
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 51 (65), 1992, 71{76

BEST COAPPROXIMATION IN METRIC SPACES

T.D. Narang

Abstract. As a counterpart to best approximation, the concept of best coapproximation
in normed linear spaces was introduced by C. Franchetti and M. Furi [2] in 1972. This study was
subsequently pursued in normed linear spaces and Hilbert spaces by H. Behrens, L. Hetzelt, P. L.
Papini, Geetha S. Rao, Ivan Singer, U. Westphal, the author and a few others (see e.g. [3], [5],
[7]). In this paper we discuss best coapproximation in metric spaces there by generalizing some
of the results proved in [3], [7] and [8].

The main object of the theory of best approximation is the solution to the
problem: Given a subset G of a metric space (X; d) and an element x 2 X , �nd an
element g0 2 G such that

d(x; g0) � d(x; g) for every g 2 G. (1)

The set of all such elements g0 2 G (if any), called the set of elements of best
approximation of x by elements of G, is denoted by PG(x). Clearly,

PG(x) =
h T
g2G

B(x; d(x; g))
i
\G;

where B(x; d(x; g)) denotes the closed ball in X with centre x and radius d(x; g).

Another kind of approximation, called best coapproximation was introduced
by Franchetti and Furi [2], who considered those elements g0 2 G satisfying

d(g0; g) � d(x; g) for every g 2 G. (2)

The set of all such g0 2 G (if any) is denoted by RG(x). Clearly,

RG(x) =
h T
g2G

B(g; d(x; g))
i
\G:

Many results in the theory of best approximation are available in metric spaces
(see e.g. Singer [9]). In this paper we discuss best coapproximation in metric spaces.
We start with recalling a few de�nitions.
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De�nition 1. A metric space (X; d) is said to be convex (or M-convex [1]) if
for every x; y in X , such that x 6= y, there exists a z in X di�erent from x and y
such that d(x; z) + d(z; y) = d(x; y). Such a point z is said to be between x and y.

De�nition 2. A subset G of a metric space (X; d) is said to be metrically

convex or convex in the sense of Menger (see [9]) or M-convex (see [1], also [4]) if
for every x; y in G, x 6= y, there exists a point z in G between x and y.

De�nition 3. Given a subset G of a metric space (X; d) and x 2 X , an element
g0 2 G satisfying (1) is called a best approximation to x in G, and satisfying (2) it
is called a best coapproximation to x in G. The set G is said to be proximinal or
an existence set of best approximation (respectively, coproximinal or an existence

set of best coapproximation) if PG(x) (respectively, RG(x)) is nonempty for every x
in X . It is said to be Chebyshev (respectively, co-Chebyshev) if PG(x) (respectively,
RG(x)) is exactly a singleton for every x in X .

In the theory of best approximation, it is well known (see e.g. [9]) that a
proximinal set in a metric space is a closed set. It was remarked in [1] that in
general, proximinal sets, or Chebyshev sets, are not M -convex and it is not known
whether in a H Hilbert space, every Chebyshev set isM -convex. For existence sets
of best coapproximation, we can however, prove the following:

Theorem 1. In a metric space, an existence set of best coapproximation is

closed and it is M-convex if the metric space is M-convex.

Proof . Let G be an existence set of best coapproximation in a metric space
(X; d). Then the set

RG(x) = fg0 2 G : d(g0; g) � d(x; g) for every g 2 Gg

is nonempty for every x 2 X .

Let p 2 G nG and g0 2 RG(p). Then there exists a sequence hgni in G such
that hgni ! p and d(g0; g) � d(p; g) for every g 2 G, and so d(g0; gn) � d(p; gn)
for every n. In the limiting case, this implies that hgni ! g0, and so p = g0 2 G.
Consequently, G is closed.

Now, suppose that the metric space isM -convex and g1; g2 2 G, g1 6= g2. Let
x 2 X be between g1 and g2 i.e. d(g1; x) + d(x; g2) = d(g1; g2). Let g0 2 RG(x).
We show that g0 2 G is between g1 and g2. Consider

d(g1; g2) � d(g1; g0) + d(g0; g2) � d(g1; x) + d(x; g2) = d(g1; g2);

so, d(g1; g0) + d(g0; g2) = d(g1; g2). Hence G is M -convex.

Remark 1. In �nite dimensional normed linear spaces, this result was proved
in [3].

De�nition 4. A mapping u : X ! 2Y , where X and Y are metric spaces and
2Y denotes the collection of all subsets of Y , is said to be:

(a) Upper (K)-semicontinuous if the relations limn!1 xn = x, yn 2 u(xn),
lim yn = y imply y 2 u(x),

(b) upper semicontinuous if the set fx 2 X : u(x) \ H 6= ?g is closed for each
closed N � Y .
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For a subset A of a metric space (X; d), we denote by RG(A) the setS
x2ARG(x). If D(RG) = fx 2 X : RG(x) 6= ?g, we de�ne the mapping

RG : D(RG) ! 2G by x 7! RG(x). In general, D(RG) 6= X and the mapping
RG is multivalued on D(RG) n G, but we always have G � D(RG), RG(x) = fxg
for every x 2 G, and the restriction of the mapping RG to G is single-valued.
We have D(RG) = X if G is coproximinal and is single-valued on X if G is co-
Chebyshev. This map RG, which takes each point x 2 D(RG) to those points of G
that are best coapproximations to x, is called the metric coprojection.

