.21)$$

$$g^{aa} u_a u_d = -1, (2.21)$$

$$g^{ad} u_a u_d = 0. (2.22)$$

Thus the scalar $g^{ad}u_au_d$ is a constant on U. This fact implies

$$u^h \nabla_a u_h = 0. \tag{2.23}$$

Transvecting now (2.6) with u^b , u^c and u^d respectively and applying (2.20)–(2.23) we easily get

$$u^{h}V_{hcd} = \eta(\beta_{d}u_{c} - \beta_{c}u_{d} + \beta(\nabla_{d}u_{c} - \nabla_{c}u_{d})), \qquad (2.24)$$

$$u^{h}u^{j}V_{hjd} = \eta^{2}\beta_{d} - \eta(u^{h}\nabla_{h}u_{d} + \beta u^{h}\nabla_{h}u_{d}), \qquad (2.25)$$

$$u^{h}V_{bch} = (u^{h}\beta_{h}u_{c} - \eta\beta_{c})u_{b} + (u_{c}u^{h}\nabla_{h}u_{b} - \eta\nabla_{c}u_{b} + u_{b}u^{h}\nabla_{h}u_{c}) \quad (2.26)$$

respectively, where $\eta \in \{-1, 0, 1\}$.

3. Hypercylinders in conformally symmetric manifolds.

LEMMA 4. Let (M, g) be a hypercylinder in a conformally symmetric manifold (N, \tilde{q}) , n > 4 and let p be a point of M such that the conditions (2.2) and $\beta \neq 0$ are satisfied at every point of some neighbourhood $U \subset M$ of p. Then we have:

(i) the equality

$$\nabla_e C_{abcd} = \varepsilon \beta u_e \left(\frac{k}{(n-2)(n-3)} (g_a dg_{bc} - g_{ac} g_{bd}) + \left(u_b u_c - \frac{g_{bc}}{n-3} \right) K_{ad} + \left(u_a u_d - \frac{g_{ad}}{n-3} \right) K_{bc}$$

$$-\left(u_a u_c - \frac{g_{ac}}{n-3}\right) K_{bd} - \left(u_b u_d - \frac{g_{bd}}{n-3}\right) K_{ac}\right)$$
(3.1)

holds on U.

(ii) If at every point of U (2.21) is fulfilled then $\nabla C = 0$ holds on U.

Proof. (i): Transvecting (1.2) with $\varepsilon N^s N^t B^{vru}_{ead}$ and using (1.1) and (2.1) we get

$$-\varepsilon N^s N^t B_{ead}^{vru} \widetilde{\nabla}_v \widetilde{R}_{rstu} = -\frac{B_{eda}^{vur} \widetilde{\nabla}_v \widetilde{S}_{ur} + \varepsilon (\widetilde{\nabla}_v \widetilde{S}_{ur}) N^r N^u B_e^v g_{ad}}{n-2} + \frac{B_e^v (\widetilde{\nabla}_v \widetilde{K}) g_{ad}}{(n-1)(n-2)}.$$

Substituting this in (2.11) we find

$$\frac{B_{eda}^{vur}(\widetilde{\nabla}_{v}\widetilde{S}_{ur})}{n-2} = \frac{\nabla_{e}S_{ad}}{n-3} - \frac{\varepsilon\beta u_{e}K_{ad}}{n-3} + \frac{\varepsilon N^{r}N^{u}B_{e}^{v}(\widetilde{\nabla}_{v}\widetilde{S}_{ur})g_{ad}}{(n-1)(n-2)} - \frac{B_{e}^{v}(\widetilde{\nabla}_{v}\widetilde{K})g_{ad}}{(n-1)(n-2)}.$$
(3.2)

