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SESQUILINEAR AND QUADRATIC FORMS

ON MODULES OVER �-ALGEBRAS

C.-S. Lin

Abstract. We de�ne three new quadratic forms on a module over a �-algebra. It is shown
that for each quadratic form with a certain property, there exists a sesquilinear form such that
both forms are equal to each other. The converse statement is also valid. So far as application is
concerned this result enables us to form new characterization formulas for an inner product space
if we restrict attention to normed linear spaces.

1. Introduction. In his lecture on Hilbert spaces (in Paris, 1963) I. Halperin
raised the following question: Let X be a complex (or real) linear space, if a
quadratic functional on X satis�es the parallelogram law and the homogeneity
property, does there exist a sesquilinear functional on X �X which is equal to the
given quadratic functional? The positive answer to the question for the complex
linear space was given by Kurepa [6], and a simpli�ed proof (yet, not short) was
done by him [7], too. The answer to the same question in the real case is negative
provided that the space is one dimensional [5]. Vukman [12] obtained the same
result as Kurepa's, but with di�erent domains and ranges. Indeed, he generalized
a functional to a quadratic form on X , a unitary left module over a Banach �-
algebra with unit, and to a sesquilinear form on X �X . A further generalization
of a quadratic form was given in my paper [8]. The purpose of this paper is to
de�ne three new quadratic forms, and it is shown that each form is equivalent to a
sesquilinear form in some sense. As for applications of this result we shall obtain
new characterization formulas for an inner product space among normed linear
spaces. Some important and well-known characterizations [1, 2, 3, 4, 9, 10] of this
space are special cases of our formulas.

2. The main result. In this paper, except applications in the last section, all
algebras and linear spaces will be over the complex number �eld. R will denote the
real number �eld, A a �-algebra (not necessarily a Banach �-algebra) with unit, and
X a linear space which is also a left A-module. Let us call a mapping B : X�X ! A
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an A-sesquilinear form if B is additive in both arguments, B(ax; y) = aB(x; y), and
B(x; ay) = B(x; y)a� for all x and y in X and all a in A [8].

De�nition. A mapping Q : X ! A is called a generalized A-quadratic form if
Q(ax) = aQ(x)a� for all x in X and all a in A, and any one of the following three
identities holds:
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for all xi in X (i = 1; . . . ; n), some �xed ai in R (i = 1; . . . ; n) and at least three
of them are nonzero, and a �xed n � 3;

rQ(sx+ ty) + sQ(tx� ry) = (rs+ t2)[sQ(x) + rQ(y)] (3)

for all x and y in X , and some �xed nonzero r, s and t in R with rs+ t2 6= 0.

For later use, note that Q(0) = 0 and Q(�x) = Q(x). Let us call a mapping
Q an A-quadratic form if both relations Q(ax) = aQ(x)a� and Q(x1+x2)+Q(x1�
x2) = 2[Q(x1) + Q(x2)] are ful�lled. Obviously, it is a special case of (1) when
a1 = a2 = 1 and ai = 0 otherwise; of (2) when x3 = �x2, a1 = a2 = a3 = 1 and
ai = 0 otherwise; and of (3) when r = s = t = 1.

Let the mapping B : X � X ! A be de�ned in terms of the mapping Q :
X ! A as follows:

B(x; y) = [Q(x+ y)�Q(x� y) + iQ(x+ iy)� iQ(x� iy)]=4 (4)

for all x and y in X . It was indicated in [12, Theorem 7] that if (4) holds and
Q is an A-quadratic form, then B is an A-sesquilinear form and Q(x) = B(x; x).
One can easily show that the converse also holds. Thus, our main theorem below
shows that the notion of A-quadratic form is equivalent to the notion of generalized
A-quadratic form if (4) is satis�ed.

