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ON HYPERCYLINDERS IN CONFORMALLY

SYMMETRIC MANIFOLDS

Ryszard Deszcz

Abstract. Hypercylinders in conformally symmetric manifolds are considered. The main
result is the following theorem: Let (M; g) be a hypercylinder in a parabolic essentially conformally

symmetric manifold (N; eg), dimN � 5 and let eU be the subset od N consisting of all points of

N at which the Ricci tensor eS of (N; eg) is not recurrent. If eU \M is a dense subset of M , then
(M; g) is a conformally recurrent manifold.

1. Introduction. Totally umbilical submanifolds in locally symmetric,
recurrent, conformally at, conformally symmetric and conformally recurrent man-
ifolds were investigated by many authors (e.g. [6], [10], [19], [21], [24]{[27], [29],
[33]). An important part of these investigation treats problems concerneing totally
umbilical hypersurfaces in these classes of manifolds (e.g. [7], [8], [20], [28], [30]).
On the other hand, totally umbilical hypersurfaces, as well as hypercylinders,
are special examples of quasi-umbilical hypersurfaces. Certain results on quasi-
umbilical hypersurfaces in locally symmetric, recurrent and conformally at man-
ifolds are presented in [3], [34] and [22] respectively. Moreover, hypercylinders
in locally symmetric and conformally at manifolds were studied in [9] and [37]
(see also [2]) respectively. We shall continue study in this direction considering
hypercylinders in conformally symmetric manifolds.

Let (N; eg) be an n-dimensional, n � 4, semi-Riemannian manifold with the

metric tensor eg and let er be the Levi-Civita connection of (N; eg). Let (N; eg) be
covered by a system of charts feU ;xrg. We denote by egrs,

�
~r

s t

�
, ers, eRrstu, eCrstu,

eSts and eK the local components of the metric tensor eg, the Christo�el symbols, the
operator of covariant di�erentiation, the Riemann-Christo�el curvature tensor eR,
the Weyl conformal curvature tensor eC, the Ricci tensor eS and the scalar curvatureeK of (N; eg) respectively, where r; s; t; u; v; w 2 f1; 2; . . . ; ng.
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We have

eCrstu = eRrstu +
eK

(n� 1)(n� 2)
(egruegst � egrtegsu)

�
1

n� 2
(egru eSts + egts eSru � egrt eSsu � egsu eSrt): (1.1)

A (0; k)-tensor �eld T on N is said to be recurrent [36] if the condition

T (X1; . . . ; Xk)erT (Y1; . . . ; Yk;Z) = T (Y1; . . . ; Yk)erT (X1; . . . ; Xk;Z)

holds on N , where X1; . . . ; Xk; Y1; . . . ; Yk; Z 2 X(N), X(N) being the Lie algebra

of vector �elds on N . In particular, if erT vanishes on N , then T is called
parallel. A manifold (N; eg), n � 4, is said to be locally symmetric [31] (resp.

conformally symmetric [4]) if its tensor eR (resp. tensor eC) is parallel with respect

to er. Further, a manifold (N; eg), n � 4, is said to be recurrent [38] (resp.

conformally recurrent [1] or Ricci recurrent [32]) if its tensor eR (resp. tensor eC or

tensor eS) is recurrent. A conformally symmetric manifold (N; eg) which is neither
locally symmetric nor conformally at is called essentially conformally symmetric
or shortly e.c.s. manifold. Various examples of e.c.s. manifolds are given in [35],
[11] and [18]. All e.c.s. metrics are inde�nite ([16, Theorem 2]). Any e.c.s. manifold
(N; eg) satis�es the following equation ([18], [17])

F eC(X;Y; Z;W ) = eS(X;W )eS(Y; Z)� eS(X;Z)eS(Y;W )

for some function F , where X;Y; Z;W 2 X(M). F is called the fundamental
function of (N; eg). All e.c.s. manifolds can be divided into the following �ve non-
empty and mutually disjoint classes (according to the behaviour of the Ricci tensor
and the fundamental function F [12]):

Class I . Ricci recurrent ones (they all satisfy F = 0).