For closed subsets G we have:

Theorem 2. If G is a closed subset of a metric space (X; d), then:

(a) for each x 2 X , the set RG(x) is closed,

(b) the metric coprojection RG is upper (K)-semicontinuous on D(RG), and

(c) for each compact subset A of D(RG), the subset RG(A) is closed in C.

Proof . (a) Let g� be a limit point of RG(x). Then there exists a sequence
hgni in RG(x), such that hgni ! g�. Now:

gn 2 RG(x) =) d(gn; g) � d(x; y) for every g 2 G

=) lim
n!1

d(gn; g) � d(x; g) for every g 2 G

=) d(g�; g) � d(x; g) for every g 2 G

=) g� 2 RG(x) as g� 2 G by the closedness of G.

Hence, RG(x) is closed.

(b) Let limn!1 xn = x, xn 2 RG(xn) and lim gn = g�. To show g� 2 RG(x)
we have:

gn 2 RG(xn) =) d(gn; g) � d(xn; g) for every g 2 G

=) lim
n!1

d(gn; g) � lim
n!1

d(xn; g) for every g 2 G

=) d(g�; g) � d(x; g) for every g 2 G

=) g� 2 RG(x) as g� 2 G by the closedness of G.

Hence RG is upper-(K)-semicontinuous.

(c) Let g0 be a limit point of RG(A). Then there exists a sequence hgni in
RG(A) such that hgni ! g0. Since gn 2 RG(A), there exists an xn 2 A such that
gn 2 RG(xn). The compactness of the set A implies the existence of a subsequence
hxnii ! x0 2 A. Since gni 2 RG(xni), d(gni ; g) � d(xni ; g) for every g 2 G. In the
limiting case this implies d(g0; g) � d(x0; g) for every g 2 G, i.e. g0 2 RG(x0) �
RG(A). Hence RG(A) is closed.

Since for an existence sets of best coapproximation G, D(RG) = X , by using
Theorem 1, we have:

Corollary. If G is an existence set of best coapproximation, then RG(x) is
closed and RG : X ! 2G is upper (K)-semicontinuous.
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This is analogous to the following result in the theory of best approximation
(see [9]): If G is an existence set of best approximation, then PG(x) is closed and

PG : X ! 2G is upper (K)-semicontinuous.

De�nition 5. A subset G of a metric space (X; d) is said to be boundedly

compact if every bounded sequence in G has a subsequence converging to an element
of X .

It is easy to observe that for each x 2 X , RG(x) is a bounded subset of G.
For boundedly compact closed subsets G of X , we have:

Theorem 3. If G is a boundedly compact closed subset G of a metric space

(X; d), then:

(a) for each x 2 X, RG(x) is compact,

(b) RG is upper semicontinuous on D(RG), and

(c) for each compact subset A of D(RG), the subset RG(A) is compact in G.

Proof . (a) Let hgni be any sequence in RG(x). Then d(gn; g) � d(x; g) for
every g 2 G. Since RG(x) is bounded, hgni is a bounded sequence in G, and so
there is a subsequence hgnii of hgni such that hgnii ! g0 2 G, as G is also closed.
Consider

d(g0; g) = lim
i
d(gni ; g) � d(x; g)

for every g 2 G. So g0 2 RG(x), which implies that RG(x) is compact.

(b) Let N be a closed subset of G and B = fx 2 D(RG) : RG(x)\N 6= ?g. To
show that B is closed, let x be a limit point of B. Then there exists a sequence hxni
in B such that xn ! x. Now, xn 2 B implies that there exists a gn 2 RG(xn)\N ,
and so d(gn; g) � d(xn; g) for every g 2 G. Since G is boundedly compact and hgni
is bounded, there exists a subsequence hgnii of hgni such that hgnii ! g0 2 G (as
G is closed), and so d(gni ; g) � d(xni ; g) for every g 2 G implies d(g0; g) � d(x; g)
for every g 2 G. Therefore g0 2 RG(x) \N , i.e. x 2 B, and so B is closed, which
implies that RG is upper semicontinuous.

(c) Let hgni be a sequence in RG(A). Then there exists an xn 2 A such that
gn 2 RG(xn), and so d(gn; g) � d(xn; g), g 2 G. Since G is boundedly compact and
hgni is bounded, there exists a subsequence hgnii of hgni such that gni ! g0 2 G
(as G is closed). Since xni 2 A, the compactness of A implies the existence of
a subsequence hxnim i ! x 2 A. Now, gnim 2 RG(xnim ) implies d(gnim ; g) �
d(xnim ; g) for every g 2 G, which in the limiting case implies d(g0; g) � d(x; g) for
every g 2 G, i.e. g0 2 RG(x) � RG(A). Hence, RG(A) is compact.

