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TRACE FORMULA FOR NUCLEAR PERTURBATIONS

OF DISCRETE NONSELFADJOINT OPERATORS

Darko Milinkovi�c

Abstract. It is shown that, if T is a discrete nonselfadjoint operator, and P is nuclear,
than, under some condition, T + P is discrete. A regularized trace formula is given. It is shown
that this result is applicable to di�erential operators given by regular boundary conditions.

1. Introduction

In [3] it was shown that, if T is a discrete selfadjoint operator with distribution
of eigenvalues N(T; r) = O(rp), 0 < p < 1 < 2 (N(T; r) denotes the number of
eigenvalues of the operator T in the circle with center at 0 and radius r), and if P
is a nuclear operator, then there exists an increasing sequence of natural numbers
kn such that kn !1 and

lim
n!1

knX
k=1

(�k � �k) = SpP;

(Sp denotes the trace of an operator) where �k and �k denote the eigenvalues of
the operators T + P and T . This result is applicable to a selfadjoint di�erential
operator T given by a di�erential expression of order greater than 2 and with regular
boundary conditions.

In this paper the case of a nonselfadjoint operator is treated. The result
obtained is applicable to nonselfadjoint di�erential operators of order greater than
6 given by regular boundary conditions.

2. Main result

The main result of this paper is the following theorem.

Theorem. Let H be a separable complex Hilbert space with inner product

( � ; � ), P a nuclear operator in H and T an operator such that
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1) T�1 2 �q for some q � 1 (�q is de�ned in [1]);

2) all generalized eigenspaces N ((�iI�T )mi) (mi is the ascent of the operator

�iI � T ) except �nitely many contain only eigenvectors ;

3) j arg(Tf; f)j < �=2q, for all f 2 H ;

4) N(T; r) = O(rp) (N(T; r) denotes the number of eigenvalues of the op-

erator T , including multiplicities, in the circle with center at 0 and radius r ), for
some p, 0 < p < 1=6;

5)
Pk

i=1 Pi
 < M , for k = 1; 2; . . . , where Pi denotes the projection of H

onto the generalized eigenspace N ((�iI �T )mi) along R((�iI �T )mi), where mi is

the ascent of the operator �iI � T .

Then, the operator T + P is discrete and there exists an increasing sequence

of natural numbers kn such that limn!1 kn =1 and the following formula holds :

lim
n!1

knX
k=1

(�k � �k) = SpP;

where �k and �k denote the eigenvalues of operators T + P and T , enumerated

(including multiplicities ) in the non-decreasing order of absolute value.

The proof of the theorem will be exposed in several lemmas. In the following,
the conditions of the theorem hold, with the notation introduced above.

Lemma 1. There exists an unbounded increasing sequence rn such that :

1) limn!1 rn=d
6=5
n = 0

2)
P1

n=1 r
1+p
n =d

7=5
n <1 where dn = d(�(T ); fz : jzj = rng).

Proof . Let Æ > 0 and c > 0 (c will be chosen later). Let

Kn = fz 2 C : nc < jzj < (n+ 1)cg:

The width of the ring Kn is a value of order nc�1. In the ring Kn there exist
N(T; (n+1)c)�N(T; nc) eigenvalues of the operator T , and by condition 4) of the
theorem, this is equal to O(ncp). If we divide the ring Kn into ncp rings of equal
width, there will be no eigenvalue of the operator T in at least one of the new rings.
Let us denote by rn the radius of the circle which divides that ring into two rings of

equal width. Then the value rnd
�6=5
n is of order n�c(1=5�6=5p)+6=5(1+Æ). The value

r1+pn d
�7=5
n is of order n�c(2=5�12=5p)+7=5(1+Æ). From the fact 0 < p < 1=6 it follows

that we can pick a c such that 1){3) are ful�lled.�

Remark . From the proof of Lemma 1 it is evident that on the circle fz 2
C : jzj = rng there are no eigenvalues of the operator T . In the following we shall
denote the distance of a point to the spectrum of the operator T by d(�), and
fz 2 C : jzj = rng by �n.