Class II . Parabolic e.c.s. manifold [15] (satisfying F = 0 identically but not Ricci
reccurent).

Class III . Elliptic ones [14] (F = constant 6= 0, semide�nite everywhere).

Class IV . Hyperbolic ones [13] (F = constant 6= 0, semide�nite nowhere)

Class V . Those with F non-constant.

Lemma 1 (Theorem 7, 8, 9 and formula (6) of [17] and Theorem 7 of [18]).

Let (N; eg) be an e.c.s. manifold and let feU ;xrg be a chart on N . Then the following

relations are satis�ed on eU :
erv

eCrstu = 0; (1.2)

F eCrstu = eSur eSts � eStr eSus; (1.3)err
eSts = ert

eSrs; (1.4)eK = 0; (1.5)
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eSv
r
eCvstu = 0; eSv

r = egvt eStr; (1.6)erw
erv

eRrstu � erv
erw

eRrstu = 0; (1.7)eSvw eCrstu + eSvr eCswtu + eSvs eCwrtu = 0: (1.8)

2. Hypercylinders. Let M be a hypersurface in an n-dimensional, n � 4,
semi-Riemannian manifold (N; eg) and let the tensor g, induced by the metric tensoreg, be the metric tensor of M . Moreover, let xr = xr(ya) be the local expression of
M in N . Then we have gab = egrsBrs

ab , where

Br1...rk
a1...ak = Br1

a1
. . . Brk

ak
; Br

a = @ax
r; @a = @=(@ya);

and gab are the local components of the tensor g. Further, we denote by

�
a

b c

�
,

Rabcd, Sad, Cabcd and K the local components of the Christo�el symbols, the
curvature tensor R, the Ricci tensor S, the Weyl conformal curvature tensor C and
the scalar curvatureK of (M; g) respectively. Here and below, a; b; c; d; e; f; h; i; j 2
f1; 2; . . . ; n�1g. Let Nr be the local components of a local unit vector �eld normal
to M . Then we have the following relations

egrsNrNs = "; egrsNrBs
a = 0; gabBrs

ab = egrs � "NrNs; " = �1: (2.1)

The hypersurface (M; g) is said to be a cylindrical hypersurface or shortly a
hypercylinder (cf. [5, pp. 147{148], [9]) in (N; eg) if the second fundamental tensor
H of (M; g) satis�es on M the condition H = �u
 u, where � is a function and u
a 1-form on M , respectively. Let p be a point of the hypercylinder (M; g). Then
the following equality

Had = �uaud (2.2)

holds on some neighbourhood U � M of p, where Had and ua are the local
components of H and u on U , respectively. We denote by r the operator of
the van der Waerden-Bortolotti covariant derivative. Then, in virtue of (2.2), the
Gauss and Weingarten formulas for (M; g) in (N; eg) take on U the following form

raB
r
d = "HadN

r = "�uaudN
r; (2.3)

raN
r = �Hacg

cdBr
d = ��uau

dBr
d; ud = gdaua; (2.4)

respectively. Furthermore, by (2.2), the Gauss and Codazzi equations for (M; g) in
(N; eg) can be expressed on U as follows:

Rabcd = eRrstuB
rstu
abcd + "(HadHbc �HacHbd) = eRrstuB

rstu
abcd ; (2.5)

Vbcd = Nr eRrstuB
stu
bcd = rdHbc �rcHbd = ub(�duc � �cud)

+ �(ucrdub � udrcub + ub(rduc �rcud)); �c = rc�: (2.6)

From this, by contraction with gbc and making use of (2.1), we obtain

vd = gbcVbcd = Nr eSrsBs
d

= gbcubuc�d � uh�hud + �(�uhrhud � (rhu
h)ud + 2uhrduh): (2.7)
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Lemma 2. Let (M; g) be a hypercylinder in a semi-Riemannian manifold

(N; eg), n � 4. If p is a point of M such that the relations (2.2) and � 6= 0 are

satis�ed at every point of some neighbourhood U �M of p then the equality

Vbcd = ubu
hVhcd + ud(u

hVbch + ubvc)� uc(u
hVbdh + ubvd) (2.8)

holds on U .

