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PROPERTIES OF SOLUTIONS OF SOME LINEAR CLASS OF
INTEGRODIFFERENTIAL EQUATIONS OF VOLTERRA TYPE

J. Morchalo

Abstract. We present a method for calculating a fundamental matrix of the equation (3).
In addition we give a formula for a particular solution of the system (1).

We shall associate the linear neutral Volterra integrodifferential equation

1) e /ct—s (55 = )]

= A(t)x(t) + B(t / F(t—s)z(s)ds + f(t)

C(t—s)x(s)ds — g(t)]

t

= A@t)z(t) + B(t) | F(t —s)x(s)ds + f(t)

to

to

via the resolvent equation

(3) % [Z(t) -/ C(t—s)Z(s) ds]

¢
=A(t)Z(t)+ B(t) | F(t—s)Z(s)ds, Z(tg) = Ey.
to
Here and hereafter z is an n-vector, A(t) and B(¢) are n x n matrices continuous
on (—00,00), g, f : (—00,00) = R" are continuous, E, the n x n identity matrix,
Z an n x n matrix, and C(t), F(t) are matrices n x n which can be represented in
the form

Z¢] exp aj ) Z‘Pj €xp ﬂ]
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where . .
Y;(t) = Z Ps;it’, pi(t) = Z ps;it°
s=0 s=0

and 1,j, @,; are constant n X n matrices, a;, 3 = const.

In the case where C(t) = ¢g(t) = 0 and A(t) = A, B(t) = E,, T. Burton [1]
proved that for any bounded solution z(t) of (2) there exists an integer sequence
n; — 0o as j — oo such that z(t + n;T) (T > 0) converges to a solution z*(t) of
(1). A similar result can be found in [2] for the case g(t) = 0 under the assumptions
Z € L'{0,00) and lim;_,, Z(t) = 0. In [3], the discussion of the T-periodic solution
of (1) (in the case g(t) = 0) depended heavily on the behaviour of solutions of the
integral equation

h(t) = /0 Ct — $)h(s) ds + F(2).

In [4] Jianhong Wu proved by using the variation of constants formula for
equation (2) that if Z,Z' € L'(0,00)), then there exists a unique globally stable
T-periodic solution

t

g(t)+/ Z'(t — s)g(s) ds—l—/ Z(t—s)f(s)ds

of equation (1), where Z(t) is the solution of equation (3).

The present paper is an extension of [1—4]. We shall present some facts
relative to the existence of periodic and almost periodic solutions of the systems

(1)=(2).
Putting

/ exp(a;(t — 2))(t — 2)°z(2) dz = u,;(t),

/t exp(B;(t — 2))(t — 2)°5(2) dz = yos(H), (=0, ms, j=1,... k)

the system (2) becomes equivalent to the system

dzx k k. nj k nj
— = (A(t) + Z%j)w + B(t) 2o X ¢sjysi + 2o 2 Ysj(ajusj + sus—1 ;)
dt j=1 j=15=0 j=1s=1
k
(4) + _El¢0jajU0j +f(t)+4'(t)
=
d’LLo' dy[)‘ .
dtJ:“%‘“oj, dt]:m+ﬁjyow J=1,....k
At dys; s=1,...,n;,
d:j = QjUugj + Sus_1j, d;] = sYs—1; + BjYsj, =1,k

with initial conditions

(5) yS](tO):07 usj(to):(), SZOa"':”jaj:l:"'ak
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as only ¢'(t) exists and is continuous for ¢ > to.

Of course the derivative z'(t) and ftto C(t — s)x(s)ds must exist for the
representation (4).

THEOREM 1. Let W (t,to), (W (to,to) = Ep) be the p x p fundamental matriz
of the system (4) with f(t) = g(t) = 0; then the fundamental n x n matriz X (t,to),
(X (t,t0) = Eyn) of system (3) is the upper left minor of degree n of W(t,to), i.e.

W(t,to) = [Q R

X P}

Proof. Let W (t,to) denote the fundamental p x p matrix of system (4) with
f(t) = g(t) = 0, where p = n(2k + 1 + 2 2521 n;). Since the general solution of
system (4) with f(t) = ¢g(t) = 0 has the form W (¢,ty)C, where C is a p-dimensional
vector, then in order to obtain a general solution of problem (4)—(5) it is necessary
to equate all components of W (¢, to)C except of the first n to zero and express some
of the p — n arbitrary constants of the vector C' in terms of any constants of the
vector C. Since W (to,to) = Ep, then cpqy1 = ... =¢, =0, where ¢; (i =1,...,p)
are components of the vector C. Hence the fundamental n x n matrix X (¢, o),
(X (to,to) = Ey) of system (3) is equal to the upper left minor of degree n of
W (t, o).