Lemma 2. The series
1P
i=1

d(�)3=5

�� �i
� Pi converges uniformly in the space B(H)

of bounded operators, for � 2
1S
n=1

�n.
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Proof . From Abel's formula it follows that
nX

k=m

d(�)3=5

�� �k
Pk =

nX
k=m

� kX
j=1

Pj

��
d(�)3=5

�� �k
�

d(�)3=5

�� �k+1

�

�

�m�1X
j�1

Pj

�
�
d(�)3=5

�� �m
+

� nX
j=1

Pj

�
d(�)3=5

�� �m
:

Thus, by virtue of condition 5) of the theorem, it follows that it is suÆcient to

show that the sequence
d(�)3=5

j�� �j j
and the series

1P
k=1

����d(�)
3=5

�� �k
�

d(�)3=5

�� �k+1

���� converges
uniformly for � 2

S1
n=1 �n.

Let " > 0 and rk � j�ij � rk+1. Then,

sup
�2[�n

d(�)3=5

j�� �ij
�

1

d
2=5
k

< ";

for suÆciently large k, e.g. i and thus the sequence d(�)3=5=j� � �ij converges
uniformly. For rk � j�i+1j � rk+1,����d(�)

3=5

�� �k
�

d(�)3=5

�� �k+1

���� � j�ij+ j�i+1j

j�� �ij � j�� �i+1j
� d(�)3=5 �

2rk+1

d
7=5
k+1

:

Since in the ring frk � jzj � rk+1g there are O(rpk) eigenvalues of the operator T
it follows that

1X
k=1

� X
rk�j�kj�rk+1

rk+1

d
7=5
k+1

�
� const

1X
k=1

r1+pk+1

d
7=5
k+1

<1;

by Lemma 1.�

Let Ni denote the restriction of �iI�T to N ((�iI�T )mi), R0
� = (T ��I)�1,

R� = (T + P � �I)�1.

Lemma 3. sup
�
(d(�))3=5kR0

�k : � 2
S1

n=1 �n
	
< C <1.

Proof . In [2] it is shown that the resolvent of a discrete operator which
satis�es condition 5) of the theorem has a representation

R0
� =

1X
i=1

miX
j=1

(�Ni)
j�1Pi

(� � �i)j
+

1X
j=0

(�0 � �)jR�0(T1)j+1(I �P1) in B(H),

where P1 =
P1

i=1 Pi (strong convergence), and R�0(T1) is an operator without
signi�cance to us.

From conditions 1) and 3) of the theorem and the theorem of Lidsky [1, ch.
V, x6, T 6.1] it follows that P1 = I1) and so

d(�)3=5R0
� =

1X
i=1

miX
j=1

d(�)3=5

j�� �ij j
(�Ni)

j�1Pi +
1X

i=m+1

d(�)3=5Pi
�� �i

1)P1 is a projection onto S1 =
�
x 2 H : x =

P
1

i=1 xi; xi 2 N ((T � �iI)mi )
	

= S1

[2, p. 20], and S1 = H.
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(from the condition 2) of the Theorem it follows that Ni � 0 for i > m).

The proof follows immediately from Lemma 2.�

Corollary 1. The operator T + P is discrete.

Proof . By virtue of Lemma 3 kPR0
�k < 1, for � suÆciently distant from

�(T ), so the series

R� =

1X
k=0

(�1)kR0
�(PR

0
�)

k (1)

converges, and thus R� is compact.�

Corollary 2. For n suÆciently large, �n \ �(T + P ) = ?.

Proof .
kPkCd(�)�3=5 < kPkCd�3=5n (2)

for � 2 �n, and dn ! 1 (follows from Lemma 1). Thus, since for every � 2 �n
there exists R0

� (see the remark after Lemma 1) from (2) it follows that R� exists
too.�

Corollary 3. kR� �R0
�k1 � kd

�6=5
n if � 2 �n, where k > 0 and k � k1

denotes the nuclear norm of the operator.

Proof . From (1) it follows that kR� �R0
�k1 �

P1
k=1 kR

0
�k

k+1
kPkk1 . It re-

mains only to apply Lemma 3.�

Lemma 4. For n large enough, in the circle fz : jzj < rng the number of

eigenvalues of the operator T is equal to the number of eigenvalues of the operator

T + P , including multiplicities.

Proof . Let N1(r) be the number of eigenvalues of the operator T + P , and
N2(r) the number of eigenvalues of the operator T , in the circle fz : jzj < rg. Then,
by the properties of Riesz projectors:

N1(rn)�N2(rn) =
1

2�i

Z
�n

Sp(R� �R0
�) d�: (3)

Since j Sp(R��R0
�)j � kR� �R0

�k1, it follows that jN1(rn)�N2(rn)j = O(rnd
�6=5
n ),

and that is, by virtue of Lemma 1, less than 1 for n large enough.�

Let kn be the number of eigenvalues of the operators T and T + P in the
circle fz : jzj < rng.

