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TRACE FORMULA FOR NUCLEAR PERTURBATIONS
OF DISCRETE NONSELFADJOINT OPERATORS

Darko Milinkovié

Abstract. It is shown that, if T' is a discrete nonselfadjoint operator, and P is nuclear,
than, under some condition, 7"+ P is discrete. A regularized trace formula is given. It is shown
that this result is applicable to differential operators given by regular boundary conditions.

1. Introduction

In [3] it was shown that, if T' is a discrete selfadjoint operator with distribution
of eigenvalues N(T,r) = O(r?), 0 < p < 1 < 2 (N(T,r) denotes the number of
eigenvalues of the operator T in the circle with center at 0 and radius r), and if P
is a nuclear operator, then there exists an increasing sequence of natural numbers
k,, such that k,, — oo and

kn
lim ;(Nk ~ ) =Sp P,

(Sp denotes the trace of an operator) where uy and A\ denote the eigenvalues of
the operators 7'+ P and T'. This result is applicable to a selfadjoint differential
operator T given by a differential expression of order greater than 2 and with regular
boundary conditions.

In this paper the case of a nonselfadjoint operator is treated. The result
obtained is applicable to nonselfadjoint differential operators of order greater than
6 given by regular boundary conditions.

2. Main result
The main result of this paper is the following theorem.

THEOREM. Let H be a separable complex Hilbert space with inner product
(+,+), P a nuclear operator in H and T an operator such that
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1) T~ € o, for some ¢ > 1 (o, is defined in [1]);

2) all generalized eigenspaces N (M I—T)™) (m; is the ascent of the operator
NI —T) except finitely many contain only eigenvectors;

3) larg(T'f, )| < m/2q, for all f € H;

4) N(T,r) = O(r?) (N(T,r) denotes the number of eigenvalues of the op-
erator T, including multiplicities, in the circle with center at 0 and radius r), for
some p, 0 < p < 1/6;

5) ||Zf:1 PZ” < M, for k =1,2,..., where P; denotes the projection of H
onto the generalized eigenspace N (NI —T)™) along R((N\iI —T)™:), where m; is
the ascent of the operator \;I — T

Then, the operator T + P is discrete and there exists an increasing sequence
of natural numbers k, such that lim, .. k, = oo and the following formula holds:

kn
lim ;(Nk ~ ) =SpP,

where pp and A\ denote the eigenvalues of operators T + P and T, enumerated
(including multiplicities) in the non-decreasing order of absolute value.

The proof of the theorem will be exposed in several lemmas. In the following,
the conditions of the theorem hold, with the notation introduced above.

LEMMA 1. There exists an unbounded increasing sequence r, such that:

1) limp o0 7 /dY® = 0

2) S pl4e /dl/® < oo where dy, = d(o(T), {z : |2| = rn}).

n=1"n
Proof. Let 6 > 0 and ¢ > 0 (¢ will be chosen later). Let
K,={z€C:n°<|z| <(n+ 1)}
The width of the ring K, is a value of order n°~!. In the ring K, there exist
N(T, (n+1)¢) — N(T,n°) eigenvalues of the operator T', and by condition 4) of the
theorem, this is equal to O(n?). If we divide the ring K, into n°? rings of equal
width, there will be no eigenvalue of the operator T in at least one of the new rings.
Let us denote by r;, the radius of the circle which divides that ring into two rings of
equal width. Then the value rdn®’ is of order n—¢(1/5=6/5p)+6/5(1+0)  The value
r,lfpd,_ﬁﬁ is of order n~¢(2/5-12/5p)+7/5(149) ' From the fact 0 < p < 1/6 it follows
that we can pick a ¢ such that 1)-3) are fulfilled. O

Remark. From the proof of Lemma 1 it is evident that on the circle {z €
C : |z| = r,} there are no eigenvalues of the operator T'. In the following we shall
denote the distance of a point to the spectrum of the operator T' by d(A), and
{z€ C:|z| =7y} by Ly,

