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SOME REMARKS ON ISOTROPIC SUBMANIFOLDS

Luc Vrancken�

Abstract. The notion of isotropic submanifolds of an arbitrary Riemannian manifold
was �rst introduced by B. O'Neill. In this paper, we study n-dimensional, totally real, isotropic
submanifolds of CPn (4). These submanifolds have been previously studied by H. Naitoh, S.
Montiel and F. Urbano under the additional assumption that M is complete. Here we prove
some local classi�cation theorems for totally real isotropic submanifolds of the complex projective
space.

1. Introduction. The notion of isotropic submanifolds of an arbitrary
Riemannian manifold was �rst introduced by B. O'Neill in [O]1. In this paper,
we study n-dimensional, totally real, isotropic submanifolds of CPn (4). These
submanifolds have been previously studied by Naitoh, Montiel, Urbano and Ejiri
in [N], [M{U] and [E]. Naitoh proved the following result.

Theorem A [N]. Let M be an n(� 2)-dimensional complete totally real �-
isotropic submanifold in CPn (4) with parallel second fundamental form. Then M
is locally isometric with one of the following symmetric spaces :

S1 � Sn�1;
SU(3)

SO(3)
; SU(3);

SU(6)

Sp(3)
;

E6

F4

Moreover � = 1=
p
2.

Later, this result was generalized by S. Montiel, F. Urbano and N. Ejiri.

Theorem B [E]. Let M be a n-dimensional totally real isotropic submanifold

of CPn (4). If M is not totally geodesic, then M is one of the following :

a minimal surface (n = 2),

an Einstein minimal submanifold with parallel second fundamental form,

a conformally at submanifold.
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Theorem C [M{U]. Let Mn be a complete, totally real, constant isotropic

submanifold of CP n(4). Then either M is totally geodesic or M is locally isometric

with S1 � Sn�1,
SU(3)

SO(3)
, SU(3),

SU(6)

Sp(3)
,
E6

F4
.

Notice that in Theorem A as well as in Theorem C the condition assumed
that M is complete. Here, we generalize the results; indeed, we will show that the
completeness condition in these theorems can be dropped. The main di�erence
from the approach by H. Naitoh is that he used the theory of Lie groups and
hence the completeness assumption has to be imposed while we will apply the local
uniqueness theorem. In order to do so, we have to develop further the results of
Montiel and Urbano.

Theorem 3.1. Let Mn be a minimal, isotropic, totally real submanifold of

CPn (4). Then either M is totally geodesic or M is locally isometric with
SU(3)

SO(3)
,

SU(3),
SU(6)

Sp(3)
,
E6

F4
.

Theorem 3.2. Let M be an n-dimensional totally real isotropic submanifold

in CPn (4). If M is not totally geodesic at the point p, then on a neighbourhood of

p, M is locally isometric with one of the following manifolds

a minimal surface (n = 2),

SU(3)

SO(3)
, SU(3),

SU(6)

Sp(3)
, E6=F4,

S1 � Sn�1(3=2), n > 2,

S1 �d S
n�1, where d is de�ned in Section 3, n > 2.

2. Preliminaries. In this section M will always denote an n-dimensional
totally real submanifold of CPn (4). We will denote the curvature tensor of M by
R and the Ricci tensor by S. The formulas of Gauss and Weingarten are given by

(2.1) DXY = rXY + h(X;Y ) and DX� = �A�X +r?

X�;

where X and Y are tangent vector �elds and � is a normal vector �eld on M . The
total reality condition then implies that

(2.2) r?

XJY = JrXY and AJXY = �Jh(X;Y ):
The equations of Gauss, Codazzi and Ricci for a totally real submanifold of CPn (4)
are then given by

R(X;Y )Z = hY; ZiX � hX;ZiY +Ah(Y;Z)X �Ah(X;Z)Y;(2.3)

(rh)(X;Y; Z) = (rh)(Y;X;Z);(2.4)

hR?(X;Y )�; �i = h eR(X;Y )�; �i + h[A� ; A�]X;Y i;(2.5)
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for tangent (resp. normal) vector �elds X , Y and Z (resp. � and �) and R? (resp.eR) denotes the curvature tensor of r? (resp. D). The total reality condition then
implies for tangent vector �elds X , Y , Z and W that

hR?(X;Y )JZ; JW i = hR(X;Y )Z;W i;(2.6)

hh(X;Y ); JZi = hh(X;Z); JY i:(2.7)