Let W (t) (W (to) = E,) denote the fundamental matrix of (4) with f(¢) =
g(t) = 0 and let A(t), B(t) be periodic of period w, then by the Floqueta Theorem

(6) W(t) = Q(t) exp(A(t —to))
where Q(t) is periodic of period w, Q(tp) = E,, and A is a constant matrix.

THEOREM 2. Let (6) be the fundamental matriz solution of (4) such that
W (to) = Ep, then
X(t) = Q(t) exp(A(t — to)) M

will be a fundamental matriz solution of (3) such that X (to) = E,, where Q*(t)
is an n X p periodic matriz of period w obtained by deleting the last p —n rows in
the matriz Q(t), M = (m;;) is a p X n matriz with the property that m;; = 1 for
i=1,...,n and my; =0 for i # j.

Proof. From (6) the general solution of system (4) with f(¢) = g(t) = 0 has
the form Q(t) exp(A(t —to))C, where C is a p-dimensional vector. Let z(tp) = c*,
where c* is an n-dimensional vector. By Theorem 1, in order to obtain a general
solution of (2) with f(t) = g(¢t) = 0 it is necessary to equate the components
Cn+1,--- ,Cp tO zero.

Hence the general solution of (2) with f(t) = g(¢) = 0 and the fundamental
matrix of (3) can be represented by

z(t) = Q" (t)exp(A(t —to))Mc* and X(t) = Q*(t) exp(A(t —to)) M.
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Let W (t) (W(to) = E,) denote the fundamental matrix of (4). Equation (4)
with initial values z(to) = o, ys;j(to) =0, usj(to) =0,s=0,...,n;,j=1,... ,k,
is equivalent to the equation

(7) 2(t) =W(t)zo + [ WEOWH(r)[®1(r) + ®o(r)] dr

to

where

(I>1(t) = COl(f(t)v 0) 07 0) 0)7 (§2(t) = COl(g’(t)) 07 0) 07 0))

z(t) = col(@ (), yo; (), ys; (£), uo; (1), us; (1))
zo = col(zy,0,0,0,0), (s=0,...,n5, j=1,...,k).
The first n components of (7) give the solution of (2) with initial conditions z(to) =
Tg, i.e.
¢

(8)  =x(t) = X(t to)(zo — g0) +g(t) + t X(t,r)f(r)dr + t X, (t,r)g(r) dr,

where g9 = g(ty) and X (¢, s) is the fundamental n x n matrix of (3) defined in
Theorem 1.

For further consideration we assume that ¢ty = 0.

LeEmMA. If 1° A(t), B(t), f(t),g(t) are periodic of period w; 2° x(t) is the
solution of (2), then z(t + w) is the solution of (2) if and only if

9) /W[Ct(t*‘w_f')+B(t)F(t+w—r)]x(r)dr:0.
0
Proof. From the identity

Hetwrwr= [ 0+ ety de —gt0)

t+w
— A(D)a(t +w) + B(2) /0 Flt +w—r)a(r) dr + £(t)

and
% [w(t +w) — /0 Ct—r)z(r+w)dr— g(t)}
— A(t)e(t +w) + B(2) /0 Ft = r)a(r +w)dr + £(t)
we see that
d w w
a/o Ct+w—r)z(r)dr +B(t)/0 Ft4+w—r)z(r)ydr =0.
Hence

/w (Cit+w—7)+BH)F(t+w—r))z(r)dr =0.

The sufficiency is obvious.
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THEOREM 3. If A(t), B(t), f(t) and g(t) are periodic of period w, then the
solution x(t) of (2) is periodic if and only if (9) and z(0) = z(w) hold.

Proof. If (9) and z(0) = x(w) hold, then the solutions z(t + w) and z(t)
coincide for t = 0. Hence, according to the uniqueness theorem, they coincide for
any t and thus z(t) is periodic of period w. If the solution z(t) of (2) is periodic of
period w, then the above conditions are obviously verified.

