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PROPERTIES OF SOLUTIONS OF SOME LINEAR CLASS OF

INTEGRODIFFERENTIAL EQUATIONS OF VOLTERRA TYPE

J. Morcha lo

Abstract. We present a method for calculating a fundamental matrix of the equation (3).
In addition we give a formula for a particular solution of the system (1).

We shall associate the linear neutral Volterra integrodi�erential equation

d

dt

�
x(t)�

Z t

�1

C(t� s)x(s) ds � g(t)

�
(1)

= A(t)x(t) +B(t)

Z t

�1

F (t� s)x(s) ds + f(t)

with

d

dt

�
x(t)�

Z t

t0

C(t� s)x(s) ds � g(t)

�
(2)

= A(t)x(t) +B(t)

Z t

t0

F (t� s)x(s) ds + f(t)

via the resolvent equation

d

dt

�
Z(t)�

Z t

t0

C(t� s)Z(s) ds

�
(3)

= A(t)Z(t) +B(t)

Z t

t0

F (t� s)Z(s) ds; Z(t0) = En:

Here and hereafter x is an n-vector, A(t) and B(t) are n � n matrices continuous
on (�1;1), g; f : (�1;1) ! Rn are continuous, En the n� n identity matrix,
Z an n� n matrix, and C(t), F (t) are matrices n� n which can be represented in
the form

C(t) =
kX

j=1

 j(t) exp(�j t); F (t) =
kX

j=1

'j(t) exp(�j t)
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where

 j(t) =

njX
s=0

 sjt
s; 'j(t) =

njX
s=0

'sjt
s

and  sj , 'sj are constant n� n matrices, �j ; �j = const.

In the case where C(t) = g(t) = 0 and A(t) = A, B(t) = En T. Burton [1]
proved that for any bounded solution x(t) of (2) there exists an integer sequence
nj ! 1 as j ! 1 such that x(t + njT ) (T > 0) converges to a solution x�(t) of
(1). A similar result can be found in [2] for the case g(t) = 0 under the assumptions
Z 2 L1h0;1) and limt!1 Z(t) = 0. In [3], the discussion of the T -periodic solution
of (1) (in the case g(t) = 0) depended heavily on the behaviour of solutions of the
integral equation

h(t) =

Z t

0

C(t� s)h(s) ds+ f(t):

In [4] Jianhong Wu proved by using the variation of constants formula for
equation (2) that if Z;Z 0 2 L1h0;1)), then there exists a unique globally stable
T -periodic solution

g(t) +

Z t

�1

Z 0(t� s)g(s) ds+

Z t

�1

Z(t� s)f(s) ds

of equation (1), where Z(t) is the solution of equation (3).

The present paper is an extension of [1{4]. We shall present some facts
relative to the existence of periodic and almost periodic solutions of the systems
(1){(2).

PuttingZ t

t0

exp(�j(t� z))(t� z)sx(z) dz = usj(t);

Z t

t0

exp(�j(t� z))(t� z)sx(z) dz = ysj(t); (s = 0; . . . ; nj ; j = 1; . . . ; k)

the system (2) becomes equivalent to the system

dx

dt
=
�
A(t) +

kP
j=1

 0j

�
x+B(t)

kP
j=1

njP
s=0

'sjysj +
kP

j=1

njP
s=1

 sj(�jusj + sus�1 j)

+
kP

j=1
 0j�ju0j + f(t) + g0(t)(4)

du0j
dt

= x+ �ju0j ;
dy0j
dt

= x+ �jy0j ; j = 1; . . . ; k

dusj
dt

= �jusj + sus�1 j ;
dysj
dt

= sys�1 j + �jysj ;
s = 1; . . . ; nj ;

j = 1; . . . ; k;

with initial conditions

(5) ysj(t0) = 0; usj(t0) = 0; s = 0; . . . ; nj ; j = 1; . . . ; k
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as only g0(t) exists and is continuous for t � t0.