From now on, we will also assume that M is an isotropic submanifold, i.e. in each
point p of M , kh(v; v)k is independent of the unit vector v. Hence, we obtain a
function � on M by

(2.8) �(p) = kh(p; p)k;
where v 2 UMp. In that case we obtain from [O]1 the following conditions for
orthonormal tangent vectors X , Y , Z and W :

hh(X;Y ); h(X;X)i = 0;(2.9)

�2 � hh(X;X); h(Y; Y )i � 2hh(X;Y ); h(X;Y )i = 0;(2.10)

hh(Y; Z); h(X;X)i+ 2hh(X;Y ); h(X;Z)i = 0;(2.11)

hh(X;Y ); h(Z;W )i+ hh(X;Z); h(W;Y )i+ hh(X;W ); h(Y; Z)i = 0:(2.12)

3. Proof of the theorems. Let M be a n-dimensional, isotropic, totally
real submanifold of CPn and let p 2 M . Then, from [E], we know that there are
three cases to consider.

(i) p is a totally geodesic point (i.e. hp = 0), or

(ii) There exists an orthonormal basis fe1; e2; . . . ; eng of TpM such that

hh(ei; ej); Jeki = 0; for k 6= 1;

hh(ei; ej); Je1i = �Æij�; for i 6= 1;

hh(e1; e1); Je1i = �;

where � > 0, or

(iii) n > 2 and there exists an orthonormal basis fe1; f1; u1; . . . ; ui; v1; . . . ;
vi; w1; . . . ; wig such that 3i+ 2 = n and

h(e1; e1) = �Je1; h(e1; f1) = ��Jf1; h(f1; f1) = ��Je1;
h(e1; uj) = ��Juj ; h(e1; vj) = (�=2)Jvj ; h(e1; wj) = (�=2)Jwj ;

h(f1; vj) = (
p
3�=2)Jvj ; h(f1; wj) = �(

p
3�=2)Jwj ; h(uj ; ui) = ��Je1;

h(vj ; vj) = (�=2)Je1 + (
p
3�=2)�Jf1; h(wj ; wj) = (�=2)Je1 � (

p
3�=2)Jf1:

Furthermore, if x; y; z 2 vectfv1; . . . ; vi; w1; . . . ; wig, then hh(x; y); Jzi = 0; if
x; y 2 vectff1; u1; . . . ; uig, then h(x; y) has only a component in the direction of
Je1 and for every x 2 vectfv1; . . . ; vig we have vectfu1; . . . ; uig = fh(x; y) j y 2
vectfw1; . . . ; wigg. From these formulas, it is also immediately clear that M is
minimal at the point p.
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From [E] it also follows that if (iii) holds at a point p of M , then it holds on
a neighbourhood of p and hence on the whole of M . Furthermore, we have from
[E] that the Ricci curvature S is given by

S(v; w) = ((n� 1)� (n+ 2)�2=2) hv; wi:
Thus M is an Einstein space. Since n > 2, this then implies that � is constant
onM . Hence M is a minimal, totally real, constant isotropic submanifold of CPn .
From Proposition 1 of [M{U] it then follows thatM is parallel. On the other hand,
by Theorem 1 of [M{U] we have that n = 5; 8; 14 or 26 (i.e. m = 1; 2; 4 or 8). Let

us then denote M1 =
SU(3)

SO(3)
, M2 = SU(3), M3 =

SU(6)

Sp(3)
and M4 = E6=F4. It is

well-known, that there exists a parallel, minimal, totally real immersion of Mi into
CPn(i) , where n(i) = 3i+ 2.

Lemma 3.1. There exist constant �ijk, j; k; l 2 f1; 2; . . . ; ng such that for

every �-isotropic, totally real immersion f : Mn ! CPn which satis�es (iii) and

for every point p of M , there exists an orthonormal basis fe1; . . . ; eng of TpM
such that

h(ej ; ek) =
iP

l=1

�ljkJel

(i.e. h is completely determined by �).