Ezample. Consider the scalar equation

%{m(t) —/0 exp(—A(t — $))a(s) ds — ;cost

¢
= —z(t) + 4/ exp(—4(t — s))z(s)ds + 2 cost + sin t.
0

It is not difficult to show that this equation has a periodic solution
x*(t) = 2sint + (1/2) cost

THEOREM 4. If 1° A(t), B(t), f(t), g(t) are periodic of period w;

2° det(E,, — X (w,0)) # 0,
then the system (2) admits a periodic solution of period w if and only if
z(t) = X(t,0)[E, — X(w,O)]l{/ X (w,r)f(r)dr + / X, (w,r)g(r) dr}
(10) . ° 0
+g(t) +/ X(t,r)f(r)dr + / X, (t,r)g(r)dr

0 0

satisfies (9). This solution is (10).

Proof. Let z(t) be a periodic solution of period w of the system (2), then
from (8)

£(0) = X (0,00 — g0) + 9(0) + | " X (@) f(r) dr + / " X (w,)g(r) dr.

Hence, since det(E, — X (w,0)) # 0 we have that

o = go + (Epn — X(w,O))_l{/OwX(w,r)f(r) dr + /Ow X! (w,r)g(r) dr}.

The solution z(t) can therefore be written as (10).
The rest of this proof is very similar and therefore is omitted.

Following an argument similar to those of [4, Theorem 2; 3, Theorem 2] we
get

THEOREM 5. Let C,F € L'(0,00) and let A(t), B(t), f(t),g(t) be periodic of
period w. If x(t) = x(t,0,20) is a bounded solution of (2) on (0,00), then there is
a sequence of positive integers {n;}, nj — co as j — oo, such that {z(t + n;w)}
converges uniformly on compact subsets of (—o00,00) to a function x*(t) which is
a solution of (1).
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Proof. Let C,F € L'(0,00) and let x(t) be a bounded solution of (2) on
(0,00). We want to show that {z(t + nw) :n = 1,...} is equicontinuous and
uniformly bounded on any fixed interval (—k, k).

For to > t; > —nw, we integrate (2) from t1 + nw to ty + nw and get

z(ta + nw) — z(t1 + nw)

to+nw t1+nw
:/ C(t2 + nw — s)x(s )ds—/ C(t1 +nw — s)x(s) ds
0

+/tt:7:w<A t) + B(t /Ft—s ds+f()>

+ g(t2 + nw) — g(t1 + nw).

The functions z(t), f(t), A(t), B(t) are bounded and F € L!'(0,00), hence there
exist M and N such that |z(t)] < M, |f(¢)] < M, |A(t)] < M, |B(t)] < M for
t € (0,00) and [;° |F(t)|dt = N < co. Thus

to+nw

/t1+nw

where M; = M(1+ MN + M). Since C € L'(0,00), then for any € > 0, there
exists a T' > 0 such that

A(t)x(t) + B(t /Ft—s ds+f()‘dt§M1|t2—t1|

o0

o 3
— i >T —
A‘|C@Hds<8A[ ort>T andso LL‘KXQ b4 o) = ) dv <
By the continuity of C, there exists a d; > 0 such that for v € (0,7) and
OStQ_tl §61 we have

€

to—1t1
(Clts 1 +0) = O@)| < g and A CO)ldv < .

Thus

tot+nw t1+nw
/ C(t2 +nw — s)x(s) ds — / C(t1 +nw — s)x(s) ds
0 0

t1+nw to— t1
gA@/ IC(ts — t1 +v) — Clo Mv+M/h o) do
0

SM/TW@—Q+M—C@WM+M/ C(ts — t1 +v) — C(v)| dv
T

to— tl 3
+M/ Cw)ldv < 3

ifOSt2—t1 S(Sl
By the continuity of g, there exists a do > 0 such that

0 < (t2 +nw) — (t1 +nw) <y imply |g(t2 + nw) — g(t1 +nw)| < /8.
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Let § = min(dy,e/8Mj,d2). Then we have
|z(t2 + nw) —x(t; + nw)| <e if 0<t,—t; <4

This implies that {z(¢ + nw)} is equicontinuous and uniformly bounded on any
fixed interval (—k,k), k = 1,2,.... By Ascoli’s theorem there is a subsequence
{z(t + niw)} of the z(t + nw)’s converging uniformly on (—1,1), which contains
a subsequence {z(t + mow)} on (—2,2). Proceeding inductively we obtain a
subsequence, say {z(t + njw)}, converging uniformly on any fixed interval (—k, k)
to a continuous function z*(¢).