Contracting (3.2) with g^{ad} and using (2.1) and (2.13) we obtain

$$\frac{2\varepsilon N^r N^u B_e^v \widetilde{\nabla}_v \widetilde{S}_{ur}}{n-3} = -\frac{\nabla_e K}{n-3} + \frac{\varepsilon \beta k u_e}{n-3} + \frac{2B_e^v \widetilde{\nabla}_v \widetilde{K}}{n-1}.$$

Now, by the above equation, (3.2) takes the form

$$\begin{aligned} \frac{B_{eda}^{vur}\widetilde{\nabla}_{v}\widetilde{S}_{ur}}{n-2} &= \frac{\nabla_{e}S_{ad}}{n-3} - \frac{\varepsilon\beta u_{e}K_{ad}}{n-3} \\ &+ \frac{B_{e}^{v}(\widetilde{\nabla}_{v}\widetilde{K})g_{ad}}{(n-1)(n-2)} + \frac{\varepsilon\beta ku_{e}g_{ad}}{2(n-2)(n-3)} - \frac{(\nabla_{e}K)g_{ad}}{2(n-1)(n-2)} \,. \end{aligned}$$

But this, together with (2.9), (1.1) and (1.2) gives

$$\nabla_{e}C_{abcd} = \varepsilon \beta u_{e} \left(u_{a}V_{bcd} - u_{b}V_{acd} + u_{c}V_{dab} - u_{d}V_{cab} - \frac{g_{ad}K_{bc} + g_{bc}K_{ad} - g_{ac}K_{bd} - g_{bd}K_{ac}}{n-3} + \frac{k(g_{ad}g_{bc} - g_{ac}g_{bd})}{(n-2)(n-3)} \right).$$
(3.3)

On the other hand, (2.8), (2.12) and (2.13) yield

$$u_{a}V_{bcd} - u_{b}V_{acd} + u_{c}V_{dab} - u_{d}V_{cab}$$

= $u_{a}u_{d}K_{bc} + u_{b}u_{c}K_{ad} - u_{a}u_{c}K_{bd} - u_{b}u_{d}K_{ac}$. (3.4)

Now (3.3) turns into (3.1), completing the proof of (i).

(ii): Identity (2.8), in virtue of (2.24), (2.26), (2.7) and (2.21), reduces to $V_{bcd} = 0$. Now (3.3) completes the proof.

From Lemma 4(i) the following proposition follows easily.

PROPOSITION 1. Let (M, g) be a hypercylinder in a conformally symmetric manifold $(N, \tilde{g}), n \geq 5$ and let p be a point of M such that the conditions (2.2), (2.20) and $\beta \neq 0$ are fulfilled at every point of some neighbourhood $U \subset M$ of p. Then the condition $\nabla C = 0$ is satisfied on U if and only if the relation

$$K_{ad} = \frac{k}{2(n-2)}((n-3)u_a u_d + g_{ad})$$

holds on U.

LEMMA 5. Let (M, g) be a hypercylinder in a conformally symmetric manifold $(N, \tilde{g}), n \geq 5$ and let p be a point of M such that the relation $H_{ad} = 0$ holds at p. Then the tensor ∇C vanishes at p.

Proof. We note that the equality

$$\begin{aligned} \nabla_{e}(\widetilde{C}_{rstu}B^{rstu}_{abcd}) &= B^{vrstu}_{eabcd}\widetilde{\nabla}_{v}\widetilde{C}_{rstu} + \widetilde{C}_{rstu}B^{stu}_{bcd}\nabla_{e}B^{r}_{a} - \widetilde{C}_{srtu}B^{rtu}_{acd}\nabla_{e}B^{r}_{b} \\ &+ \widetilde{C}_{turs}B^{urs}_{dab}\nabla_{e}B^{t}_{c} - \widetilde{C}_{utrs}B^{trs}_{cab}\nabla_{e}B^{u}_{d} \end{aligned}$$

holds on some neighbourhood U of p. This, by (1.1), (2.5), (1.2) and (2.3) reduces at p to