Proof . Let fe1; f1; u1; . . . ; ui; v1; . . . ; vi; w1; . . . ; wig be an orthonormal basis
which satis�es (iii). Then, we de�ne V1 = vectfv1; . . . ; vig, V2 = vectfw1; . . . ; wig
and V3 = vectfu1; . . . ; uig. So, it is clear that these normed vector spaces are
isomorphic. Let us denote the natural isomorphism between V1 and V2 by �1 and
the one between V1 and V3 by �2. Then by (iii), we know that h(v; �1(v)) 2 �2(V1).
Furthermore from the isotropy conditions it follows for v; w 2 V1 that

kh(v; �1(w))k2 = (
p
3�2=2)kvk2 kwk2:

Thus the mapping A : V1 � V1 ! V1 de�ned by

A(v; w) = �2=(
p
3�)�2(Jh(v; �1(w)));

satis�es kA(v; w)k2 = kvk2kwk2. Hence, by [C], A is either given by real mul-
tiplication or by complex multiplication or by quaternionic multiplication or by
Cayley multiplication. Thus we can chose an orthonormal basis of V1 such that,
with respect to that basis, A is given by the traditional multiplication table for the
real (resp. complex, quaternionic, Cayley) numbers. Combining this result with
(iii) and (2.7) completes the proof of the lemma.

Lemma 3.2. If (iii) holds at the point p, then � =
p
2=2.

Proof . We have seen that if (iii) holds at the point p, then it is satis�ed in
every point ofM anM is a parallel submanifold of CPn . Since (rh) = 0, we obtain
that R:h = 0, where (R:h)(X;Y; Z;W ) = R?(X;Y )h(Z;W )� h(R(X;Y; )Z;W )�
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h(Z;R(X;Y )W ). Then, if we take the basis given by (iii), we obtain in particular
that

0 = h(R:h)(e1; f1; e1; e1); Jf1i
= hR?(e1; f1)JAJe1e1; Jf1i � 2hh(R(e1; f1)e1; e1); Jf1i
= ��hR(e1; f1)f1; e1i � 2hAJf1e1; R(e1; f1)e1i = �3�(1� 2�2):

This completes the proof of this lemma.

This enables us to prove Theorem 3.1.

Theorem 3.1. Let Mn be a minimal, isotropic, totally real submanifold of

CPn . Then either M is totally geodesic or n = n(i) for some i and M is locally

isometric with Mi.

Proof . It is clear that in this case M is either totally geodesic or (iii) holds
in every point p of M . Let us assume that M is not totally geodesic. Thus M is
a parallel submanifold and n = n(i) for some i. By Lemma 3.1, we know that in
each point p there exists an orthonormal basis fe1; . . . ; eng which satis�es all the
conditions in Lemma 3.1.

Let us extend this basis by parallel translation along geodesics through p to
a local orthonormal frame fE1; . . . ; Eng on a normal neighbourhood U of p. Then
let q 2 U and let  be the unique geodesic connecting p and q. Using the fact that
rh = 0 and the de�nition of the Ej , we obtain that

0hh(Ej ; Ek); JEli = h(rh)(0; Ej ; Ek); JEli = 0:

Therefore fE1; . . . ; Eng satis�es the conditions of Lemma 3.1 in every point g

of U . Therefore, since � = 1=
p
2, this determines the second fundamental form

completely.

Since Mi can be parallel, minimal, totally real immersed in CP n(i) (4)
it is clear that for each point p0 of Mi there exists a local orthonormal basis
fF1; . . . ; Fn(i)g de�ned by parallel translation along geodesics through p0 such that
all the conditions of Lemma 3.1 hold. Then, by numbering the basis vectors in an
appropriate way, by Lemma 3.1 and the Gauss equation, we may assume that

hR(Ej ; Ek)El; Emi = hR0(Fj ; Fk)Fl; Fmi;
where R0 denotes the curvature tensor of Mi. Since all the vector �elds are de�ned
by parallel translation along geodesics through p (resp. p0), the Lemma of Cartan
then implies that M is locally isometric with Mi.