Now, we show that z*(¢) is a solution of (1). Integrating (2) from njw to
t 4+ njw, we have

t+n;
z(t + njw) — z(njw) = / C(t+njw—s)x ds—/ C(njw — s)z(s)ds

+/;:njw<A s) + B(s /Fs—v v)dv + f(s )>

J

+g(t +njw) —g(nw)

= /t C(t —v)z(v + njw) dv — /0 C(=v)z(v + njw) dv

+ /Ot <A(U +nw)z(v +njw)

+ B(v + njw) /Unjw Fv —u)z(u + njw) du + f(v)) dv + g(t) — g(n;jw)
= /—tn,-w C(t —v)z(v+njw)dv — /—On,-w C(—v)z(v +njw) dv
+ /Ot <A(v)w(v +njw) + B(v) /Unjw F(v —u)z(u + njw) du + f(v)) dv

+9(t) — g(n;w).

Since C,F € L'(0,00), by Lebesgue’s dominated convergence theorem by
letting j — oo, we have

z* / C(t—v)x dv—/ C(- v) dv

+A<A@)()+B(XKMFW—M ()m+f(0dv+mﬂ—ww)

Hence, by differentiation, we have

[ / Ot — v)* (v) do — U]

— A(t) <>+B<>/_ F(t - v)a* (o) dv + £(2)
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and so the limit function z*(¢) is a solution of (1).

Let A(t) and B(t) be periodic and f,g — almost periodic and Rea; < 0,
ReB; < 0. Let x(t) be an almost periodic solution of (2). Then

t
/ ePit=2) (t — 2)%x(2) dz

0
0 t
=— / ePit=2) (t — 2)%2(2) dz + / eFit=2) (1 — 2)%2(2) dz,
where ffoo ePi(t=2)(t — 2)x(z) dz is an almost periodic function. Since z(t) is an
almost periodic solution of (2), then
0

n;
(1) 3 Bl)es; / D () dz =0 (G=1,... k).
5=0 —00
It is easy to see that
n; 0
S BOgy [ A= a@ s (=1 B
s=0 —00
is an almost periodic function. In this case, if
nj; 0
(1) S 00; / (- () dz =0 (G =1,... k).
5=0 —oo
then

nj; t
Y Psj / e (¢ — 2)x(2) dz
s=0 0

is an almost periodic function.

On the ground of conditions (11), (11'), the solution z(t) of the system (2) is
the solution of the system (1).

Note that (1) is equivalent to the system

dw k ko nj
= [AW + X oo |+ BOE ¥ e
dt j=1 j=15=0
k nj k ,
(12) + 2 le/Jsj(ajvsj +svs-15) + D tojajuoj + f(E) +9' ()
j=ls= j=1
dvgj/dt:a:—i—ajvoj, dwoj/dt:x+ﬂjw0j s=1,...,n;,
dvsj/dt:ajvsj + SUs—15, dwsj/dt:sws_1j+ﬂjwsj j=1,... k
where
t t
ws;(t) = / P2 (t — 2)%x(2) dz, vs;(t) = / e =2 (¢ — 2)%x(2) dz.

According to the assumption, z(t¢) is an almost periodic function, so ws;(¢) and
vs;(t) are almost periodic functions.
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THEOREM 6. If A(t) and B(t) are periodic, f,g are almost periodic and
Rea; <0,RefB; <0 (j=1,...,k), then x(t) is an almost periodic solution of the
system (2) if and only if (x(t),ws;(t),vs;(t)) is an almost periodic solution of the
system (12) and conditions (11)—(11") are satisfied.

Proof. If the system (2) admits an almost periodic solution z(t), then the
conditions (11)—(11") are obviously verified and (12) has an almost periodic solution.

Conversely, if (12) has an almost periodic solution and conditions (11)—(11")
are satisfied, then the solution z(t) of (2) is almost periodic.

Remark. If A(t) = A = const, B(t) = B = const, ty = 0, then the system (2)
has a general solution of the form

z(t) = X (t)(xo — go) + g(t) + /0 X(t—s)f(s)ds+ /0 X'(t — s)g(s)ds.

REFERENCES

[1] T. A. Burton, Periodic solution of linear Volterra equations, Funkcial. Ekvac. 27 (1984), 229—
253.

[2] Z.-C. Wang, Periodic solution of linear neutral integrodifferential equations, Tohoku Math. J.
38 (1986), 71-83.

[8] Z.-C. Wang, J.-H. Wu, and Z.-X. Li, The variation of constants formula and periodicity for
linear neutral integrodifferential equations, Funkcial. Ekvac. 29 (1986), 121-130.

[4] Jianhong Wu, Globally stable periodic solutions of linear neutral Volterra integrodifferential
equations, J. Math. Anal. Appl. 130 (1988), 474-483.

Institute of Mathematics (Received 20 07 1990)
Technical University of Poznan
Poznan, Poland



