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ON THE URYSOHN INTEGRAL EQUATION

IN LOCALLY CONVEX SPACES

Janusz Januszewski and Stanis law Szu
a

Abstract. This paper contains an existence theorem for the Urysohn integral equation in
locally convex spaces. In the proof of this theorem we employ a modi�ed version of M�onch's �xed
point theorem and measures of noncompactness.

1. Introduction. By repeating M�onch's argument from the proof of
Theorem 2.2 of [4] and by using the Schauder-Tychono� theorem instead of the
Schauder theorem, we can prove the following �xed point theorem.

Theorem 1. Let D be an open subset of a quasicomplete locally convex space

X, 0 2 D, and let G be a continuous mapping of D into X. If the implication

V � conv(f0g [G(V )) =) V is relatively compact

holds for every countable subset V of D, and G satis�es the boundary condition

x 2 D; 0 < � < 1; x = �G(x) =) x =2 @D ;

then G has a �xed point in D.

Let T = [0; a] and let W be an open subset of a quasicomplete locally convex
space E. In Section 2 we shall apply Theorem 1 to obtain an existence theorem for
continuous solutions of the Urysohn integral equation

x(t) = g(t) + �

Z
T

f(t; s; x(s)) ds ; (1)

where f is a bounded continuous function from T � T � W into E and g is a
continuous function from T into W . Next, in Section 3, by applying Lemma of [6]
we shall show that the set of all continuous solutions of Volterra integral equation

x(t) = g(t) +

Z t

0

f(t; s; x(s)) ds (2)

is a continuum in the corresponding function space.
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2. An existence theorem. Let P be a family of continuous seminorms
generating the topology of E. For any p 2 P and for any bounded subset A of E
denote by �p(A) the in�mum of all " > 0 for which there exists a �nite subset Q
of E such that A � Q + Bp("), where Bp(") = fx 2 E : p(x) � "g. The family
(�p(A))p2P is called the Hausdor� measure of noncompactness of A (for properties
see [5]). Denote by C(T;E) the space of continuous functions T ! E with the
topology of uniform convergence. For any subset H of C(T;E) put H(t) = fu(t) :
u 2 Hg. The following has been proved in [8]:

Lemma. If the space E is separable, then for any bounded countable subset

H of C(T;E) the function t! �p(H(t)) is measurable on T and

�p

��Z
T

x(t) dt : x 2 H

��
�

Z
T

�p(H(t)) dt :

Let 
 denote the family of all open, balanced and convex neighbourhoods of
0 in E. We assume that

(3)
for each U 2 
 there exists an " > 0 such that f(t; s; x)� f(r; s; x) 2 U
for x 2W and s; t; r 2 T such that jt� rj < ".

Theorem 2. Assume that for each p 2 P there exists a continuous function

Kp : T � T ! R+ such that

�p(f(t; s; Y )) � Kp(t; s)�p(Y ) (4)

for t; s 2 T and for each bounded subset Y of W . Moreover, assume that there is

an r0 > 0 such that for each p 2 P the spectral radius r( eKp) of the integral operatoreKp, de�ned by

eKpu(t) =

Z
T

Kp(t; s)u(s) ds (u 2 C(T;R); t 2 T )

is less than r0. Then there exists a positive number � such that for each � 2 R with

j�j < � the equation (1) has at least one continuous solution.

Proof . As W is open and g is continuous, we can choose a set B of the
form B = fx 2 E : pi(x) � b; i = 1; . . . ;mg, where, p1; . . . ; pm 2 P , such that
g(t) + B � W for t 2 T . From the boundedness of f it follows that there exists a
� > 0 such that [��; �]convf(T � T �W ) � B. Let � = min(�=mesT; 1=2r0). Fix
� 2 R with j�j < �. Put

H = fu 2 C(T;E) : u(t)� g(t) 2 B for t 2 Tg

and

F (x)(t) = g(t) + �

Z
T

f(t; s; x(s)) ds (x 2 H; t 2 T ):
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As

F (x)(t)� g(t) 2 [�j�j; j�j] mesT conv f(T � T �W )

� [��; �] conv f(T � T �W ) � B for x 2 H ,

we see that F maps H into H . Moreover, from (3) it is clear that the set F (H)
is equiuniformly continuous. By Lemma 2 of [7] for any u 2 H and U1 2 
 there
exists a U2 2 
 such that

f(t; s; x(s))� f(t; s; u(s)) 2 U1 for t; s;2 T ,

whenever x 2 H and x(t)� u(t) 2 U2 for all t 2 T . From this we deduce that F is
continuous.