Proof . From (2.5), by making use of (2.3) and (2.6), it follows that

reRabcd = Bvrstu
eabcd

erv
eRrstu + "�ue(uaVbcd � ubVacd + ucVdab � udVcab): (2.9)

This, by contraction with gbc and an application of (2.1), (2.7) and the identity

egvr erv
eRrstu = eru

eSts � ert
eSus; (2.10)

yields

reSad = Bvts
eda

erv
eSts � "NsN tBvru

ead
erv

eRrstu + "�ueKad; (2.11)

where

Kad = uavd + udva + uhVbch + uhVcbh; (2.12)

k = gadKad = 4uhvh: (2.13)

On the other hand, contracting (2.9) with gae and using (2.10) and (2.2), we �nd

rdSbc �rcSbd = Buts
dcb (eru

eSts � ert
eSus)� "NvNrBstu

bcd
erv

eRrstu

+ "�(Vbcd � ubu
hVhcd � ucu

hVdbh + udu
hVcbh): (2.14)

The following equality follows immediately from the second Bianchi identity

NvNrBstu
bcd

erv
eRrstu = NvNrButs

dcb
eru

eRtvrs �NvNrBtus
cdb

erv
eRuvrs;

which, in virtue of (2.11) and (2.12), turns into

"NvNrBstu
bcd

erv
eRrstu = Bvru

dcb (
erv

eSru � err
eSvu) +rcSdb �rdScb

+ "�ud(u
hVcbh + uhVbch + ubvc)� uc(u

hVdbh + uhVbdh + ubvd):

The last equation, together with (2.14), completes the proof.

Lemma 3. Let (M; g) be a hypercylinder in a semi-Riemannian manifold

(N; eg), n � 4. If p is a point of M such that the relations (1.7) and (2.2) are

ful�lled at every point of some neighbourhood U �M of p then the equalities

vhVhef = 0; (2.15)

uhvh!abc = 0 (2.16)

hold on U , where

!acd = �(ua(rduc �rcud) + uc(raud �rdua) + ud(rcua �rauc)): (2.17)
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Proof . Transvecting (1.7) with Brstuvw
abcdef and using the Ricci identity, (2,1),

(2.5) and (2.6), we �nd

rfreRabcd �rerfRabcd

+ "(�VbcdVaef + VacdVbef � VdabVcef + VcabVdef ) = 0 : (2.18)

Next, contracting the above equation with gad and gbc and applying (2.7) we get
(2.15). Finally, (2.16) is an immediate consequence of (2.15) and the following
identity

uaVbcd + ucVbda + udVbac = ub!acd : (2.19)

Our lemma is thus proved.

Remark . In the next sections we shall consider hypercylinders satisfying
certain additional conditions. Let (M; g) be a hypercylinder in a manifold (N; eg)
and let p be a point of M such that the relation (2.2) is ful�lled at every point of
some neighbourhood U � M of p. We assume that at every point of U one of the
following relations is satis�ed:

gaduaud = 1; (2.20)

gaduaud = �1; (2.21)

gaduaud = 0: (2.22)

Thus the scalar gaduaud is a constant on U . This fact implies

uhrauh = 0: (2.23)

Transvecting now (2.6) with ub, uc and ud respectively and applying (2.20){(2.23)
we easily get

uhVhcd = �(�duc � �cud + �(rduc �rcud)); (2.24)

uhujVhjd = �2�d � �(uhrhud + �uhrhud); (2.25)

uhVbch = (uh�huc � ��c)ub + (ucu
hrhub � �rcub + ubu

hrhuc) (2.26)

respectively, where � 2 f�1; 0; 1g.