Let us now assume that p 2 M is not a totally geodesic point. If (iii) holds
in a point of M , then M is locally isometric with Mi. Thus, we may assume that
(iii) does not hold in any point of M . Hence (ii) holds at p0 and since p is not a
totally geodesic point, (ii) must hold in a neighbourhood U of p. Let q 2 U and
fe1; . . . ; eng be an orthonormal basis of TqM which satis�es (ii). Then, if n > 2 we
can derive the sectional curvature of an arbitrary tangent plane � as follows. We
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may assume that � is spanned by cos �e1 + sin �u and by v, where e1, u and v are
orthonormal vectors. Then

K(�) = (1 + �2)� 3�2 cos2 �:

Hence the sectional curvature varies between (1 + �2) and (1 � 2�2) and is equal
to (1 + �2) for every plane orthogonal to e1. This argument shows that we can
construct orthonormal vector �elds E1; . . . ; En on a neighbourhood U of p such
that they satisfy (ii) in every point of U . It is not too diÆcult to see that this can
be done also for n = 2, by looking at the number of maxima of f(v) = hh(v; v); Jvi
at each point. Then from the Codazzi equations, see also [E], we obtain that

Ei(�) = 0;(3.1)

rE1
E1 = 0;(3.2)

rEi
E1 = �E1(�)Ei=(3�);(3.3)

where i > 1. Thus we obtain two involutive distributions T1 and T2 given by

q 7! T1(q) = vectfE1g; q 7! T2(q) = vectfE2; . . . ; Eng:

Thus we can choose coordinates (x1; . . . ; xn) in a neighborhood of p such that
@=@x1 = E1 and @=@xi 2 vectfE2; . . . ; Eng and p corresponds to (0; 0; . . . ; 0).
Then it follows from (3.1) that � depends only on x1. Furthermore, the hyper-
surfaces of M , given by x1 = c, for c suÆciently small, have constant curvature
(1 + �(c)2). Hence they are locally isometric with an (n � 1)-dimensional sphere

with radius 1=
p
1 + �2(c). Then the metric of M can be written locally as

ds2 = (dx1)
2 +

nP
i;j=2

gij(x1; x2; . . . ; xn) dxidxj :

However, since all the hypersurfaces are isometric with a sphere, they are all
homothetic. Thus gij(x1; . . . ; xn) = d(x1)gij(0; x2; . . . ; xn), where

(3.4) d(x1) = (1 + �(x1)
2)=(1 + �(0)2):

Hence M is locally isometric with the warped product R �d S
n�1(1 + �(0)2) [O]2.

Furthermore, by applying the Gauss equation, (3.1), (3.2), (3.3) and (ii), we obtain
that

hR(E1; Ei)E1; Eii = �(1� 2�(x1)
2) and hR(E1; Ei)E1; Eii = �1

3

�00

3�
+

4

3

(�0)2

�2
:

Hence � is a solution of the following di�erential equation: 3�00� � 4(�0)2 =
(1� 2�2)�2.

The solutions of this di�erential equation are then given by the following
lemma.
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Lemma 3.3. The nonzero, positive solutions of the real di�erential equation

3�00� � 4(�0)2 = (1 � 2�2)�2 are given by �(x1) = 1=
p
2, and �(x1) = F�1(x1),

where F is de�ned by

F (y) = �1

3

Z y

�0

(Cx8=3 � x2=9� x4=9)�1=2 dx

Proof . By putting � = f�3, we obtain that f 00 = �(1� 2f�6)f=9. So, if we
write f 0 = p(f) we obtain that (p2)0 = �(2=9)(1� 2f�6)f . Thus f 0 = p(f) = (C �
(f2+ f�4)=9)1=2. Now, there are two possibilities. Either, (C � (f2+ f�4)=9) � 0,

in which case, we obtain that � = 1=
p
2 or � = 0, or (C � (f2 + f�4)=9) is not

identically zero, in which case we obtain that

f 0p
C � (f2 + f�4)=9

= 1:

So, by substituting again � = f�3 and by integrating we �nd the desired result.�

Therefore, we have proved the following theorem.

Theorem 3.2. Let M be an n-dimensional totally real isotropic submanifold

in CPn (4). If M is not totally geodesic at the point p, then on a neighbourhood

of p, M is locally isometric with one of the following manifolds :

a minimal surface (n = 2),

SU(3)

SO(3)
, SU(3),

SU(6)

Sp(3)
, E6=F4,

S1 � Sn�1(3=2), n > 2,

S1 �d S
n�1, where d is de�ned by (3.4) and Lemma 3.3, n > 2.
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