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ON THE URYSOHN INTEGRAL EQUATION

IN LOCALLY CONVEX SPACES

Janusz Januszewski and Stanis law Szua

Abstract. This paper contains an existence theorem for the Urysohn integral equation in
locally convex spaces. In the proof of this theorem we employ a modi�ed version of M�onch's �xed
point theorem and measures of noncompactness.

1. Introduction. By repeating M�onch's argument from the proof of
Theorem 2.2 of [4] and by using the Schauder-Tychono� theorem instead of the
Schauder theorem, we can prove the following �xed point theorem.

Theorem 1. Let D be an open subset of a quasicomplete locally convex space

X, 0 2 D, and let G be a continuous mapping of D into X. If the implication

V � conv(f0g [G(V )) =) V is relatively compact

holds for every countable subset V of D, and G satis�es the boundary condition

x 2 D; 0 < � < 1; x = �G(x) =) x =2 @D ;

then G has a �xed point in D.

Let T = [0; a] and let W be an open subset of a quasicomplete locally convex
space E. In Section 2 we shall apply Theorem 1 to obtain an existence theorem for
continuous solutions of the Urysohn integral equation

x(t) = g(t) + �

Z
T

f(t; s; x(s)) ds ; (1)

where f is a bounded continuous function from T � T � W into E and g is a
continuous function from T into W . Next, in Section 3, by applying Lemma of [6]
we shall show that the set of all continuous solutions of Volterra integral equation

x(t) = g(t) +

Z t

0

f(t; s; x(s)) ds (2)

is a continuum in the corresponding function space.
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2. An existence theorem. Let P be a family of continuous seminorms
generating the topology of E. For any p 2 P and for any bounded subset A of E
denote by �p(A) the in�mum of all " > 0 for which there exists a �nite subset Q
of E such that A � Q + Bp("), where Bp(") = fx 2 E : p(x) � "g. The family
(�p(A))p2P is called the Hausdor� measure of noncompactness of A (for properties
see [5]). Denote by C(T;E) the space of continuous functions T ! E with the
topology of uniform convergence. For any subset H of C(T;E) put H(t) = fu(t) :
u 2 Hg. The following has been proved in [8]:

Lemma. If the space E is separable, then for any bounded countable subset

H of C(T;E) the function t! �p(H(t)) is measurable on T and

�p

��Z
T

x(t) dt : x 2 H

��
�

Z
T

�p(H(t)) dt :

Let 
 denote the family of all open, balanced and convex neighbourhoods of
0 in E. We assume that

(3)
for each U 2 
 there exists an " > 0 such that f(t; s; x)� f(r; s; x) 2 U
for x 2W and s; t; r 2 T such that jt� rj < ".

Theorem 2. Assume that for each p 2 P there exists a continuous function

Kp : T � T ! R+ such that

�p(f(t; s; Y )) � Kp(t; s)�p(Y ) (4)

for t; s 2 T and for each bounded subset Y of W . Moreover, assume that there is

an r0 > 0 such that for each p 2 P the spectral radius r( eKp) of the integral operatoreKp, de�ned by

eKpu(t) =

Z
T

Kp(t; s)u(s) ds (u 2 C(T;R); t 2 T )

is less than r0. Then there exists a positive number � such that for each � 2 R with

j�j < � the equation (1) has at least one continuous solution.

Proof . As W is open and g is continuous, we can choose a set B of the
form B = fx 2 E : pi(x) � b; i = 1; . . . ;mg, where, p1; . . . ; pm 2 P , such that
g(t) + B � W for t 2 T . From the boundedness of f it follows that there exists a
� > 0 such that [��; �]convf(T � T �W ) � B. Let � = min(�=mesT; 1=2r0). Fix
� 2 R with j�j < �. Put

H = fu 2 C(T;E) : u(t)� g(t) 2 B for t 2 Tg

and

F (x)(t) = g(t) + �

Z
T

f(t; s; x(s)) ds (x 2 H; t 2 T ):
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As

F (x)(t)� g(t) 2 [�j�j; j�j] mesT conv f(T � T �W )

� [��; �] conv f(T � T �W ) � B for x 2 H ,

we see that F maps H into H . Moreover, from (3) it is clear that the set F (H)
is equiuniformly continuous. By Lemma 2 of [7] for any u 2 H and U1 2 
 there
exists a U2 2 
 such that

f(t; s; x(s))� f(t; s; u(s)) 2 U1 for t; s;2 T ,

whenever x 2 H and x(t)� u(t) 2 U2 for all t 2 T . From this we deduce that F is
continuous.