0 3/5
LEMMA 2. The series > )
=1 A=A

(oo}
of bounded operators, for A € |J T,.

n=1

- P; converges uniformly in the space B(H)
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Proof. From Abel’s formula it follows that

S5 2 () (25 -3

=m k=m “j=1
m—1

d( 3/5 3/5

—(2%) o (2n)50

Thus, by virtue of condition 5) of the theorem it follows that it is sufficient to
3/5 d()\)3/5 d()\)3/5
A=A A=A A=At
uniformly for A € J;2, T
Let € > 0 and 7, < |A;j| < rg41. Then,

show that the sequence converges

su M < L <€
sevrs A= X = 2B S

for sufficiently large k, e.g. i and thus the sequence d(\)3/®/|\ — X\;| converges
uniformly. For r, < |Aiy1| < 71,

‘d()\)3/5 _ d(>\)3/5 |>\l| + |>\i+1| . d(>\)3/5 < 27°k+1 -
A= A A_Ak+1 - |/\_/\z||/\_/\z+1| - del

Since in the ring {r; < |z| < rg41} there are O(r%) eigenvalues of the operator T

it follows that
oo 00 1+p

S ¥ ) semy i<

k=1 “rp<|Ap|<rrqr Pk+1 diy

by Lemma 1.0
Let N; denote the restriction of \;,J —T to N((A\,]—T)™), RS = (T —\I)~!
Ry= (T +P— A"

LEMMA 3. sup{ (d(N)*P|RS|l : A € UL, T} < C < oo.

Proof. 1In [2] it is shown that the resolvent of a discrete operator which

satisfies condition 5) of the theorem has a representation
oo my o0

=33 A S o - W R (1) (- Pr) i B()
i=1 j=1 7=0
where P, = Y 2, P; (strong convergence), and Ry, (Tw) is an operator without
significance to us.
From conditions 1) and 3) of the theorem and the theorem of Lidsky [1, ch.
V, §6, T 6.1] it follows that P, = I1 and SO

o mi 3/5P
3/5R0_ZZ NP+ Z
=1 j= 1|>\ A | i=m41

UP, is a projection onto Seo = {2 € H :2 =32, 7, 2 EN(T = NI)™)} = Soo
[2, p. 20], and Soo = H.
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(from the condition 2) of the Theorem it follows that N; = 0 for ¢ > m).

The proof follows immediately from Lemma 2.
COROLLARY 1. The operator T + P is discrete.

Proof. By virtue of Lemma 3 ||PRY|| < 1, for X sufficiently distant from

o(T), so the series
o0

Ry = (-1)*R}(PRY})* (1)
k=0
converges, and thus R, is compact.

COROLLARY 2. For n sufficiently large, T, No(T + P) = @.

Proof .

IPCa() =/ < ||P||Cd,*/® (2)
for A € T, and d,, — oo (follows from Lemma 1). Thus, since for every A € ',
there exists RY (see the remark after Lemma 1) from (2) it follows that Ry exists
too. O

COROLLARY 3. [|[R\ — RY||, < kdy,®/® if X\ € Ty, where k > 0 and || - ||,
denotes the nuclear norm of the operator.

Proof. From (1) it follows that ||Rx — R3[|, < Y72, ||R[>"||k+1||P||If. It re-
mains only to apply Lemma 3.

LEMMA 4. For n large enough, in the circle {z : |z| < rp} the number of
eigenvalues of the operator T is equal to the number of eigenvalues of the operator
T + P, including multiplicities.

Proof. Let Ni(r) be the number of eigenvalues of the operator T' 4+ P, and
N, (r) the number of eigenvalues of the operator T, in the circle {z : |z| < r}. Then,
by the properties of Riesz projectors:

Ni(ry) — No(rp) = QLM/F Sp(Rx — RY) d\. (3)

Since | Sp(Ry—RY2)| < ||Rx — RY|l,, it follows that | Ny (1) — Na(rn)| = O(rndn '),
and that is, by virtue of Lemma 1, less than 1 for n large enough.