Of course the derivative x0(t) and
R t
t0
C(t � s)x(s) ds must exist for the

representation (4).

Theorem 1. Let W (t; t0), (W (t0; t0) = Ep) be the p� p fundamental matrix

of the system (4) with f(t) = g(t) = 0; then the fundamental n�n matrix X(t; t0),
(X(t; t0) = En) of system (3) is the upper left minor of degree n of W (t; t0), i.e.

W (t; t0) =

�
X P
Q R

�
:

Proof . Let W (t; t0) denote the fundamental p� p matrix of system (4) with

f(t) = g(t) = 0, where p = n
�
2k + 1 + 2

Pk
j=1 nj

�
. Since the general solution of

system (4) with f(t) = g(t) = 0 has the formW (t; t0)C, where C is a p-dimensional
vector, then in order to obtain a general solution of problem (4){(5) it is necessary
to equate all components ofW (t; t0)C except of the �rst n to zero and express some
of the p � n arbitrary constants of the vector C in terms of any constants of the
vector C. Since W (t0; t0) = Ep, then cn+1 = . . . = cp = 0, where ci (i = 1; . . . ; p)
are components of the vector C. Hence the fundamental n � n matrix X(t; t0),
(X(t0; t0) = En) of system (3) is equal to the upper left minor of degree n of
W (t; t0).

Let W (t) (W (t0) = Ep) denote the fundamental matrix of (4) with f(t) =
g(t) = 0 and let A(t), B(t) be periodic of period !, then by the Floqueta Theorem

(6) W (t) = Q(t) exp(�(t� t0))

where Q(t) is periodic of period !, Q(t0) = Ep, and � is a constant matrix.

Theorem 2. Let (6) be the fundamental matrix solution of (4) such that

W (t0) = Ep, then

X(t) = Q�(t) exp(�(t� t0))M

will be a fundamental matrix solution of (3) such that X(t0) = En, where Q�(t)
is an n� p periodic matrix of period ! obtained by deleting the last p� n rows in

the matrix Q(t), M = (mij) is a p � n matrix with the property that mii = 1 for

i = 1; . . . ; n and mij = 0 for i 6= j.

Proof . From (6) the general solution of system (4) with f(t) = g(t) = 0 has
the form Q(t) exp(�(t� t0))C, where C is a p-dimensional vector. Let x(t0) = c�,
where c� is an n-dimensional vector. By Theorem 1, in order to obtain a general
solution of (2) with f(t) = g(t) = 0 it is necessary to equate the components
cn+1; . . . ; cp to zero.

Hence the general solution of (2) with f(t) = g(t) = 0 and the fundamental
matrix of (3) can be represented by

x(t) = Q�(t) exp(�(t� t0))Mc� and X(t) = Q�(t) exp(�(t� t0))M:
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Let W (t) (W (t0) = Ep) denote the fundamental matrix of (4). Equation (4)
with initial values x(t0) = x0, ysj(t0) = 0, usj(t0) = 0, s = 0; . . . ; nj , j = 1; . . . ; k,
is equivalent to the equation

(7) z(t) =W (t)z0 +

Z t

t0

W (t)W�1(r)[�1(r) + �2(r)] dr

where

�1(t) = col(f(t); 0; 0; 0; 0); �2(t) = col(g0(t); 0; 0; 0; 0);

z(t) = col(x(t); y0j(t); ysj(t); u0j(t); usj(t))

z0 = col(x0; 0; 0; 0; 0); (s = 0; . . . ; nj ; j = 1; . . . ; k):

The �rst n components of (7) give the solution of (2) with initial conditions x(t0) =
x0, i.e.

(8) x(t) = X(t; t0)(x0 � g0) + g(t) +

Z t

t0

X(t; r)f(r) dr +

Z t

t0

X 0

r(t; r)g(r) dr;

where g0 = g(t0) and X(t; s) is the fundamental n � n matrix of (3) de�ned in
Theorem 1.

For further consideration we assume that t0 = 0.