$$\nabla_{e} R_{abcd} + \frac{(\nabla_{e} K)(g_{ad}g_{bc} - g_{ac}g_{bd})}{(n-1)(n-2)}$$

$$- \frac{1}{n-2} \left(g_{bc} B^{vru}_{ead} \widetilde{\nabla}_{v} \widetilde{S}_{ru} + g_{ad} B^{vst}_{ebc} \widetilde{\nabla}_{v} \widetilde{S}_{st} - g_{bd} B^{vrt}_{eac} \widetilde{\nabla}_{v} \widetilde{S}_{rt} - g_{ac} B^{vsu}_{ebd} \widetilde{\nabla}_{v} \widetilde{S}_{su} \right).$$

$$(3.5)$$

Next, contracting (3.5) with g^{bc} we obtain

$$\frac{B_{ead}^{vru}\widetilde{\nabla}_{v}\widetilde{S}_{ru}}{n-2} = \frac{\nabla_{e}S_{ad}}{n-3} + \frac{(\nabla_{e}\widetilde{K})g_{ad}}{(n-1)(n-3)} - \frac{(\widetilde{\nabla}_{v}\widetilde{S}_{st})B_{ebc}^{vst}g^{bc}g_{ad}}{(n-2)(n-3)}$$

Substituting this into (3.5) we get our assertion.

LEMMA 6. Let (M, g) be a hypercylinder in a conformally symmetric manifold $(N, \tilde{g}), n \geq 5$ and let p be a point of M such that the relations (2.2) and $\beta \neq 0$ are satisfied at every point of some neighbourhood $U \subset M$ of p. If the equality (2.22) is fulfilled at p then the tensor ∇C vanishes at p.

Proof. Transvecting (2.6) with u^b and u^d and using (2.22) we get

$$u^{h}V_{bch} = u^{h}\beta_{h}u_{b}u_{c} + \beta(u_{c}u^{h}\nabla_{h}u_{b} + u_{b}u^{h}\nabla_{h}u_{c} - u_{b}u^{h}\nabla_{c}u_{h}),$$

$$u^{h}V_{hcd} = \beta(u_{c}u^{h}\nabla_{d}u_{h} - u_{d}u^{h}\nabla_{c}u_{h})$$

respectively. Moreover, from (2.7), by (2.22), we obtain

$$v_d = -u^h \beta_h u_d + \beta (2u^h \nabla_d u_h - (\nabla_h u^h) u_d - u^h \nabla_h u_d).$$

Now we can verify that the identity (2.8), by the above three relations, reduces to $V_{bcd} = 0$. Finally, (3.3) completes the proof.

4. Hypercylinders in non-Ricci-recurrent parabolic e.c.s. manifolds.

LEMMA 7 [15, Lemmas 1 and 4]. Let (N, \tilde{g}) , $n \geq 4$, be a parabolic e.c.s. manifold. If p is a point of N such that

$$(\widetilde{S}_{ur}\widetilde{\nabla}_v\widetilde{S}_{ts} - \widetilde{S}_{ts}\widetilde{\nabla}_v\widetilde{S}_{ur})(p) \neq 0,$$
(4.1)

then there exists a neighbourhood \widetilde{U} of p with two vector fields A and B which are unique (up to a sign of A) determined by the following two conditions

$$\widetilde{S}_{rs} = eA_rA_s, \qquad e = \pm 1, \tag{4.2}$$

$$\widetilde{\nabla}_{u}\widetilde{S}_{rs} = B_{u}\widetilde{S}_{rs} + B_{r}\widetilde{S}_{su} + B_{s}\widetilde{S}_{ur}, \qquad (4.3)$$

where A_r and B_r are the local components of A and B respectively. The vector fields A and B satisfy on \widetilde{U} the following relations:

$$\widetilde{g}^{rs}A_rA_s = 0, \qquad \widetilde{g}^{rs}A_rB_s = 0, \tag{4.4}$$

$$\widetilde{\nabla}_s A_r = (1/2)A_r B_s + A_s B_r, \tag{4.5}$$

$$\nabla_s B_r = B_r B_s + 3\lambda B_r A_s + \lambda A_r B_s + \sigma A_r A_s, \qquad (4.6)$$

where λ and σ are some functions on \widetilde{U} . Moreover, we have

$$\widetilde{C}_{rstu} = -\Phi(A_r B_s - A_s B_r)(A_t B_u - A_u B_t)$$
(4.7)

for a certain (uniquely determined) function Φ .

