ON ISOMORPHISMS OF L^{1} SPACES OF ANALYTIC FUNCTIONS ONTO l^{1}

Miroslav Pavlović

Abstract

It is proved that an L_{φ}^{1} space of analytic functions in the unit disc, with the weight $\varphi^{\prime}(1-|z|)$, is isomorphic to the Lebesgue sequence space l^{1} only if φ is "normal". The converse is known from the papers of Shields and Williams [13] and Lindenstrauss and Pelczynski [4]. The key of our proof are three classical results: Paley's theorem on lacunary series, Pelczynski's theorem on complemented subspaces of l^{1} and Lindenstrauss-Pelczynski's theorem on the equivalence of unconditional bases in l^{1}.

Throughout the paper we assume that φ is a quasi-normal function [7]. This means that φ is defined, increasing and continuously differentiable on the interval $(0,1], \varphi(0+)=0$, and that
there is a constant β such that
$\varphi(t) / t^{\beta}$ is almost decreasing for $0<t<1$.
(A function ψ is almost decreasing if $\psi\left(t_{1}\right) \leq C \psi\left(t_{1}\right)$ for $t_{2}>t_{1}$, where C is a constant, see $[\mathbf{1}, \mathbf{1 5}]$. If, in addition,

$$
\begin{align*}
& \text { there is a constant } \alpha>0 \text { such that } \\
& \varphi(t) / t^{\alpha} \text { is almost increasing for } 0<t<1 \tag{N}
\end{align*}
$$

then φ is said to be normal $[\mathbf{1 3}, \mathbf{1 5}]$.
For a (complex-valued) harmonic function f on the unit disc U, we define the quantities

$$
\|f\|_{1, \varphi}=\frac{1}{\pi} \int_{U}|f(z)| \varphi^{\prime}(1-|z|) d m(z)
$$

($d m$ denotes the Lebesgue measure, and φ^{\prime} the derivative of φ) and

$$
\|f\|_{\infty, \varphi}=\sup \{|f(z)| \varphi(1-|z|): z \in U\}
$$

In this note we are concerned with the following spaces:

$$
A^{p}(\varphi)=\left\{f:\|f\|_{p, \varphi}<\infty, f \text { analytic in } U\right\} \quad(p=1, \infty)
$$

$$
A_{0}(\varphi)=\left\{f \in A^{\infty}(\varphi):|f(z)| \varphi(1-|z|)=o(1), z \rightarrow 1^{-}\right\}
$$

Analogous spaces of harmonic functions are denoted by $h^{p}(\varphi)$ and $h_{0}(\varphi)$.
It is known that each of the harmonic spaces is isomorphic, via a multiplier transform, to a space of Lipschitz functions on the unit circle [8, 9]. On the other hand, it was shown by Shields and Williams [14] that $h^{p}(\varphi)$ is isomorphic to l^{p}, and $h_{0}(\varphi)$ is isomorphic to c_{0}, the space of null-sequences (see Remarks at the end). And it follows from the results of Lindenstrauss and Pelczynski [4] and Shields and Williams [13] that h can be replaced by A if φ is normal. Our aim here is to prove the converse. More precisely, we have the following result.

Theorem. If one of the following assertions (i), (ii) or (iii) holds, then the function φ is normal:
(i) $A^{1}(\varphi)$ is isomorphic to l^{1};
(ii) $A^{\infty}(\varphi)$ is isomorphic to l^{∞};
(iii) $A_{0}(\varphi)$ is isomorphic to c_{0}.

Before discussing the case of $A^{1}(\varphi)$ we note that the other two cases are contained implicitly in [14, Theorem 7] and [15]. Namely, if $A^{\infty}(\varphi)$ is isomorphic to l^{∞}, then $A^{\infty}(\varphi)$ is complemented in $h^{\infty}(\varphi)$, because l^{∞} is complemented in every space containing it (see [5, p. 105]). Then, by using a method of Rudin [13], we conclude that $A^{\infty}(\varphi)$ is complemented by the "analytic" projection, i.e. that $h^{\infty}(\varphi)$ is self-conjugate and hence, by [15], φ is normal.