Theorem 1. If B : X �X ! A and Q : X ! A are two mappings, then the

following conditions are equivalent :

(a) B is an A-sesquilinear form and Q(x) = B(x; x);

(b) the identity (4) holds and Q is a generalized A-quadratic form (1);

(c) the identity (4) holds and Q is a generalized A-quadratic form (2);

(d) the identity (4) holds and Q is a generalized A-quadratic form (3).

Proof . Firstly, we note that the proof that (a) implies (b), (c) and (d) is a
trivial calculation. Secondly, we shall prove the other way round as follows.
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(b)) (a): That B(x; x) = Q(x) is clear. In order to prove the relation
B(x+y; z) = B(x; z)+B(y; z) for all x, y and z in X , we assume a1 6= 0 and claim
that
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for any z, u and v in X , and ai's are as in (1). To prove this, in (1) let x1 = u+ z
and xi = v otherwise; then
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In the above equation if z is replaced by �z, by iz, and by �iz, we should get three
equations. From all these four equations and with the aid of (4) we should obtain
easily an identity expressed in terms of the mapping B, namely
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Note that B(0; y) = B(x; 0) = 0 for all x and y in X . Let v = u and
v = �a1u=

�Pn

i=2 ai
�
in (6), respectively, then we should get two equations. By

substituting these two equations into (6) we have our claim proved.

Now, for any x and y in X let u =
�Pn

i=2 ai
�
y=
�Pn
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�
in the right hand

sides of (5), then
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Finally let

u =
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i=2 ai
�
(x+ y)Pn
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and v =
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�
y � a1xPn
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in (5), and together with (7), we have the additivity in the �rst argument.
Analogously, one can show the additivity in the second argument.

The last step is to verify that B(ax; y) = aB(x; y) and B(x; ay) = B(x; y)a�

for all x and y in X and all a in A. We shall omit the proof of this since it was
shown exactly in [11]. Incidentally, the proof requires that B be additive in both
arguments as we have just proved. This concludes the proof of (b)) (a).

(c)) (a): The proof is similar to that of (b)) (a). We shall prove only that
the relation B(y; z)+B(x; z) = B(x+ y; z) is valid for all x, y and z in X , and the
outlines are as follows. In (2) let x1 = u + z and xi = v otherwise, and we may
assume, of course, that a1 6= 0 6=

Pn

i=2 ai and a1 6=
Pn

i=2 ai. It follows that
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After two suitable substitutions for v into (8), (8) becomes
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Let u =
�Pn
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�
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�
�a1 +
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in (9) for any y in X ; then
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Finally, for any x in X let

u =
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�
(x+ y)

�a1 +
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and v =

a1x+
�Pn
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�
y
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in (9), and by applying (10) we should obtain the desired equation.

(d)) (a): Here again, we shall outline the proof of the additivity of B in the
�rst argument. Let x = u+ (z=t) and y = v in (3); then we should get the relation

rB(su+ tv; sz=t) + sB(tu� rv; z) = (rs + t2)sB(u; z=t): (11)

After two suitable substitutions for v into (11), (11) becomes

rB(su+ tv; sz=t) + sB(tu� rv; z)

= rB((rs + t2)u=r; sz=t) = sB((rs+ t2)u=t; z):
(12)

Let u = ty=(rs+ t2) in (12) for any y in X , then

rB(ty=r; sz=t) = sB(y; z): (13)

Finally, for any x in X let u = t(x+ y)=(rs+ t2) and v = (t2y� rsx)=r(rs+ t2) in
(12), and together with (13), we have the desired result and the proof is complete.

It should be noted that the following is a special case of the form (1):

Q
� nP
i=1

aixi

�
+

P
1�i<j�n

aiajQ(xi � xj) = 0 (10)

for all xi in X (i = 1; . . . ; n), some �xed ai in R (i = 1; . . . ; n) and at least three of
them are nonzero such that

Pn

i=1 ai = 0, and a �xed n � 3. To see this, consider
the index i = 1 to n+ 1 in (1), and let

Pn

i=1 ai = 0, an+1 = 1 and xn+1 = 0.

The next result is clear.

