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ON THE URYSOHN INTEGRAL EQUATION
IN LOCALLY CONVEX SPACES

Janusz Januszewski and Stanislaw Szufla

Abstract. This paper contains an existence theorem for the Urysohn integral equation in
locally convex spaces. In the proof of this theorem we employ a modified version of Moénch’s fixed
point theorem and measures of noncompactness.

1. Introduction. By repeating Monch’s argument from the proof of
Theorem 2.2 of [4] and by using the Schauder-Tychonoff theorem instead of the
Schauder theorem, we can prove the following fixed point theorem.

THEOREM 1. Let D be an open subset of a quasicomplete locally conver space
X,0€ D, and let G be a continuous mapping of D into X. If the implication

Vceonv({0}UG(V)) =V is relatively compact
holds for every countable subset V of D, and G satisfies the boundary condition
re€D, 0<a<l, r=aGx) = x¢0dD,
then G has a fized point in D.

Let T = [0, a] and let W be an open subset of a quasicomplete locally convex
space E. In Section 2 we shall apply Theorem 1 to obtain an existence theorem for
continuous solutions of the Urysohn integral equation

Mﬂzﬁﬂ+kﬁj@ﬁwwnﬁ, 1)

where f is a bounded continuous function from 7' x T" x W into E and g is a
continuous function from 7" into W. Next, in Section 3, by applying Lemma of [6]
we shall show that the set of all continuous solutions of Volterra integral equation

t
o(t) = g0) + [ S(t.5,2())ds @)
0
is a continuum in the corresponding function space.
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2. An existence theorem. Let P be a family of continuous seminorms
generating the topology of E. For any p € P and for any bounded subset A of E
denote by £,(A) the infimum of all € > 0 for which there exists a finite subset @
of E such that A C Q + Bp(e), where B,(e) = {z € E : p(z) < ¢}. The family
(Bp(A))pep is called the Hausdorff measure of noncompactness of A (for properties
see [5]). Denote by C(T, E) the space of continuous functions 7' — E with the
topology of uniform convergence. For any subset H of C(T, E) put H(t) = {u(t) :
u € H}. The following has been proved in [8]:

LEMMA. If the space E is separable, then for any bounded countable subset
H of C(T,E) the function t — B,(H(t)) is measurable on T and

6p<{/Tw(t)dt:meH}> s/Tﬁ,,(H(t))dt.

Let Q denote the family of all open, balanced and convex neighbourhoods of
0 in E. We assume that

3)

for each U € Q there exists an € > 0 such that f(¢,s,z) — f(r,s,2) €U
for x € W and s,t,r € T such that |t —r| <e.

THEOREM 2. Assume that for each p € P there exists a continuous function
K,:TxT — Ry such that

Bp(f(t,5,Y)) < Kp(t, 5)Bp(Y) (4)

for t,s € T and for each bounded subset Y of W. Moreover, assume that there is

an g > 0 such that for each p € P the spectral radius r(K ) of the integral operator
K,, defined by

Rut) = /T K(t,s)u(s)ds  (u€ C(T,R), t€T)

is less than ro. Then there exists a positive number n such that for each A € R with
|A| < n the equation (1) has at least one continuous solution.

Proof. As W is open and g is continuous, we can choose a set B of the
form B = {z € E : p;(z) < b,i =1,...,m}, where, p1,...,pm € P, such that
g(t) + B C W for t € T. From the boundedness of f it follows that there exists a
p > 0 such that [—p, pJconv f(T x T x W) C B. Let n = min(p/ mesT,1/2rq). Fix
A € R with |A\] < n. Put

H={ueC(T,E):u(t)—gt)e B forteT}

and
F(z)(t) :g(t)+)\/Tf(t,s,a:(s))ds (x € H, teT).
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As
F(z)(t) —g(t) € [-|Al, |\]]mes T conv f(T x T x W)
Cl-p,plconv f(T xT x W) CB forz € H,
we see that F' maps H into H. Moreover, from (3) it is clear that the set F/(H)
is equiuniformly continuous. By Lemma 2 of [7] for any v € H and U; €  there
exists a Us € §2 such that
ft,s,2(s)) — f(t,s,u(s)) € Uy for t,s,€T,

whenever z € H and z(t) —u(t) € Uz for all t € T'. From this we deduce that F' is
continuous.