3. Hypercylinders in conformally symmetric manifolds.

Lemma 4. Let (M; g) be a hypercylinder in a conformally symmetric manifold

(N; eg), n � 4 and let p be a point of M such that the conditions (2.2) and � 6= 0
are satis�ed at every point of some neighbourhood U �M of p. Then we have:

(i) the equality

reCabcd = "�ue

�
k

(n� 2)(n� 3)
(gadgbc � gacgbd)

+
�
ubuc �

gbc
n� 3

�
Kad +

�
uaud �

gad
n� 3

�
Kbc
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�
�
uauc �

gac
n� 3

�
Kbd �

�
ubud �

gbd
n� 3

�
Kac

�
(3.1)

holds on U .

(ii) If at every point of U (2.21) is ful�lled then rC = 0 holds on U .

Proof . (i): Transvecting (1.2) with "NsN tBvru
ead and using (1.1) and (2.1) we

get

�"NsN tBvru
ead

erv
eRrstu = �

Bvur
eda

erv
eSur + "(erv

eSur)NrNuBv
e gad

n� 2
+

Bv
e (
erv

eK)gad
(n� 1)(n� 2)

:

Substituting this in (2.11) we �nd

Bvur
eda (

erv
eSur)

n� 2
=
reSad
n� 3

�
"�ueKad

n� 3

+
"NrNuBv

e (
erv

eSur)gad
(n� 1)(n� 2)

�
Bv
e (
erv

eK)gad
(n� 1)(n� 2)

: (3.2)

Contracting (3.2) with gad and using (2.1) and (2.13) we obtain

2"NrNuBv
e
erv

eSur
n� 3

= �
reK

n� 3
+
"�kue
n� 3

+
2Bv

e
erv

eK
n� 1

:

Now, by the above equation, (3.2) takes the form

Bvur
eda

erv
eSur

n� 2
=
reSad
n� 3

�
"�ueKad

n� 3

+
Bv
e (
erv

eK)gad
(n� 1)(n� 2)

+
"�kuegad

2(n� 2)(n� 3)
�

(reK)gad
2(n� 1)(n� 2)

:

But this, together with (2.9), (1.1) and (1.2) gives

reCabcd = "�ue

�
uaVbcd � ubVacd + ucVdab � udVcab

�
gadKbc + gbcKad � gacKbd � gbdKac

n� 3
+
k(gadgbc � gacgbd)

(n� 2)(n� 3)

�
: (3.3)

On the other hand, (2.8), (2.12) and (2.13) yield

uaVbcd � ubVacd + ucVdab � udVcab

= uaudKbc + ubucKad � uaucKbd � ubudKac : (3.4)

Now (3.3) turns into (3.1), completing the proof of (i).

(ii): Identity (2.8), in virtue of (2.24), (2.26), (2.7) and (2.21), reduces to
Vbcd = 0. Now (3.3) completes the proof.

From Lemma 4(i) the following proposition follows easily.
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Proposition 1. Let (M; g) be a hypercylinder in a conformally symmetric

manifold (N; eg), n � 5 and let p be a point of M such that the conditions (2.2),
(2.20) and � 6= 0 are ful�lled at every point of some neighbourhood U � M of p.
Then the condition rC = 0 is satis�ed on U if and only if the relation

Kad =
k

2(n� 2)
((n� 3)uaud + gad)

holds on U .

Lemma 5. Let (M; g) be a hypercylinder in a conformally symmetric manifold

(N; eg), n � 5 and let p be a point of M such that the relation Had = 0 holds at p.
Then the tensor rC vanishes at p.

Proof . We note that the equality

re( eCrstuB
rstu
abcd) = Bvrstu

eabcd
erv

eCrstu + eCrstuB
stu
bcdreB

r
a � eCsrtuB

rtu
acdreB

r
b

+ eCtursB
urs
dabreB

t
c �

eCutrsB
trs
cabreB

u
d

holds on some neighbourhood U of p. This, by (1.1), (2.5), (1.2) and (2.3) reduces
at p to

reRabcd +
(re

eK)(gadgbc � gacgbd)

(n� 1)(n� 2)
(3.5)

�
1

n� 2

�
gbcB

vru
ead

erv
eSru + gadB

vst
ebc

erv
eSst � gbdB

vrt
eac

erv
eSrt � gacB

vsu
ebd

erv
eSsu� :

Next, contracting (3.5) with gbc we obtain

Bvru
ead

erv
eSru

n� 2
=
reSad
n� 3

+
(re

eK)gad
(n� 1)(n� 3)

�
(erv

eSst)Bvst
ebcg

bcgad
(n� 2)(n� 3)

:

Substituting this into (3.5) we get our assertion.