Put G(x) = F (x + g) � g for x 2 D = fu 2 C(T;E) : u(t) 2 B for t 2 Tg.
Then G is a continuous mapping D ! D. Now we shall show that G satis�es the
assumptions of Theorem 1.

Assume that x 2 D, x = �G(x) and 0 < � < 1, and suppose that x 2 @D.
Then there exist a t 2 T and an i, 1 � i � m, such that pi(x(t)) = b. As G(x) 2 D,
we have b = pi(x(t)) = �pi(G(x)(t)) � �b < b, which is impossible.

Assume now that V = fun : n 2 Ng is a countable subset of D such that

V � conv(G(V ) [ f0g): (5)

Then
V (t) � conv(G(V )(t) [ f0g) for t 2 T . (6)

Let (tn) be a dense sequence in T , and let Z be the closed linear hull of the set�
g(ti); un(ti); f(ti; tj ; un(tk) + g(tk)) : i; j; k; n 2 N

	
:

Then Z is a separable quasicomplete locally convex subspace of E, and g(t) 2 Z,
f(t; s; un(s) + g(s)) 2 Z, un(t) 2 Z, G(un)(t) 2 Z for t; s 2 T and n 2 N.

For any bounded subset A of Z and p 2 P , denote by �zp(A) the in�mum of all
" > 0 for which there exists a �nite subset Q of Z such that A � Q+Bp("). Since
the set G(V ) is equiuniformaly continuous, from (5) it follows that the function
t! �p(V (t)) is continuous. It is clear from (4) that

�zp(ff(t; s; un(s) + g(s)) : n 2 Ng) � 2�p(ff(t; s; un(s) + g(s)) : n 2 Ng)

� 2Kp(t; s)�p(fun(s) + g(s) : n 2 Ng) = 2Kp(t; s)�p(V (s)):

Hence, by (6) and Lemma, we get

�p(V (t)) � �p(G(V )(t)) � �zp(G(V )(t))

= �zp

��
�

Z
T

f(t; s; un(s) + g(s)) ds : n 2 N

��

� j�j

Z
T

�zp(ff(t; s; un(s) + g(s)) : n 2 Ng) ds

� 2j�j

Z
T

Kp(t; s)�p(V (s)) ds for t 2 T .
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As 2j�jr( eKp) � 2j�jr0 < 1, this implies that �p(V (t)) = 0 for t 2 T and p 2 P .
hence for any t 2 T the set V (t) is relatively compact in E. By Ascoli's theorem
[3, Th. 7.17] we deduce from this that V is relatively compact in C(T;E). Now
we can apply Theorem 1 which yields the existence of u 2 D such that u = G(u).
Obviously x = u� g 2 H and x = F (x), so that x is a continuous solution of (1).

3. A Kneser-Hukuhara theorem. Consider now the equation (2). Let
us recall that a function h : T � T � R+ ! R+ is called a Kamke function if h
satis�es the Caratheodory conditions and, for each 0 < d � a, the function u = 0
is the unique nonnegative continuous solution of the inequality

u(t) �

Z t

0

h(t; s; u(s)) ds on [0; d].

By arguing similarly as in the proof of Theorem 2 and by applying Lemma from
[6], we can prove the following

Theorem 3. Assume that for any p 2 P there exists a function (t; s; u) !
hp(t; s; u) such that 2hp is a Kamke function, hp is nondecreasing in u and

�p(f(t; s;X)) � hp(t; s; �p(X))

for t; s 2 T and for each bounded subset X of E. Then there exists an inerval

J = [0; d] such that the set of all continuous solutions x : J ! E of (2), considered
as a subset of C(J;E), is nonempty, compact and connected.

Let us remark that the result above generalizes Theorem 1 of [6].
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