LEMMA 8. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold (N, \tilde{g}) , $n \geq 4$ and let p be a point of M such that the conditions: (2.2), (2.20), (4.1) and

$$N^r A_r \neq 0 \tag{4.8}$$

are fulfilled at every point of some neighbourhood $U \subset M$ of p. Then the equality

$$\omega_{abc} = 0 \tag{4.9}$$

holds on U.

Proof. The equality (2.16), in virtue of (2.7), (4.2) and (4.8), give

$$u^h A_h \omega_{abc} = 0, (4.10)$$

where

$$A_h = A_r B_h^r. aga{4.11}$$

Suppose that at a point q of U we have

$$\omega_{abc}(q) \neq 0. \tag{4.12}$$

Then, by (4.10), the equality

$$u^h A_h = 0 \tag{4.13}$$

holds on some open subset $U' \subset U$. From this we obtain

$$A_h \nabla_c u^h + u^h \nabla_c A_h = 0. ag{4.14}$$

Using (4.5) and (2.3), we can easily verify that the following equality is fulfilled on U

$$\nabla_c A_a = A_a B_c / 2 + A_c B_a + \varepsilon \beta N^r A_r u_a u_c, \qquad (4.15)$$

$$B_c = B_r B_c^r. aga{4.16}$$

Substituting (4.15) into (4.14) and applying (4.13) we get

$$A_h \nabla_c u^h + u^h B_h A_c + \varepsilon \beta N^r A_r u_c = 0.$$
(4.17)

The formula (2.17), because of (2.7), (4.2) and (4.8), yields

$$A^{h}V_{hef} = 0, (4.18)$$

where $A^{h} = g^{ah} A_{a}$. Thus (4.18), by (2.6) and (4.13), gives

$$A^h \left(u_v \nabla_d u_h - u_d \nabla_c u_h \right) = 0,$$

whence, by (4.17), it follows that

$$u^h B_h \left(u_c A_d - u_d A_c \right) = 0.$$

If $(u_c A_d - u_d A_c)(q) = 0$ then also $A_d(q) = 0$. The last equation, in virtue of the relation

$$g^{ad}A_aA_d + \varepsilon (N^r A_r)^2 = 0, \qquad (4.19)$$

which follows immediately from (4.4) and (2.1), gives $(N^r A_r)(q) = 0$. But this contradicts (4.8). If $(u^h B_h)(q) = 0$ then from (4.7), by transvection with $N^r B_{bcd}^{stu} u^b$ and the use of (1.1), (2.1), (4.2), (4.11), (4.16), (1.5) and (4.13), we obtain

$$(u^{h}V_{hcd} + (e/(n-2))N^{r}A_{r}(A_{c}u_{d} - A_{d}u_{c}))(q) = 0.$$
(4.20)

On the other hand, transvecting (2.19) with u^a we get

$$u_a u^h V_{hcd} + u_c u^h V_{hda} + u_d u^h V_{hac} = \omega_{acd}.$$

This, by (4.20), gives $\omega_{acd}(q) = 0$, a contradiction. Our lemma is thus proved.

LEMMA 9. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold (N, \tilde{g}) and let p be a point of M such that the conditions (2.2), (2.20), (4.1) and

$$N^r A_r = 0 \tag{4.21}$$

are fulfilled. Then the equality (4.9) holds at p.