Lemma 6. Let (M; g) be a hypercylinder in a conformally symmetric manifold

(N; eg), n � 5 and let p be a point of M such that the relations (2.2) and � 6= 0 are

satis�ed at every point of some neighbourhood U � M of p. If the equality (2.22)
is ful�lled at p then the tensor rC vanishes at p.

Proof . Transvecting (2.6) with ub and ud and using (2.22) we get

uhVbch = uh�hubuc + �(ucu
hrhub + ubu

hrhuc � ubu
hrcuh) ;

uhVhcd = �(ucu
hrduh � udu

hrcuh)

respectively. Moreover, from (2.7), by (2.22), we obtain

vd = �uh�hud + �(2uhrduh � (rhu
h)ud � uhrhud):

Now we can verify that the identity (2.8), by the above three relations, reduces to
Vbcd = 0. Finally, (3.3) completes the proof.
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4. Hypercylinders in non-Ricci-recurrent parabolic e.c.s. manifold-

s.

Lemma 7 [15, Lemmas 1 and 4]. Let (N; eg), n � 4, be a parabolic e.c.s.

manifold. If p is a point of N such that

(eSur erv
eSts � eSts erv

eSur)(p) 6= 0; (4.1)

then there exists a neighbourhood eU of p with two vector �elds A and B which are

unique (up to a sign of A ) determined by the following two conditions

eSrs = eArAs; e = �1; (4.2)eru
eSrs = Bu

eSrs +Br
eSsu +Bs

eSur; (4.3)

where Ar and Br are the local components of A and B respectively. The vector

�elds A and B satisfy on eU the following relations :

egrsArAs = 0; ~grsArBs = 0; (4.4)ersAr = (1=2)ArBs +AsBr; (4.5)ersBr = BrBs + 3�BrAs + �ArBs + �ArAs; (4.6)

where � and � are some functions on eU . Moreover, we have

eCrstu = ��(ArBs �AsBr)(AtBu �AuBt) (4.7)

for a certain (uniquely determined ) function �.

Lemma 8. Let (M; g) be a hypercylinder in a parabolic e.c.s. manifold (N; eg),
n � 4 and let p be a point of M such that the conditions : (2.2), (2.20), (4.1) and

NrAr 6= 0 (4.8)

are ful�lled at every point of some neighbourhood U �M of p. Then the equality

!abc = 0 (4.9)

holds on U .

Proof . The equality (2.16), in virtue of (2.7), (4.2) and (4.8), give

uhAh!abc = 0; (4.10)

where
Ah = ArB

r
h: (4.11)

Suppose that at a point q of U we have

!abc(q) 6= 0: (4.12)

Then, by (4.10), the equality

uhAh = 0 (4.13)
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holds on some open subset U 0 � U . From this we obtain

Ahrcu
h + uhrcAh = 0: (4.14)

Using (4.5) and (2.3), we can easily verify that the following equality is ful�lled
on U

rcAa = AaBc=2 +AcBa + "�NrAruauc; (4.15)

Bc = BrB
r
c : (4.16)

Substituting (4.15) into (4.14) and applying (4.13) we get

Ahrcu
h + uhBhAc + "�NrAruc = 0: (4.17)

The formula (2.17), because of (2.7), (4.2) and (4.8), yields

AhVhef = 0; (4.18)

where Ah = gahAa. Thus (4.18), by (2.6) and (4.13), gives

Ah(uvrduh � udrcuh) = 0;

whence, by (4.17), it follows that

uhBh(ucAd � udAc) = 0:

If (ucAd � udAc)(q) = 0 then also Ad(q) = 0. The last equation, in virtue of the
relation

gadAaAd + "(NrAr)
2 = 0; (4.19)

which follows immediately from (4.4) and (2.1), gives (NrAr)(q) = 0. But this
contradicts (4.8). If (uhBh)(q) = 0 then from (4.7), by transvection with NrBstu

bcdu
b

and the use of (1.1), (2.1), (4.2), (4.11), (4.16), (1.5) and (4.13), we obtain

(uhVhcd + (e=(n� 2))NrAr(Acud �Aduc))(q) = 0: (4.20)

On the other hand, transvecting (2.19) with ua we get

uau
hVhcd + ucu

hVhda + udu
hVhac = !acd:

This, by (4.20), gives !acd(q) = 0, a contradiction. Our lemma is thus proved.

Lemma 9. Let (M; g) be a hypercylinder in a parabolic e.c.s. manifold (N; eg)
and let p be a point of M such that the conditions (2.2), (2.20), (4.1) and

NrAr = 0 (4.21)

are ful�lled. Then the equality (4.9) holds at p.

Proof . First of all we note that at p the following relation

Ad 6= 0 (4.22)
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is satis�ed. In fact, if we had Ad = 0 the, by (4.21), we get A(p) = 0 and eS(p) = 0,
which contradicts (4.1). Transvecting now (1.8) with NwBvrstu

eabcd and making use of
(4.2), (4.22), (4.21), (2.1) and (2.6), we �nd

AaVbcd = AbVacd: (4.23)

Multiplying (4.23) by uf and summing the resulting equality cyclically in f; c; d
and applying (2.19) we obtain (Aaub � Abua)!fcd = 0. Assume that Aaub �Abua
vanishes at p. Then we have

Aa = uhAhua: (4.24)

So, (4.23) turns into uhAh(uaVbcd � ubVacd) = 0. Summing this cyclically in a; c; d
and using again (2.19), we get uhAh!acd = 0. From (4.24), in virtue of (4.22), it
follows that uhAh is non-zero at p. Thus the last equality completes the proof.

Proposition 2. Let (M; g) be a hypercylinder in a parabolic e.c.s. manifold

(N; eg), n � 5, and let p be a point of M such that the conditions : (2.2), � 6= 0,
(2.20) and (4.1) are ful�lled at every point of some neighbourhood U � M of p.
Then C is a recurrent tensor on U .

Proof . The identity (2.19), in view of Lemmas 8 and 9 reduces to

uaVbcd + ucVbda + udVbac = 0: (4.25)

This, by transvection with ua, yields

Vbcd = udu
hVbch � ucu

hVbdh: (4.26)

On the other hand, transvecting (4.7) with NrBstu
bcd and using (1.1), (2.6), (4.2),

(2.1), (1.5) and (4.7), we �nd

Vbcd =
eNrAr

n� 2
(Adgbc �Acgbd) + �Db(AcBd �AdBc); (4.27)

where Db = NrBrAb � NrArBb. Substituting (4.27) into (4.26) and (4.25)
respectively, we obtain

Vbcd = �Db(udCc � ucCd)

+ ((eNrAr)=(n� 2))(uhAh(udgbc � ucgbd)� ub(Acud �Aduc)); (4.28)

�Db(ua(AcBd �AdBc) + uc(AdBa �AaBd) + ud(AaBc �AcBa))

eNrAr

n� 2
((uaAd � udAa)gbc

+ (ucAa � uaAc)gbd + (udAc � ucAd)gab) = 0 (4.29)

resepectively, where Cc = uhBhAc � uhAhBc. From (4.29), by transvection with
uaub, we get

�uhDh(AcBd �AdBc) = udCc � ucCd: (4.30)

Further, asumming (4.28) cyclically in b; c; d, we obtain

Db(udCc � ucCd) +Dc(ubCd � udCb) +Dd(ucCb � ubCc) = 0;