Lemma. If 1Æ A(t); B(t); f(t); g(t) are periodic of period !; 2Æ x(t) is the

solution of (2), then x(t+ !) is the solution of (2) if and only if

(9)

Z !

0

[Ct(t+ ! � r) +B(t)F (t+ ! � r)]x(r) dr = 0:

Proof . From the identity

d

dt

�
x(t+ !)�

Z t+!

0

C(t+ ! � r)x(r) dr � g(t)

�

= A(t)x(t + !) +B(t)

Z t+!

0

F (t+ ! � r)x(r) dr + f(t)

and

d

dt

�
x(t + !)�

Z t

0

C(t� r)x(r + !) dr � g(t)

�

= A(t)x(t + !) +B(t)

Z t

0

F (t� r)x(r + !) dr + f(t)

we see that

d

dt

Z !

0

C(t+ ! � r)x(r) dr +B(t)

Z !

0

F (t+ ! � r)x(r) dr = 0:

Hence Z !

0

�
Ct(t+ ! � r) +B(t)F (t+ ! � r)

�
x(r) dr = 0:

The suÆciency is obvious.
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Theorem 3. If A(t); B(t); f(t) and g(t) are periodic of period !, then the

solution x(t) of (2) is periodic if and only if (9) and x(0) = x(!) hold.

Proof . If (9) and x(0) = x(!) hold, then the solutions x(t + !) and x(t)
coincide for t = 0. Hence, according to the uniqueness theorem, they coincide for
any t and thus x(t) is periodic of period !. If the solution x(t) of (2) is periodic of
period !, then the above conditions are obviously veri�ed.

Example. Consider the scalar equation

d

dt

�
x(t) �

Z t

0

exp(�4(t� s))x(s) ds �
3

2
cos t

�

= �x(t) + 4

Z t

0

exp(�4(t� s))x(s) ds + 2 cos t+ sin t:

It is not diÆcult to show that this equation has a periodic solution

x�(t) = 2 sin t+ (1=2) cos t

Theorem 4. If 1Æ A(t); B(t); f(t); g(t) are periodic of period !;

2Æ det(En �X(!; 0)) 6= 0,

then the system (2) admits a periodic solution of period ! if and only if

(10)

x(t) = X(t; 0)[En �X(!; 0)]�1
�Z !

0

X(!; r)f(r) dr +

Z !

0

X 0

r(!; r)g(r) dr

�

+ g(t) +

Z t

0

X(t; r)f(r) dr +

Z t

0

X 0

r(t; r)g(r) dr

satis�es (9). This solution is (10).

Proof . Let x(t) be a periodic solution of period ! of the system (2), then
from (8)

x(0) = X(!; 0)(x0 � g0) + g(!) +

Z !

0

X(!; r)f(r) dr +

Z !

0

X 0

r(!; r)g(r) dr:

Hence, since det(En �X(!; 0)) 6= 0 we have that

x0 = g0 + (En �X(!; 0))�1
�Z !

0

X(!; r)f(r) dr +

Z !

0

X 0

r(!; r)g(r) dr

�
:

The solution x(t) can therefore be written as (10).

The rest of this proof is very similar and therefore is omitted.

Following an argument similar to those of [4, Theorem 2; 3, Theorem 2] we
get

Theorem 5. Let C;F 2 L1h0;1) and let A(t); B(t); f(t); g(t) be periodic of

period !. If x(t) = x(t; 0; x0) is a bounded solution of (2) on h0;1), then there is

a sequence of positive integers fnjg, nj ! 1 as j ! 1, such that fx(t + nj!)g
converges uniformly on compact subsets of (�1;1) to a function x�(t) which is

a solution of (1).
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Proof . Let C;F 2 L1h0;1) and let x(t) be a bounded solution of (2) on
h0;1). We want to show that fx(t + n!) : n = 1; . . . g is equicontinuous and
uniformly bounded on any �xed interval h�k; ki.

For t2 � t1 � �n!, we integrate (2) from t1 + n! to t2 + n! and get

x(t2 + n!)� x(t1 + n!)