Proof. First of all we note that at p the following relation

$$A_d \neq 0 \tag{4.22}$$

is satisfied. In fact, if we had $A_d = 0$ the, by (4.21), we get A(p) = 0 and $\tilde{S}(p) = 0$, which contradicts (4.1). Transvecting now (1.8) with $N^w B^{vrstu}_{eabcd}$ and making use of (4.2), (4.22), (4.21), (2.1) and (2.6), we find

$$A_a V_{bcd} = A_b V_{acd}. aga{4.23}$$

Multiplying (4.23) by u_f and summing the resulting equality cyclically in f, c, dand applying (2.19) we obtain $(A_a u_b - A_b u_a)\omega_{fcd} = 0$. Assume that $A_a u_b - A_b u_a$ vanishes at p. Then we have

$$A_a = u^h A_h u_a. aga{4.24}$$

So, (4.23) turns into $u^h A_h (u_a V_{bcd} - u_b V_{acd}) = 0$. Summing this cyclically in a, c, d and using again (2.19), we get $u^h A_h \omega_{acd} = 0$. From (4.24), in virtue of (4.22), it follows that $u^h A_h$ is non-zero at p. Thus the last equality completes the proof.

PROPOSITION 2. Let (M, g) be a hypercylinder in a parabolic e.c.s. manifold $(N, \tilde{g}), n \geq 5$, and let p be a point of M such that the conditions: (2.2), $\beta \neq 0$, (2.20) and (4.1) are fulfilled at every point of some neighbourhood $U \subset M$ of p. Then C is a recurrent tensor on U.

Proof. The identity (2.19), in view of Lemmas 8 and 9 reduces to

$$u_a V_{bcd} + u_c V_{bda} + u_d V_{bac} = 0. ag{4.25}$$

This, by transvection with u^a , yields

$$V_{bcd} = u_d u^h V_{bch} - u_c u^h V_{bdh}.$$
 (4.26)

On the other hand, transvecting (4.7) with $N^r B_{bcd}^{stu}$ and using (1.1), (2.6), (4.2), (2.1), (1.5) and (4.7), we find

$$V_{bcd} = \frac{eN^r A_r}{n-2} (A_d g_{bc} - A_c g_{bd}) + \phi D_b (A_c B_d - A_d B_c), \qquad (4.27)$$

where $D_b = N^r B_r A_b - N^r A_r B_b$. Substituting (4.27) into (4.26) and (4.25) respectively, we obtain

$$V_{bcd} = \Phi D_b (u_d C_c - u_c C_d) + ((eN^r A_r)/(n-2))(u^h A_h (u_d g_{bc} - u_c g_{bd}) - u_b (A_c u_d - A_d u_c)),$$
(4.28)
$$\Phi D_b (u_a (A_c B_d - A_d B_c) + u_c (A_d B_a - A_a B_d) + u_d (A_a B_c - A_c B_a)) \frac{eN^r A_r}{n-2} ((u_a A_d - u_d A_a) g_{bc} + (u_c A_a - u_a A_c) g_{bd} + (u_d A_c - u_c A_d) g_{ab}) = 0$$
(4.29)

resepcctively, where $C_c = u^h B_h A_c - u^h A_h B_c$. From (4.29), by transvection with $u^a u^b$, we get

$$\Phi u^{h} D_{h} (A_{c} B_{d} - A_{d} B_{c}) = u_{d} C_{c} - u_{c} C_{d}.$$
(4.30)

Further, asumming (4.28) cyclically in b, c, d, we obtain

$$D_b(u_dC_c - u_cC_d) + D_c(u_bC_d - u_dC_b) + D_d(u_cC_b - u_bC_c) = 0,$$

which, by multiplication with u_f and antisymmetrization in b, f, gives

$$(u_f D_b - u_b D_f)(u_d C_c - u_c C_d) = (C_b u_f - C_f u_b)(u_d D_c - u_c D_d).$$