If $A_{0}(\varphi)$ is isomorphic to c_{0}, we can use a theorem of Sobczyk that asserts that c_{0} is complemented in every separable space containing it. We can also reduce the problem to the case of A^{∞} by using the fact, proved by Rubel and Shields [11], that the second dual of $A_{0}(\varphi)$ is isometrically isomorphic to $A^{\infty}(\varphi)$.

In order to discuss the case of $A^{1}(\varphi)$ we use three famous theorems.
Paley Theorem [6]. If $\left\{m_{n}\right\}_{0}^{\infty}$ is a lacunary sequence of positive integers, then there is a constant $C<\infty$ such that

$$
\sum\left|\hat{f}\left(m_{n}\right)\right|^{2} \leq C\|f\|_{1}^{2}, \quad f \in H^{1}
$$

where $\left\|\|_{1}\right.$ stands for the norm in the Hardy class H^{1}.
Pelczynski Theorem [10]. Every infinite dimensional complemented subspace of l^{1} is isomorphic to l^{1}.

Lindenstrauss-Pelczynski Theorem [3]. Every normalized unconditional basis of l^{1} is equivalent to the canonical basis of l^{1}.

Proof of the Theorem. Assume that $A^{1}(\varphi)$ is isomorphic to l^{1}. Let Y denote the subspace spanned by the elements $h_{n}(z)=z^{2^{n}}$, and $P f(z)=\sum \hat{f}\left(2^{n}\right) z^{2^{n}}$, $f \in A^{1}(\varphi)$. By the Paley theorem,

$$
\begin{equation*}
M_{1}(r, P f) \leq M_{2}(r, P f) \leq C M_{1}(r, f), \quad 0<r<1 \tag{1}
\end{equation*}
$$

where C is independent of r, f. (Here we use the usual notation for the integral means of $f[\mathbf{2}])$. Multiplying inequality (1) by $\varphi^{\prime}(1-r) d r$ and then integrating from 0 to 1 , we conclude that P is a bounded projection of $A^{1}(\varphi)$ onto Y. Hence, by Pelczynski's theorem, Y is isomorphic to l^{1}. Using (1) again we see that

$$
M_{1}(r, f) \asymp M_{2}(r, f), \quad f \in Y, 0<r<1
$$

which implies that $\left\{h_{n}\right\}$ is an unconditional basis of Y. Hence, by LindenstraussPelczynski's theorem, there is a constant $c>0$ such that

$$
\begin{equation*}
\left\|\sum a_{n} h_{n}\right\|_{Y} \geq c \sum\left|a_{n}\right|\left\|h_{n}\right\|_{Y} \tag{2}
\end{equation*}
$$

for scalar sequences $\left\{a_{n}\right\}$.
To deduce from (2) that φ is normal, we need some calculation. We have

$$
\left\|h_{n}\right\|_{Y}=\int_{0}^{1} \varphi^{\prime}(1-r) r^{2^{n}} d r
$$

whence, by Lemma 3.2 of [7],

$$
\begin{equation*}
\left\|h_{n}\right\|_{Y} \asymp \varphi\left(2^{-n}\right) . \tag{3}
\end{equation*}
$$

Extend φ so that

$$
\begin{equation*}
\varphi(t) \varphi(1 / t)=\varphi(1)^{2}, \quad t>1 \tag{4}
\end{equation*}
$$

and let F denote the inverse function. In view of condition (Q), there is a constant $m \geq 2$ such that $F(m t) / F(t) \geq 4$ for $t>0$. It follows that the interval

$$
E_{t}:=[\log F(t), \log F(m t)] \quad\left(\log =\log _{2}\right)
$$

contains at least two integers. For a fixed t with $\log F(t)>0$ define $\left\{a_{n}\right\}$ in the following way:

$$
a_{n}= \begin{cases}\varphi\left(2^{n}\right) & \text { for } n \in E_{t} \\ 0, & \text { otherwise }\end{cases}
$$