Put G(x) = F (x + g) � g for x 2 D = fu 2 C(T;E) : u(t) 2 B for t 2 Tg.
Then G is a continuous mapping D ! D. Now we shall show that G satis�es the
assumptions of Theorem 1.

Assume that x 2 D, x = �G(x) and 0 < � < 1, and suppose that x 2 @D.
Then there exist a t 2 T and an i, 1 � i � m, such that pi(x(t)) = b. As G(x) 2 D,
we have b = pi(x(t)) = �pi(G(x)(t)) � �b < b, which is impossible.

Assume now that V = fun : n 2 Ng is a countable subset of D such that

V � conv(G(V ) [ f0g): (5)

Then
V (t) � conv(G(V )(t) [ f0g) for t 2 T . (6)

Let (tn) be a dense sequence in T , and let Z be the closed linear hull of the set�
g(ti); un(ti); f(ti; tj ; un(tk) + g(tk)) : i; j; k; n 2 N

	
:

Then Z is a separable quasicomplete locally convex subspace of E, and g(t) 2 Z,
f(t; s; un(s) + g(s)) 2 Z, un(t) 2 Z, G(un)(t) 2 Z for t; s 2 T and n 2 N.

For any bounded subset A of Z and p 2 P , denote by �zp(A) the in�mum of all
" > 0 for which there exists a �nite subset Q of Z such that A � Q+Bp("). Since
the set G(V ) is equiuniformaly continuous, from (5) it follows that the function
t! �p(V (t)) is continuous. It is clear from (4) that

�zp(ff(t; s; un(s) + g(s)) : n 2 Ng) � 2�p(ff(t; s; un(s) + g(s)) : n 2 Ng)

� 2Kp(t; s)�p(fun(s) + g(s) : n 2 Ng) = 2Kp(t; s)�p(V (s)):

Hence, by (6) and Lemma, we get

�p(V (t)) � �p(G(V )(t)) � �zp(G(V )(t))

= �zp

��
�

Z
T

f(t; s; un(s) + g(s)) ds : n 2 N

��

� j�j

Z
T

�zp(ff(t; s; un(s) + g(s)) : n 2 Ng) ds

� 2j�j

Z
T

Kp(t; s)�p(V (s)) ds for t 2 T .
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As 2j�jr( eKp) � 2j�jr0 < 1, this implies that �p(V (t)) = 0 for t 2 T and p 2 P .
hence for any t 2 T the set V (t) is relatively compact in E. By Ascoli's theorem
[3, Th. 7.17] we deduce from this that V is relatively compact in C(T;E). Now
we can apply Theorem 1 which yields the existence of u 2 D such that u = G(u).
Obviously x = u� g 2 H and x = F (x), so that x is a continuous solution of (1).

3. A Kneser-Hukuhara theorem. Consider now the equation (2). Let
us recall that a function h : T � T � R+ ! R+ is called a Kamke function if h
satis�es the Caratheodory conditions and, for each 0 < d � a, the function u = 0
is the unique nonnegative continuous solution of the inequality

u(t) �

Z t

0

h(t; s; u(s)) ds on [0; d].

By arguing similarly as in the proof of Theorem 2 and by applying Lemma from
[6], we can prove the following

Theorem 3. Assume that for any p 2 P there exists a function (t; s; u) !
hp(t; s; u) such that 2hp is a Kamke function, hp is nondecreasing in u and

�p(f(t; s;X)) � hp(t; s; �p(X))

for t; s 2 T and for each bounded subset X of E. Then there exists an inerval

J = [0; d] such that the set of all continuous solutions x : J ! E of (2), considered
as a subset of C(J;E), is nonempty, compact and connected.

Let us remark that the result above generalizes Theorem 1 of [6].
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