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ON THE NUMBERS OF POSITIVE AND NEGATIVE

EIGENVALUES OF A GRAPH

Aleksandar Torga�sev

Abstract. We consider simple connected graphs with a �xed number of negative eigenval-
ues (including their multiplicities). We show that these graphs have uniformly bounded numbers
of positive eigenvalues, and the last numbers run over a set [m] = f1; 2; . . . ;mg.

Throughout this paper we consider only �nite connected graphs without loops
or multiple edges. The vertex set of a graph G is denoted by V (G), and its order
(the number of its vertices) by jGj. If H and G are graphs, relation H � G will
always mean that H is an induced subgraph of the graph G.

The spectrum of a graph G is the spectrum of its 0-1 adjacency matrix.
The number of its positive and the number of its negative eigenvalues (including
their multiplicities) are denoted by n+(G) and n�(G) respectively. For a positive
integer n, P (n) will denote the set of all connected nonisomorphic graphs with the
property n�(G) = n.

If G is a graph, consider the following equivalence relation � on the vertex
set V (G): two vertices x; y 2 V (G) are in relation � if and only if they are
nonadjacent and they have the same neighbours in G. This means that x and
y are related if and only if the corresponding rows (columns) of the adjacency
matrix are equal.

The corresponding quotient graph g is called the canonical graph of G. It is
also connected. The graph G is called canonical if g = G, that is if G has no two
equivalent vertices. If, for instance, G is an arbitrary complete p-partite graph,
then its canonical graph is the complete graph Kp with p vertices. The path Pm
with m vertices (m � 2) is a canonical graph if and only if m 6= 3.

Proposition 1 [6]. For an arbitrary graph G and its canonical graph g, the

following equalities hold :

n+(G) = n+(g); n�(G) = n�(g):
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Consequently, in the investigation of relations between the numbers of positive
and negative eigenvalues of graphs, we can consider only canonical graphs.

Next, let Pc(n) be the class of all nonisomorphic canonical graphs from the
class P (n). An important property of this class has been proved in [6].

Theorem A [6]. For each positive integer n, the class Pc(n) is �nite.

Consequently, we have that the number

An := supfn+(G) j G 2 Pc(n)g

is �nite, for every positive integer n.

Next, we need the notion of minimal graphs from the class P (n). A graph
G 2 P (n) is called minimal if no of its proper induced subgraphs is in the
class P (n). The set of all nonisomorphic minimal graphs from the class P (n)
is denoted by M(n). We obviously have that M(n) � Pc(n) for every positive
integer n. By Theorem A we also �nd that class M(n) is �nite for every n.

Proposition 2. For every positive integer n, the numbers fjH j : H 2M(n)g
run over the set fn+ 1; n+ 2; . . . ; 2ng.

Proof . Since each graph H 2 M(n) has exactly n negative and at least one
positive eigenvalue, we obviously have that jH j � n + 1. The fact that all graphs
H 2M(n) have at most 2n vertices, will be proved by induction on n.

As is known, the class M(1) contains exactly one graph K2, while the class
M(2) contains exactly two graphs |K3 and P4 (see e.g. [6]). Hence, this statement
is true for n = 1; 2.

Next, assume that, for a positive integer k, each graph H 2M(k) has at least
k+1 and at most 2k vertices. Let the graph G runs over the classM(k) and S runs
over the all nonempty subsets from the set V (G). Form a graph Gx by adding a
new vertex x to G and by connecting it with vertices from S. If the graph Gx has
just k + 1 negative eigenvalues, de�ne GS = Gx. If Gx has k negative eigenvalues,
de�ne GS = Gxy to be the graph obtained from Gx by adding a new vertex y

adjacent only to x. By a result of [5] we then have

M(k + 1) = fGS j G 2M(k); S � V (G) n f?gg:

Consequently, we �nd that all graphs from the classM(k+1) have at most 2k+2 =
2(k + 1) vertices. By induction on k we get n + 1 � jH j � 2n, for every graph
H 2M(n) and every positive integer n.

Next, let Xpq (p � 0, q � 1) be the graph obtained by identi�cation of a point
in the graph Kp+2 with an endpoint of the path P2q�1. In particular, we have that
Xp1 = Kp+1 and X0q = P2q . Proposition 5 of [6] provides that

n�(Xpq) = p+ q; n+(Xpq) = q: (p � 0; q � 1):

In particular, consider the graphs Xk = Xn�k;k (k = 1; . . . ; n). We have that
n�(Xk) = n, n+(Xk) = k, and it is not diÆcult to see that all the graphs
X1; . . . ; Xn belong to the class M(n). Since jXkj = n + k (k = 1; . . . ; n), our
proposition is completely proved.�

By Proposition 2 and the graphs X1; . . . ; Xn we have the following result.
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Corollary 1. For every positive integer n, the numbers fn+(H) j H 2
M(n)g run over the set [n] = f1; 2; . . . ; ng.

Now, we are able to prove the main result of the paper.

Theorem 1. For every positive integer n, the numbers fn+(G) j G 2 Pc(n)g
run over the set [An] = f1; 2; . . . ; Ang.

Proof . Corollary 1 provides that the mentioned numbers cover the set [n] =
f1; 2; . . . ; ng. Consequently, we �nd that An � n for every n. Next, we only have
to prove that these numbers also cover the set fn+ 1; n+ 2; . . . ; Ang.

Let T be an arbitrary graph from the class Pc(n) such that n+(T ) = An.
Let H be an arbitrary minimal graph of the graph T (H � T ). Since H � T and
both H and T are connected graphs, it is easy to see that there is a sequence of
connected graphs Fi � T (i = 0; 1; . . . ; r), such that

H = F0 � F1 � . . . � Fr = T

and jFi+1j = jFij+1 (i = 0; 1; . . . ; r�1). Since by the known interlacing theorem [2,
p. 19] we have n�(H) = n � n�(Fi) � n�(T ) = n, we �nd that n�(Fi) = n; thus
Fi 2 P (n) (i = 0; 1; . . . ; r). By the same theorem, we also �nd n+(Fi+1)�n

+(Fi) 2
f0; 1g (i = 0; 1; . . . ; r � 1). This shows that the numbers

fn+(Fi) j i = 0; 1; . . . ; rg (1)

run over the set fn+(H); n+(H) + 1; . . . ; n+(T )g = [n+(H); An].

On the other hand, by Corollary 1 we have that n+(H) � n. This proves
that the sequence (1) covers the set [n + 1; An]. Finally, taking into account the
canonical graphs fi of the graphs Fi (i = 0; 1; . . . ; r) completes the proof.�

By Theorem 1, any estimate of growth of the function n 7! An can be of a
great importance. By the corresponding results in the papers [4] and [8], we know
that A1 = 1, A2 = 3, A3 = 6. But, so far, we have no information about this
function in the general case.
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