and let $f_{t}=\sum a_{n} h_{n}$. It follows from (2), by (3) and (4), that

$$
\begin{equation*}
\left\|f_{t}\right\|_{Y} \geq c(\log F(m t)-\log F(t)) \tag{5}
\end{equation*}
$$

where $c>0$ is independent of t. On the other hand, by Parseval's relation,

$$
M_{1}^{2}\left(r, f_{t}\right) \leq M_{2}^{2}\left(r, f_{t}\right)=\sum\left|a_{n}\right|^{2} r^{2^{n+1}} \leq \sum \varphi\left(2^{n}\right)^{2} r^{2 F(t)} \quad\left(n \in E_{t}\right)
$$

Since $\varphi\left(2^{n}\right) \leq \varphi(F(m t))=m t$ for $n \in E_{t}$, we see that

$$
M_{1}\left(r, f_{t}\right) \leq m t r^{F(t)}(\log F(m t)-\log F(t)+1)^{1 / 2}
$$

Multiply thus by $\varphi^{\prime}(1-r) d r$, then integrate and use the estimate

$$
\int_{0}^{1} r^{x} \varphi^{\prime}(1-r) d r \asymp \varphi(1 / x), \quad x>1
$$

(see [7, Lemma 3.2]). As a result we obtain

$$
\left\|f_{t}\right\|_{Y} \leq C(\log F(m t)-\log F(t))^{1 / 2}
$$

From this and (5) we find that $F(2 t) \leq K F(t)$ for $t>0$, where K is a constant. As a consequence, $F(t) / t^{\beta}$ is almost decreasing for $t>0$, where $\beta=\log _{2} K$. Hence, φ satisfies the condition (N) with $\alpha=1 / \beta$, which was to be proved.

Remarks. Shields and Williams [14] proved that $h_{0}(\varphi)$ is isomorphic to c_{0} if φ satisfies some regularity conditions. However, it follows from Theorems 1 and 7 of [14] and the relation $h_{0}(\varphi)^{*}=h^{1}(\varphi)[\mathbf{7}]$ that $h_{0}(\varphi)$ is isomorphic to c_{0} whenever φ is quasi-normal. It would be interesting to construct an explicit isomorphism between $h_{0}(\varphi)$ and c_{0}, or between $h^{1}(\varphi)$ and l^{1}. In the case of $A^{1}(\varphi)$, where φ is a power function, an explicit isomorphism onto l^{1} was constructed by Wojtaszczyk [17].

REFERENCES

[1] S.N. Bernstein, On majorants of finite or quasi-finite growth, Dokl. Akad. Nauk SSSR (NS) 65 (1949), 117-120.
[2] P. L. Duren, Theory of H^{p}-Spaces, Academic Press, New York, 1970.
[3] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math. 29 (1968), 275-326.
[4] J. Lindenstrauss and A. Pelczynski, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
[5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Springer Verlag, Berlin-Heidelberg-New York, 1977.
[6] R. E. A.C. Paley, On the lacunary coefficients of power series, Ann. of Math. 34 (1933), 615-616.
[7] M. Pavlović, Mixed norm space of analytic and harmonic functions I, Publ. Inst. Math. (Beograd) 40 (54) (1986), 117-141.
[8] M. Pavlović, Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J. 35 (1988), 301-311.
[9] M. Pavlović, On the moduli of continuity of H^{p} functions, Proc. Edinburgh Math. Soc. (to appear).
[10] A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
[11] L. A. Rubel and A. L. Shields, The second dual of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
[12] W. Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429-432.
[13] A.L. Shields and D.L. Williams, Bounded projections, duality and multipliers in space of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[14] A.L. Shields and D.L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265-279.
[15] A.L. Shields and D.L. Williams, Bounded projections and the mean growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.
[16] A. Sobczyk, Projections of the space m onto its subspace c_{0}, Bull. Amer. Math. Soc. 47 (1941), 938-947.
[17] P. Wojtaszczyk, H_{p}-spaces and spline systems, Studia Math. 76 (1984), 290-319.