But this implies

$$C_c(u_f D_b - u_b D_f) = (D_c - u^h D_h u_c)(u_f C_b - u_b C_f).$$
(4.31)

If $C_c(p) = 0$ then (4.28) turns into

$$V_{bcd} = \frac{eN^{r}A_{r}}{n-2} (u^{h}A_{h}(u_{d}g_{bc} - u_{c}g_{bd}) - u_{b}(A_{c}u_{d} - A_{d}u_{c}))$$

Using this we can rewrite (3.3) in the following form

$$\nabla_{e}C_{abcd} = \varepsilon \beta u_{e} \frac{k}{(n-2)(n-3)} \left(g_{ad}g_{bc} - g_{ac}g_{bd}\right) + \frac{2eN^{r}A_{r}u^{h}A_{h}}{n-2} \left(u_{a}u_{d}g_{bc} + u_{b}u_{c}g_{ad} - u_{a}u_{c}g_{bd} - u_{b}u_{d}g_{ac}\right) - \frac{1}{n-3} \left(g_{ad}K_{bc} + g_{bc}K_{ad} - g_{ac}K_{bd} - g_{bd}K_{ac}\right),$$
(4.32)

which reduces to $\nabla C = 0$. If $C_c(p) \neq 0$ then (4.31) and (4.30) yield

$$u_f D_b - u_b D_f = \tau (A_b B_f - A_f B_b), \qquad \tau \in \mathbf{R}.$$
(4.33)

Moreover, using (4.28) and (4.33) we obtain

$$\begin{aligned} u_a V_{bcd} - u_b V_{acd} + u_c V_{dab} - u_d V_{cab} &= ((eN^r A_r)/(n-2))((u_a A_d + u_d A_a)g_{bc} \\ &+ (u_c A_b + u_b A_c)g_{ad} - (u_a A_c + u_c A_a)g_{bd} - (u_b A_d + u_d A_b)g_{ac}) \\ &- 2\Phi\tau(A_a B_b - A_b B_a)(A_c B_d - A_d B_c). \end{aligned}$$

This, by an application of $\widetilde{C}_{rstu}B^{rstu}_{abcd} = -\Phi(A_aB_b - A_bB_a)(A_cB_d - A_dB_c)$, (1.1), (2.5), (1.5) and (4.2), turns into

$$u_{a}V_{bcd} - u_{b}V_{acd} + u_{c}V_{dab} - u_{d}V_{cab} = 2\tau R_{abcd}$$

$$+ \frac{eN^{r}A_{r}}{n-2}((u_{a}A_{d} + u_{d}A_{a})g_{bc} + (u_{c}A_{b} + u_{b}A_{c})g_{ad}$$

$$- (u_{a}A_{c} + u_{c}A_{a})g_{bd} - (u_{b}A_{d} + u_{d}A_{b})g_{ac})$$

$$+ \frac{2e\tau}{n-2}(A_{b}A_{c}g_{ad} + A_{a}A_{d}g_{bc} - A_{a}A_{c}g_{bd} - A_{b}A_{d}g_{ac}).$$
(4.34)

We have now two possibilities: (a) $\tau(p) = 0$ and (b) $\tau(p) \neq 0$. (a) In this case (3.3), by (4.34), becomes

$$\nabla_{e}C_{abcd} = \varepsilon \beta u_{e} \left(g_{ad}L_{bc} + g_{bc}L_{ad} - g_{ac}L_{bd} - g_{bd}L_{ac} + \left(k(g_{ad}g_{bc} - g_{ac}g_{bd}) \right) / \left((n-2)(n-3) \right) \right),$$
(4.35)

where $L_{bc} = (eN^r A_r)(u_b A_c + u_c A_b)/(n-2) - K_{bc}/(n-3)$. From (4.35) it follows that $\nabla C = 0$ at p. (b) Using (4.34), we can present (3.3) in the form