=

Z t2+n!

0

C(t2 + n! � s)x(s) ds�

Z t1+n!

0

C(t1 + n! � s)x(s) ds

+

Z t2+n!

t1+n!

�
A(t)x(t) +B(t)

Z t

0

F (t� s)x(s) ds + f(t)

�
dt

+ g(t2 + n!)� g(t1 + n!):

The functions x(t); f(t); A(t); B(t) are bounded and F 2 L1h0;1), hence there
exist M and N such that jx(t)j � M , jf(t)j � M , jA(t)j � M , jB(t)j � M for
t 2 h0;1) and

R
1

0 jF (t)j dt = N <1. Thus

Z t2+n!

t1+n!

����A(t)x(t) +B(t)

Z t

0

F (t� s)x(s) ds + f(t)

���� dt �M1jt2 � t1j

where M1 = M(1 +MN +M). Since C 2 L1h0;1), then for any " > 0, there
exists a T > 0 such thatZ

1

t

jC(s)j ds <
"

8M
for t � T and so

Z
1

T

jC(t2 � t1 + v)� C(v)j dv <
"

4M
:

By the continuity of C, there exists a Æ1 > 0 such that for v 2 h0; T i and
0 � t2 � t1 � Æ1 we have

jC(t2 � t1 + v)� C(v)j <
"

4TM
and

Z t2�t1

0

jC(v)j dv <
"

4M
:

Thus ����
Z t2+n!

0

C(t2 + n! � s)x(s) ds�

Z t1+n!

0

C(t1 + n! � s)x(s) ds

����
�M

Z t1+n!

0

jC(t2 � t1 + v)� C(v)j dv +M

Z t2�t1

0

jC(v)j dv

�M

Z T

0

jC(t2 � t1 + v)� C(v)j dv +M

Z
1

T

jC(t2 � t1 + v)� C(v)j dv

+M

Z t2�t1

0

jC(v)j dv �
3

4

if 0 � t2 � t1 � Æ1.

By the continuity of g, there exists a Æ2 > 0 such that

0 � (t2 + n!)� (t1 + n!) � Æ2 imply jg(t2 + n!)� g(t1 + n!)j � "=8:



68 Morcha lo

Let Æ = min(Æ1; "=8M1; Æ2). Then we have

jx(t2 + n!)� x(t1 + n!)j � " if 0 � t2 � t1 � Æ:

This implies that fx(t + n!)g is equicontinuous and uniformly bounded on any
�xed interval h�k; ki, k = 1; 2; . . . . By Ascoli's theorem there is a subsequence
fx(t + n1!)g of the x(t + n!)'s converging uniformly on h�1; 1i, which contains
a subsequence fx(t + n2!)g on h�2; 2i. Proceeding inductively we obtain a
subsequence, say fx(t+ nj!)g, converging uniformly on any �xed interval h�k; ki
to a continuous function x�(t).

Now, we show that x�(t) is a solution of (1). Integrating (2) from nj! to
t+ nj!, we have

x(t+ nj!)� x(nj!) =

Z t+nj!

0

C(t+ nj! � s)x(s) ds�

Z nj!

0

C(nj! � s)x(s) ds

+

Z t+nj!

nj!

�
A(s)x(s) +B(s)

Z s

0

F (s� v)x(v) dv + f(s)

�
ds

+ g(t+ nj!)� g(nj!)

=

Z t

�nj!

C(t� v)x(v + nj!) dv �

Z 0

�nj!

C(�v)x(v + nj!) dv

+

Z t

0

�
A(v + nj!)x(v + nj!)

+B(v + nj!)

Z v

�nj!

F (v � u)x(u+ nj!) du+ f(v)

�
dv + g(t)� g(nj!)

=

Z t

�nj!

C(t� v)x(v + nj!) dv �

Z 0

�nj!

C(�v)x(v + nj!) dv

+

Z t

0

�
A(v)x(v + nj!) + B(v)

Z v

�nj!