Since for single-valued maps upper semicontinuity and continuity are equiv-
alent, we have:

Corollary. If G is a boundedly compact co-Chebyshev subset of a metric

space (X; d), then RG is continuous on X .

The following theorem gives another condition under which RG is upper
semicontinuous.
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Theorem 4. If G is a closed subset of a metric space (X; d) such that, for

every compact subset A of D(RG), the subset RG(A) is compact, then RG is upper

semicontinuous on D(RG).

Proof . Let N be a closed subset of G and B = fx 2 D(RG) : RG(x) \N 6=
?g. To show that B is closed, let x0 be a limit point of B. Then there exists a
sequence hxni in B such that xn ! x0. Now, xn 2 B implies that there exists a
gn 2 RG(xn) \ N , n = 1; 2; . . . . Let A = fx0; x1; x2; . . . g. Then A is a compact
subset of D(RG), and so RG(A) is compact in G. Since gn 2 RG(A), there is a
subsequence hgnii of hgni such that gni ! g0 2 RG(A) \ N . Now gni 2 RG(xni)
implies d(gni ; g) � d(xni ; g) for every g 2 G. In the limiting case, this gives
d(g0; g) � d(x0; g) for every g 2 G. Therefore, g0 2 RG(x0) \N , i.e. x0 2 B, and
so B is closed. Hence RG is upper semicontinuous.

Remark 2. For linear subspaces G of normed linear spaces, Theorems 3 and 4
were proved in [7].

Remark 3. From Theorem 3(c), we also get the upper semicontinuity of RG

for boundedly compact closed sets G from Theorem 4.

De�nition 6. For a metric space (X; d), a set-valued mapping T on X is said
to be quasi-nonexpansive if dist(Tx; p) � d(x; p) for every x 2 X and every �xed
point p of T (i.e. for p 2 T (p)).

The following theorem shows that existence sets of best coapproximation are
�xed point sets of quasi-nonexpansive mappings. For �nite dimensional normed
linear spaces, this result was observed in [3].

Theorem 5. An existence set of best coapproximation G in a metric space

(X; d) is a �xed point set of the quasi-nonexpansive mapping RG.

Proof . Let x 2 X . Then there exists a g0 2 G such that g0 2 RG(x), i.e.
d(g0; g) � d(x; g) for every g 2 G. This gives: dist(RG(x); g) � d(x; g) for every
g 2 G. Since RG(g) = g, RG is quasi-nonexpansive.

Let A = fx 2 X : x 2 RG(x)g. We claim that G = A, i.e. G is a �xed point
set of the quasi-nonexpansive mapping RG.

Let g 2 G; then g 2 RG(g), i.e. g 2 A, and so G � A. Now suppose x 2 A,
i.e. x 2 RG(x) � G, i.e. x 2 G, and so A � G. Hence G = A.

We say that g0 belongs strongly to RG(x) if x =2 G and there exists an r > 0
(r � 1) such that d(g0; g) + rd(g0; x) � d(x; g) for every g 2 G.

The following theorem gives an upper bound for the radius of the set of strong
coapproximation in metric spaces. For normed linear spaces, this result was proved
by P. L. Papini in [8].

Theorem 6. If G is a subset of a metric space (X; d) and x 2 X, then

the radius of the set of elements that belong strongly to RG(x) for a given r is not

larger than (1� r)D, where D = dist(x;G).
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Proof . Let " > 0 be arbitrary. Choose x" 2 G such that d(x; x") < D + ".
Let g0 belong strongly to RG(x), i.e. there exists an r, 0 < r � 1, such that
d(g0; g) + rd(g0; x) � d(x; g) for every g 2 G. Taking g = x", we obtain

d(g0; x") � d(x; x")� rd(g0; x) < D + "� rD = (1� r)D + ":

Since " > 0 is arbitrary, we get d(g0; x") � (1� r)D.

Remark 5. If RS;G(x) is the set of all those elements of G that belong strongly
to RG(x), the mapping RS;G : x 7! RS;G(x) de�ned on D(RS;G) = fx 2 X :
RS;G(x) 6= ?g is called the strong best coapproximation map. For linear subspaces
G of normed linear spaces, Theorem 2 and some other results were proved for RS;G

in [6], but all the proofs appear to be incorrect as they don't take into account the
fact that r in the de�nition of RS;G(x) may depend upon x.

Remark 6. As a counterpart to the notion of \sun" available in the literature
(�rst introduced by N.V. E�mov and S.B. Stechkin in the theory of best approxi-
mation in normed linear spaces, see e.g. [9]), we may introduce as follows the notion
of \cosun" in metric spaces.

An existence set of best coapproximation G in a metric space (X; d) is called
a cosun if for every x 2 X there is at least one g 2 RG(x) that is an element of
best coapproximation of each point on the ray through x originating from g, i.e.
on �!gx (we may recall that a point z 2 X is said to be on the ray �!xy if either z is
between x and y or y is between x and z).

In the theory of best coapproximation, cosuns have been discussed in �nite
dimensional normed linear spaces by L. Hetzelt in [3]. It would be interesting to
study cosuns in metric spaces.
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