$$\begin{split} \nabla_{e}C_{abcd} &= \varepsilon\beta u_{e} \left(\frac{k}{(n-2)(n-3)}(g_{ad}g_{bc} - g_{ac}g_{bd}) + 2\tau R_{abcd} \right. \\ &+ \frac{eN^{r}A_{r}}{n-2}(g_{ad}(u_{c}A_{b} + u_{b}A_{c}) + g_{bc}(u_{a}A_{d} + u_{d}A_{a}) - g_{ac}(u_{b}A_{d} + u_{d}A_{b}) \\ &- g_{bd}(u_{a}A_{c} + u_{c}A_{a}) - \frac{1}{n-3}(g_{ad}K_{bc} + g_{bc}K_{ad} - g_{ac}K_{bd} - g_{bd}K_{ac}) \\ &+ \frac{2e\tau}{n-2}(g_{ad}A_{b}A_{c} + g_{bc}A_{a}A_{d} - g_{ac}A_{b}A_{d} - g_{bd}A_{a}A_{c}) \bigg), \end{split}$$

which can be rewritten in the following form

$$\nabla_e C_{abcd} = \varepsilon \beta u_e \left(\frac{k - 2\tau K}{(n-2)(n-3)} (g_{ad}g_{bc} - g_{ac}g_{bd}) + 2\tau C_{abcd} + g_{ad}L_{bc} + g_{bc}L_{ad} - g_{ac}L_{bd} - g_{bd}L_{ac} \right)$$
(4.36)

where

$$L_{bc} = \frac{2\tau}{n-3}S_{bc} - \frac{1}{n-3}K_{bc} + \frac{eN^rA_r}{n-2}(u_cA_b + u_bA_c) + \frac{2e\tau}{n-2}A_bA_c$$

But from (4.36) we obtain $\nabla_e C_{abcd} = 2\tau \beta u_e C_{abcd}$, which states that C is recurrent. The last remark completes the proof.

Finally, combining Lemmas 5,6,4(ii) with Proposition 2 we immediately get the following theorem.

THEOREM 1. Let (M, g) be a hypercylinder in a parabolic essentially conformally symmetric manifold $(N, \tilde{g}), n \geq 5$ and let \tilde{U} be the subset of N consisting of all points of N at which the Ricci tensor \tilde{S} of (N, \tilde{g}) is not recurrent. If $\tilde{U} \cap M$ is a dense subset of M then (M, g) is a conformally recurrent manifold.

REFERENCES

- T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor, N.S. 18 (1967), 348-354.
- M. Barros and L. Verstraelen, A characterization of totally cylindrical submanifolds, Rev. Math. Hisp.-Amer. (4) 38 (1978), 181–186.
- [3] F. Bouten and L. Verstraelen, Recurrent hypersurfaces of symmetric spaces, J. Korean Math. Soc. 18 (1981), 7–13.
- [4] M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
- [5] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [6] B. Y. Chen, Totally umbilical submanifolds, Soochow J. Math. 5 (1979) 9-37.
- B. Y. Chen, Classification of totally umbilical submanifolds in symmetric spaces, J. Austr. Math. Soc. 30 (1980), 129–136.