F (v � u)x(u+ nj!) du+ f(v)

�
dv

+ g(t)� g(nj!):

Since C;F 2 L1h0;1), by Lebesgue's dominated convergence theorem by
letting j !1, we have

x�(t)� x�(0) =

Z t

�1

C(t� v)x�(v) dv �

Z 0

�1

C(�v)x�(v) dv

+

Z t

0

�
A(v)x�(v) +B(v)

Z v

�1

F (v � u)x�(u) du+ f(v)

�
dv + g(t)� g(1):

Hence, by di�erentiation, we have

d

dt

�
x�(t)�

Z t

�1

C(t� v)x�(v) dv � g(t)

�

= A(t)x�(t) +B(t)

Z t

�1

F (t� v)x�(v) dv + f(t)
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and so the limit function x�(t) is a solution of (1).

Let A(t) and B(t) be periodic and f; g | almost periodic and Re�j < 0,
Re�j < 0. Let x(t) be an almost periodic solution of (2). Then

Z t

0

e�j(t�z)(t� z)sx(z) dz

= �

Z 0

�1

e�j(t�z)(t� z)sx(z) dz +

Z t

�1

e�j(t�z)(t� z)sx(z) dz;

where
R t
�1

e�j(t�z)(t � z)sx(z) dz is an almost periodic function. Since x(t) is an

almost periodic solution of (2), then

(11)
njP
s=0

B(t)'sj

Z 0

�1

e�j(t�z)(t� z)sx(z) dz � 0 (j = 1; . . . ; k):

It is easy to see that

njP
s=0

B(t)'sj

Z 0

�1

e�j(t�z)(t� z)sx(z) dz (j = 1; . . . ; k)

is an almost periodic function. In this case, if

(110)
njP
s=0

'sj

Z 0

�1

e�j(t�z)(t� z)sx(z) dz � 0 (j = 1; . . . ; k):

then
njP
s=0

'sj

Z t

0

e�j(t�z)(t� z)sx(z) dz

is an almost periodic function.

On the ground of conditions (11), (110), the solution x(t) of the system (2) is
the solution of the system (1).

Note that (1) is equivalent to the system

dx

dt
=
h
A(t) +

kP
j=1

 0j

i
+B(t)

kP
j=1

njP
s=0

'sjwsj

+
kP

j=1

njP
s=1

 sj(�jvsj + svs�1 j) +
kP

j=1

 0j�jv0j + f(t) + g0(t)(12)

dv0j=dt = x+ �jv0j ; dw0j=dt = x+ �jw0j

dvsj=dt = �jvsj + svs�1 j ; dwsj=dt = sws�1 j + �jwsj

s = 1; . . . ; nj ;

j = 1; . . . ; k

where

wsj(t) =

Z t

�1

e�j(t�z)(t� z)sx(z) dz; vsj(t) =

Z t

�1

e�j(t�z)(t� z)sx(z) dz:

According to the assumption, x(t) is an almost periodic function, so wsj(t) and
vsj(t) are almost periodic functions.
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Theorem 6. If A(t) and B(t) are periodic, f; g are almost periodic and

Re�j < 0, Re�j < 0 (j = 1; . . . ; k), then x(t) is an almost periodic solution of the

system (2) if and only if (x(t); wsj (t); vsj(t)) is an almost periodic solution of the

system (12) and conditions (11){(110) are satis�ed.

Proof . If the system (2) admits an almost periodic solution x(t), then the
conditions (11){(110) are obviously veri�ed and (12) has an almost periodic solution.

Conversely, if (12) has an almost periodic solution and conditions (11){(110)
are satis�ed, then the solution x(t) of (2) is almost periodic.

Remark . If A(t) = A = const, B(t) = B = const, t0 = 0, then the system (2)
has a general solution of the form

x(t) = X(t)(x0 � g0) + g(t) +

Z t

0

X(t� s)f(s) ds+

Z t

0

X 0(t� s)g(s) ds:
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