Put G(z) = F(x +g) —gforz € D ={u € C(T,E) : u(t) € B fort e T}.
Then @ is a continuous mapping D — D. Now we shall show that G satisfies the
assumptions of Theorem 1.

Assume that z € D, ¢ = aG(z) and 0 < a < 1, and suppose that € dD.
Then there exist a ¢t € T and an i, 1 <7 < m, such that p;(z(¢t)) = b. As G(z) € D,
we have b = p;(z(t)) = ap;(G(z)(t)) < ab < b, which is impossible.

Assume now that V = {u, : n € N} is a countable subset of D such that

V c conv(G(V) U {0}). (5)
Then

V(t) c conv(G(V)(t) U {0}) for teT. (6)
Let (t,,) be a dense sequence in T, and let Z be the closed linear hull of the set
{g(tl)7 un(tz)a f(tl) tj) un(tk) + g(tk)) : i:j) k; ne N} .

Then Z is a separable quasicomplete locally convex subspace of E, and ¢(t) € Z,
ft,s,un(s) +g(s)) € Z, un(t) € Z, G(uy)(t) € Z for t,s € T and n € N.

For any bounded subset A of Z and p € P, denote by 3;(A) the infimum of all
e > 0 for which there exists a finite subset () of Z such that A C @ + Bp(e). Since
the set G(V') is equiuniformaly continuous, from (5) it follows that the function
t — Bp(V (t)) is continuous. It is clear from (4) that

Bp({f(t,s,un(s) +g(s)) : n € N}) < 2B,({f (¢, 5,un(s) + g(s)) : n € N})
< 2Kp(t,5)Bp({un(s) + g(s) : n € N}) = 2K (t,5) 3, (V (s))-

Hence, by (6) and Lemma, we get
Bp(V (1) < Bp(G(V)(1)) < BL(G(V)(2))

— ({A | #tsuno) + gt ds e N})
< /T B2 (L (t, 5, un(s) + 9(s)) : n € N}) ds

< 2|7l /TKp(t,s)Bp(V(s)) ds forteT.
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As 2|\r(K,) < 2|\|ro < 1, this implies that 8,(V(t)) = 0 for t € T and p € P.
hence for any t € T the set V(t) is relatively compact in E. By Ascoli’s theorem
[3, Th. 7.17] we deduce from this that V' is relatively compact in C(T, E). Now
we can apply Theorem 1 which yields the existence of u € D such that v = G(u).
Obviously ¢ = u — g € H and « = F(z), so that z is a continuous solution of (1).

3. A Kneser-Hukuhara theorem. Consider now the equation (2). Let
us recall that a function h : T x T x Ry — Ry is called a Kamke function if h
satisfies the Caratheodory conditions and, for each 0 < d < a, the function u = 0
is the unique nonnegative continuous solution of the inequality

u(t)g/0 h(t,s,u(s))ds on [0,d].

By arguing similarly as in the proof of Theorem 2 and by applying Lemma from
[6], we can prove the following

THEOREM 3. Assume that for any p € P there exists a function (t,s,u) —
hp(t,s,u) such that 2h, is a Kamke function, h, is nondecreasing in v and

Bp(f(t,5, X)) < hyp(t, s, Bp(X))

for t,s € T and for each bounded subset X of E. Then there exists an inerval
J = [0,d)] such that the set of all continuous solutions x : J — E of (2), considered
as a subset of C(J, E), is nonempty, compact and connected.

Let us remark that the result above generalizes Theorem 1 of [6].
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