Lemma 5. lim
n!1

� knX
k=1

(�k � �k) � Res
�k

(Sp(PR0
�))

�
= 0, where Res

�k
is the

residuum of a function at point �k.

Proof . By the properties of Riesz projectors:
knX
k=1

(�k � �k) =
1

2�i

Z
�n

� Sp(R� �R0
�) d�: (4)
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On the other hand, from the property of the trace Sp(R0
�PR

0
�) = Sp(P (R0

�)
2) and

the fact that dR0
l =d� = (R0

�)
2, after partial integration, it follows that

1

2�i

Z
�n

� Sp(R0
�PR

0
�) =

�1

2�i

Z
�n

Sp(PR0
�) d�

so

1

2�i

Z
�n

� Sp(R0
�PR

0
�) = �

knX
k=1

Res
�k

(Sp(PR0
�)): (5)

By adding (5) and (4), we obtain

knX
k=1

�
�k � �k �Res

�k
(Sp(PR0

�))
�
=

1

2�i

Z
�n

� Sp(R� �R0
� +R0

�PR
0
�) d�: (6)

From (2) it follows that

R� �R0
� +R0

�PR
0
� =

1X
k=2

(�1)kR0
�(PR

0
�)

k (7)

and since Sp
�
d(PR0

�)
k=d�

�
= Sp

�
kR0

�(PR
0
�)

k
�
, after substituting (7) into (6) and

applying partial integration to each member of the uniformly convergent series (7)
we obtain

knX
k=1

�
�k � �k �Res

�k
(Sp(PR0

�))
�
= �

1

2�i

Z
�n

Sp

� 1X
k=2

(�1)k

k
(PR0

�)
k

�
d�: (8)

By applying the inequality j Sp(PR0
�)j � kR0

�k
k
�kPkk1 and Lemma 3 to each member

of the series (8) we obtain

����
knX
k=1

�
�k � �k �Res

�k
(Sp(PR0

�))
����� � rn

1X
k=2

kPkk1
k

�

�
c

d
3=5
n

�k

=
rn

d
6=5
n

1X
k=2

�
kPk1C

d
3=5
n

�k�2

�
�
kPk1C

�2
= O

�
rn

d
6=5
n

�

since for n large enough, kPk1Cd
�3=5
n < 1. The last expression converges to zero,

by virtue of Lemma 1.�

Proof of the Theorem. From [2] and the fact that P1 = I which has already
been proved, it follows that

PR0
� =

1X
i=1

miX
j=1

1

(�� �i)j
P (�Ni)

j�1Pi

and thus Res�k PR
0
� = PRk. This proves the theorem, because

lim
n!1

knX
k=1

Res
�k

(Sp(PR0
�)) = lim

n!1
SpP

knX
k=1

Pk = SpP:
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3. Applications

The theorem proved above can be applied to di�erential operators of order
not less than 7, as in the following example:

Let H = L2[0; 1] be a complex-valued continuous function de�ned on [0; 1]
with values in the angle fz : jArg zj < �=4g and T a di�erential operator in H
given by the di�erential expression l(y) = yVIII + q(x)y and boundary conditions
of Sturm type

y(j)(0) = 0; y(j)(1) = 0; j = 0; 1; 2; 3;

which are regular [4, II, x4.8].

Let K be a nuclear integral operator in the space H :

(Kf)(x) =

Z 1

0

K(x; t)f(t) dt:

The conditions 1) and 4) of the theorem are ful�lled by virtue of the theorem on
the asymptotic behaviour of the eigenvalues of regular boundary problem [4, II,
x4.9].

The condition 5) of the theorem is ful�lled since the union of bases of the
spaces N ((�iI � T )mi) form a Riesz basis in H [4, II, x5.3] and [1, VI, x5].

The condition 1) is ful�lled because the Green function of the operator T is
continuous and thus belongs to L2(0; 1)2, so T�1 2 �2.

Since

(Ty; y) =

Z 1

0

(y(VIII) + q(x)y)y dy =

Z 1

0

jy(IV)j2 dx+

Z 1

0

q(x)jyj2 dx

(after 4 partial integrations), the condition 1) of the theorem is ful�lled, by virtue
of the assumption j arg q(x)j < �=4 and thus, with the notation introduced before

lim
n!1

knX
k=1

(�k � �k) =

Z 1

0

K(x; x) dx;

for some increasing unbounded sequence of natural numbers kn.
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