Let k, be the number of eigenvalues of the operators 7" and 7'+ P in the
circle {z : |z| < rp}.

kn
. . . 0 _ .
LEMMA 5. T}erolo (;(,uk Ak) I&(Izs(Sp(PR)\))> 0, where I&fs is the

residuum of a function at point \g.

Proof. By the properties of Riesz projectors:
kn

S = ) = QLM/F ASp(Rx — RY) dA. (4)

k=1
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On the other hand, from the property of the trace Sp(RYPRS) = Sp(P(RY)?) and
the fact that dR)/d\ = (R%)?, after partial integration, it follows that

/ ASp(RSPRY) = / Sp(PRY)d
27
SO
0 0 0
27”/ ASp(RYPRY) ZRes Sp(PRY)). (5)

By adding (5) and (4), we obtain

a 0 1 0 0 0

3 (uk V. Res(Sp(PRA))) = | ASp(Bx— R +ROPRY)dN.  (6)

1 Ak 271 T»

From (2) it follows that
Ry — Ry + RYPRY = (-1)*R}(PRY)" (7)
k=2
and since Sp(d(PRY)*/d\) = Sp (kRS (PRY)*), after substituting (7) into (6) and
applying partial integration to each member of the uniformly convergent series (7)
we obtain

S 1 X (—1)k
];(:uk — i — fi(zS(Sp(PRR))) = —% . Sp <§ %(PR(;\)I@> d\. (8)

By applying the inequality | Sp(PRY)| < ||RY || ||P||1 and Lemma 3 to each member
of the series (8) we obtain

3 A — Res(Sp(PRO))| < SO IEI (e )
Z(Hk— E— )\25( p( )\))) _TnI;T' ﬁ

k=1

o [ |IP[,C\ "
N <d3/15 (IPILC)* =0 6/5
k=2

n n

-3/5

since for n large enough, ||P||,Cd,”"" < 1. The last expression converges to zero,

by virtue of Lemma 1.0

Proof of the Theorem. From [2] and the fact that P,, = I which has already
been proved, it follows that

0o Mmj

PRR=%> ~— O — >\ (=N P,

i=1 j=1
and thus Resy, PRR = PRy. This proves the theorem, because
kn krn
li PRY)) = i Py P, =SpP.
im E:IP;‘(':S(SP( RY)) Jim Sp Z % = Sp

n—00
k=1
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3. Applications

The theorem proved above can be applied to differential operators of order
not less than 7, as in the following example:

Let H = L?[0,1] be a complex-valued continuous function defined on [0, 1]
with values in the angle {z : |Argz| < n/4} and T a differential operator in H
given by the differential expression I(y) = yV' + ¢(2)y and boundary conditions
of Sturm type
y D0 =0, yP(1)=0, j=0,1,23,
which are regular [4, II, §4.8].

Let K be a nuclear integral operator in the space H:

(K f)(x) = / K, 0)£(t) dt.

The conditions 1) and 4) of the theorem are fulfilled by virtue of the theorem on
the asymptotic behaviour of the eigenvalues of regular boundary problem [4, II,
§4.9].

The condition 5) of the theorem is fulfilled since the union of bases of the
spaces N ((A\;I —T)™) form a Riesz basis in H [4, II, §5.3] and [1, VI, §5].

The condition 1) is fulfilled because the Green function of the operator T is
continuous and thus belongs to L2(0,1)2, so T~! € os.

Since
1 1 1
(Ty,y) =/ (y V1D +q(ﬂf)y)§dy=/ |y(IV)|2d1'+/ q(z)|y|* dz
0 0 0

(after 4 partial integrations), the condition 1) of the theorem is fulfilled, by virtue
of the assumption |argq(z)| < 7/4 and thus, with the notation introduced before

kn 1
i S0 =20 = | Ko,

for some increasing unbounded sequence of natural numbers k,,.
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