- [8] B. Y. Chen, Classification of locally symmetric spaces which admit a totally umbilical hypersurfaces, Soochow J. Math. 6 (1980), 39-48.
- [9] B. Y. Chen and L. Verstraelen, Hypersurfaces of symmetric spaces, Bull. Inst. Math. Acad. Sinica, Memorial Issue dedicated to H.C. Wang 8 (1980), 201-236.
- [10] B. Y. Chen and K. Yano, Sous-variété localement conformés à un espace euclidien, C.R. Acad. Sci. Paris 275 (1972), 123–126.
- [11] A. Derdziński, On the existence of essentially conformally symmetric non-Ricci-recurrent manifolds, Bull. Acad. Polon. Sci., Ser. Sci. Math., Astr. Phys. 25 (1977), 533-541.
- [12] A. Derdziński, Conformally Symmetric Manifolds, Inst. Math. Polish Acad. Sci., Czechoslovakian-GDR-Polish Sci. School on Differential Geometry, Boszkowo, Poland, 1978, Part 1, pp. 56-65.
- [13] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, I. The elliptic case, Colloquium Math. 42 (1979), 59-81.
- [14] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, II. The hyperbolic case, Colloquium Math. 44 (1981), 77–95.
- [15] A. Derdziński, The local structure of essentially conformally symmetric manifolds with constant fundamental function, III. The parabolic case, Colloquium Math. 44 (1981), 249– 262.
- [16] A. Derdziński and W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1, Tensor, N.S. 31 (1977), 255-259.
- [17] A. Derdziński and W. Roter, Some theorems on conformally symmetric manifolds, Tensor, N.S. 32 (1978), 11-23.
- [18] A. Derdziński and W. Roter, Some properties of conformally symmetric manifolds which are not Ricci-recurrent, Tensor, N.S. 34 (1980), 11-20.
- [19] R. Deszcz, On totally umbilical submanifolds of manifolds admitting certain special tensors, Tensor, N.S. 36 (1982), 121–131.
- [20] R. Deszcz and S. Ewert-Krzemieniewski, Notes on manifolds admiting totally umbilical hypersurfaces, Demonstratio Math. 20 (1987), 457-470.
- [21] R. Deszcz, S. Ewert-Krzemieniewski and J. Policht, On totally umbilical submanifolds of conformally birecurrent manifolds, Colloquium Math. 55 (1988), 79-96.
- [22] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci. Publ., Singapore, 131-147.
- [23] L. P. Eisenhart, *Riemannian Geometry*, Princeton, 1966.
- [24] A. Gębarowski, On totally umbilical submanifolds in a conformally flat Riemannian manifold, Demonstratio Math. 6 (1973), 641-646.
- [25] W. Grycak, On totally umbilical surfaces in some Riemannian spaces, Demonstratio Math. 11 (1978), 385-394.
- [26] T. Miyazawa and G. Chūman, On certain subspaces of Riemannian recurrent space, Tensor, N.S. 23 (1972), 253–260.
- [27] Z. Olszak, On totally umbilical surfaces immersed in Riemannian conformally recurrent and conformally symmetric spaces, Demonstratio Math. 8 (1975), 303–311.
- [28] Z. Olszak, On totally umbilical submanifolds of Cartan-symmetric manifolds, Demonstratio Math. 9 (1976), 95-103.
- [29] Z. Olszak, On totally umbilical surfaces in some Riemannian spaces, Colloquium Math. 37 (1977), 105–111.
- [30] Z. Olszak, Remarks on manifolds admitting totally umbilical hypersurfaces, Demonstratio Math. 11 (1978), 695-702.
- [31] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity Academic Press, New York - London, 1983.
- [32] E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287–295.

- [33] M. Prvanović, Some theorems on the subspaces with indetermined lines of curvatures of recurrent Riemannian spaces, Mat. Vesnik 1 (16) (1964), 81–87.
- [34] M. Prvanović, On some hypersurfaces of a recurrent Riemannian space, Publ. Inst. Math. Beograd, 47 (61) (1990), 103-112.
- [35] W. Roter, On conformally symmetric Ricci-recurrent spaces, Colloquium Math. 31 (1974), 87–96.
- [36] W. Roter, On conformally recurrent Ricci-recurrent manifolds, Collquium Math. 46 (1982), 45–57.
- [37] D. Van Lindt and L. Verstraelen, Some axioms of Einsteinian and conformally flat hypersurfaces, J. Diff. Geometry 16 (1981), 205-212.
- [38] A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. 50 (1950), 36-64.

Department of Mathematics Agricultural University of Wrocław ul. C. Norwida 25 50-375 Wrocław, Poland (Received 28 05 1991)