Corollary 1. Theorem 1 still holds if the form (1) in the statement (b) is

replaced by the form (10).

Note in particular that in (10) if a1 = a2 = 1, a3 = �2 and xi = 0 (i =
3; . . . ; n), then Q(x1 + x2) +Q(x1 � x2) = 2[Q(x1) +Q(x2)].
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3. Applications. The following result is interesting and useful characteri-
zation formulas for an inner product space among normed linear spaces.

Corollary 2. Let X be a complex (or real) normed linear space; then the

following statements are equivalent :

(a) X is an inner product space;

(b) The norm in X satis�es the condition:
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for all xi in X (i = 1; . . . ; n), some �xed ai in R (i = 1; . . . ; n) and at least two

of them are nonzero such that
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i=1 ai 6= 0, and a �xed n � 2;

(c) The norm in X satis�es the condition:
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for all xi in X (i = 1; . . . ; n), some �xed ai in R (i = 1; . . . ; n) and at least three

of them are nonzero such that
Pn

i=1 ai 6= 0, and a �xed n � 3;

(d) The norm in X satis�es the condition:
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for all xi in X (i = 1; . . . ; n), some �xed ai in R (i = 1; . . . ; n) and at least three

of them are nonzero, and a �xed n � 3;

(e) The norm in X satis�es the condition:

rksx+ tyk
2
+ sktx� ryk

2
= (rs+ t2)(skxk

2
+ rkyk

2
)

for all x and y in X, some �xed nonzero r, s and t in R such that rs + t2 6= 0.

In the statement (b), (c), (d) and (e) the inner product is de�ned as usual by

(xjy) = 1
4 [kx+ yk

2
� kx� yk

2
+ ikx+ iyk

2
� ikx� iyk

2
] and

(x; y) = 1
4 [kx+ yk2 � kx� yk2]

for the complex and real spaces, respectively.

Proof . Obviously, this is a special case of Theorem 1 when X is a complex
(or real) normed linear space and A is the �eld of complex (or real) numbers. In
fact, the mapping Q is a square norm and the mapping B is an inner product, i.e.,

Q(x) = kxk
2
and B(x; y) = (xjy) (or = (x; y)) the usual inner product of x and y.

In closing, it might be worth while to remark that many important and
well-known characterizations of an inner product space are just special cases of
Corollary 2. The following are some examples:
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(i) The condition that kx+ yk
2
+ kx� yk

2
= 2(kxk

2
+ kyk

2
) for all x and y

in X [4] may be obtained from (b), (c), (d) or (e) in Corollary 2.

(ii) Let kxk = kyk, r = �s = �a and t = b in (e); then kax+ byk = kbx+ ayk,
the main result in [2]. Our proof is simpler and di�erent from Ficken's.

(iii) Let kxk = kyk, s = �r = a and t = 1 in (e); then kax+ yk =
kx+ ayk [9].

(iv) Let
Pn

i=1 xi = 0 for n � 3 and ai = 1 (i = 1; . . . ; n) in (b); thenP
i 6=j kxi � xjk

2
= 2n

Pn

i=1 kxik
2
[9].

(v) Let r = (1� a)=a, s = b=(1� b) for 0 < a; b < 1 and t = 1 in (e); then

a(1� a)kbx+ (1� b)yk
2
+ b(1� b)kax+ (1� a)yk

2

= (a+ b� 2ab)[abkxk
2
+ (1� a)(1� b)kyk

2
]

for all x and y in X [1].

(vi) The statement (c) in Corollary 2 is precisely the main result in [10]. Our
proof is direct, and does not depend on the Jordan-Neumann condition.

(vii) In (d) let a1 = a2 = a3 = 1, and ai = 0 otherwise; then

kx1 + x2 + x3k
2
+ kx1k

2
+ kx2k

2
+ kx3k

2
= kx1 + x2k

2
+ kx2 + x3k

2
+ kx3 + x1k

2

for all x1, x2 and x3 in X [3].
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