On hypercylinders in conformally symmetric manifolds 111

which, by multiplication with uf and antisymmetrization in b; f , gives

(ufDb � ubDf )(udCc � ucCd) = (Cbuf � Cfub)(udDc � ucDd):

But this implies

Cc(ufDb � ubDf ) = (Dc � uhDhuc)(ufCb � ubCf ): (4.31)

If Cc(p) = 0 then (4.28) turns into

Vbcd =
eNrAr

n� 2
(uhAh(udgbc � ucgbd)� ub(Acud �Aduc)):

Using this we can rewrite (3.3) in the following form

reCabcd = "�ue
k

(n� 2)(n� 3)
(gadgbc � gacgbd)

+
2eNrAru

hAh

n� 2
(uaudgbc + ubucgad � uaucgbd � ubudgac)

�
1

n� 3
(gadKbc + gbcKad � gacKbd � gbdKac); (4.32)

which reduces to rC = 0. If Cc(p) 6= 0 then (4.31) and (4.30) yield

ufDb � ubDf = �(AbBf �AfBb); � 2 R: (4.33)

Moreover, using (4.28) and (4.33) we obtain

uaVbcd � ubVacd + ucVdab � udVcab = ((eNrAr)=(n� 2))((uaAd + udAa)gbc

+ (ucAb + ubAc)gad � (uaAc + ucAa)gbd � (ubAd + udAb)gac)

� 2��(AaBb �AbBa)(AcBd �AdBc):

This, by an application of eCrstuB
rstu
abcd = ��(AaBb � AbBa)(AcBd � AdBc), (1.1),

(2.5), (1.5) and (4.2), turns into

uaVbcd � ubVacd + ucVdab � udVcab = 2�Rabcd

+
eNrAr

n� 2
((uaAd + udAa)gbc + (ucAb + ubAc)gad

� (uaAc + ucAa)gbd � (ubAd + udAb)gac)

+
2e�

n� 2
(AbAcgad +AaAdgbc �AaAcgbd �AbAdgac): (4.34)

We have now two possibilities: (a) �(p) = 0 and (b) �(p) 6= 0. (a) In this case (3.3),
by (4.34), becomes

reCabcd = "�ue
�
gadLbc + gbcLad � gacLbd � gbdLac

+
�
k(gadgbc � gacgbd)

�
=
�
(n� 2)(n� 3)

��
; (4.35)
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where Lbc = (eNrAr)(ubAc + ucAb)=(n � 2)�Kbc=(n� 3). From (4.35) it folows
that rC = 0 at p. (b) Using (4.34), we can present (3.3) in the form

reCabcd = "�ue

�
k

(n� 2)(n� 3)
(gadgbc � gacgbd) + 2�Rabcd

+
eNrAr

n� 2
(gad(ucAb + ubAc) + gbc(uaAd + udAa)� gac(ubAd + udAb)

� gbd(uaAc + ucAa)�
1

n� 3
(gadKbc + gbcKad � gacKbd � gbdKac)

+
2e�

n� 2
(gadAbAc + gbcAaAd � gacAbAd � gbdAaAc)

�
;

which can be rewritten in the following form

reCabcd = "�ue

�
k � 2�K

(n� 2)(n� 3)
(gadgbc � gacgbd)

+ 2�Cabcd + gadLbc + gbcLad � gacLbd � gbdLac

�
(4.36)

where

Lbc =
2�

n� 3
Sbc �

1

n� 3
Kbc +

eNrAr

n� 2
(ucAb + ubAc) +

2e�

n� 2
AbAc:

But from (4.36) we obtain reCabcd = 2��ueCabcd, which states that C is recurrent.
The last remark completes the proof.

Finally, combining Lemmas 5,6,4(ii) with Proposition 2 we immediately get
the following theorem.

Theorem 1. Let (M; g) be a hypercylinder in a parabolic essentially confor-

mally symmetric manifold (N; eg), n � 5 and let eU be the subset of N consisting of

all points of N at which the Ricci tensor eS of (N; eg) is not recurrent. If eU \M is

a dense subset of M then (M; g) is a conformally recurrent manifold.
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