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SOME INEQUALITIES OF ISOPERIMETRIC TYPE

CONCERNING ANALYTIC AND SUBHARMONIC FUNCTIONS

M. Mateljevi�c and M. Pavlovi�c

Abstract. We prove an inequality between the weighted Bergman and Hardy norm of an
analytic function and generalize this to the ratio of two log-subharmonic function. These results
may be regarded as a generalization of the classical isoperimetric inequality.

1. Introduction

In recent papers, Burbea [3] and Mateljevi�c and Pavlovi�c [9] proved the fol-
lowing result (Theorem B, below), which is a generalization of the classical isoperi-
metric inequality. Let f 2 Hp(U), 0 < p < 1, and let n be a positive integer,
n � 2. Then

n� 1

�

Z
U

jf(z)jnp(1� jzj2)n�2 dx dy �

�
1

2�

Z 2�

0

jf(ei�)jp d�

�n
;

where U denotes the unit disc, and Hp(U), 0 < p < 1, denote the usual Hardy
classes.

In this paper we give a few extensions of this result.

In Section 3 we prove that a functional corresponding to the previous inequal-
ity is monotone and give a generalization of Theorem B (Theorem 2, below) which
we need later.

In [6, Theorem 1] Huber proved an interesting inequality and used it to prove
an isoperimetric inequality [6, Theorem 3] which holds on any suÆciently regular
abstract surface. In Section 4, we prove a result (see Theorem 3, below) which
for n = 2 is Huber's [6, Theorem 1] and which can also be regarded as a further
generalization of Theorem B and Theorem 2.
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2. Isoperimetric inequalities and the theory

of reproducing kernels

Let U denote the unit disc in the complex plane C. Also, we will use the
usual notations for Hardy spaces (see [4] and [10]).

For q > 1, let Bq denote the space of all analytic functions f in U such that
kfkBq <1, where

kfkBq =

�
q � 1

�

Z
U

jf(z)j2(1� jzj2)q�2 dx dy

�1=2

:

It is known (see, for example [2]) that the Hilbert space Bq , q > 1, has the
reproducing kernel Kq(z; �) = (1 � z��)�q , z; � 2 U , and that the Hardy space
H2(Un), n � 1, is the Hilbert space with reproducing kernel

K(z; �) =
nY
i=1

(1� zi��i); z = (z1; . . . ; zn); � = (�1; . . . ; �n) 2 C
n:

Since the diagonal restriction of K(z; �) is the reproducing kernel Kn(z; �) =
(1� z��)�n, z; � 2 U , of Bn, n � 2, we deduce the following result from the general
theory of reproducing kernels (see [1] and [2]).

Theorem A. Let F 2 H2(Un), n � 2, and let f(z) = F (z; . . . ; z), z 2 U , be
the restriction of F to the diagonal of Un. Then

n� 1

�

Z
U

jf(z)j2(1� jzj2)n�2 dx dy � kFk
2
2;

where

kFk
2
2 = lim

r!1

1

(2�)n

Z
Tn
jF (rei�1 ; rei�2 ; . . . ; rei�n)j2 d�1 d�2 . . . d�n

and T = fz : jzj = 1g is the unit circle.

Theorem B. Let f 2 Hp(U), 0 < p < +1, and let n be a positive integer,

n � 2. Then
n� 1

�

Z
U

jf(z)jnp(1� jzj2)n�2 dx dy � kfk
np
p ;

where

kfk
p
p = lim

r!1

1

2�

Z 2�

0

jf(rei�)jp d�:

The case p = 2 of Theorem B follows from Theorem A if we put
F (z1; . . . ; zn) = f(z1) � . . . �f(zn). Now, using the well-known factorization theorem
we can show that Theorem B is true for all positive p.



Some inequalities of isoperimetric type concerning analytic . . . 125

Proofs of Theorems A and B were sketched in [9]. Independently, Burbea [3,
Corollaries 3.4 and 3.6, Theorem 4.2] (see also [2]) proved that these results are
sharp and founded further generalizations.

Theorem B may be regarded as a generalization of the classical isoperimetric
inequality. Namely, let D be simply-connected domain in the complex plane C
bounded by a recti�able curve K of length L, and let F be a conformal mapping
of the unit disk U onto D. Applying Theorem B to f = F 0, n = 2 and p = 1 (see,
for example, [7]), we get the classical isoperimetric inequality 4� area(D) � L2.

3. Generalization of Theorem B

Let f be an analytic function on a neighborhood of jzj = r, 0 � r <1, and
let p be a positive number. We de�ne

Ip(r; f) =
1

2�

Z 2�

0

jf(rei�)j2 d�:

Theorem 1. Let f(z) =
P1

�=0 a�z
� be an analytic function on jzj � R,

0 � r < R, 0 < p < +1, and m positive integer, m � 2. Then

I(R; r) =
m� 1

�

ZZ
jzj�R

jf(z)jmp(R2 � jzj2)m�2 dx dy

�
m� 1

�

ZZ
jzj�r

jf(z)jmp(r2 � jzj2)m�2 dx dy

� (R2�2=mIp(R; f))
m � (r2�2=mIp(r; f))

m:

Proof . First suppose that p = 2. Let F (z) = (f(z))m =
P1

n=0 cnz
n. Then

I(R; r) = 2(m� 1)

�Z R

0

(R2 � �2)m�2
+1X
n=0

jcnj
2�2n+1 d�

�

Z r

0

(r2 � �2)m�2
1X
n=0

jcnj
2�2n+1 d�

�

= (m� 1)

� 1X
n=0

jcnj
2B(m� 1; n+ 1)(R2(n+m�1) � r2(n+m�1))

�
:

Using

B(m� 1; n+ 1) =
�(m� 1)�(n+ 1)

�(n+m)
=

(m� 2)!n!

(n+m� 1)!
;

we get

(1) I(R; r) =

1X
n=0

jcnj
2 (m� 1)!n!

(n+m� 1)!
(R2(n+m�1) � r2(n+m�1)):
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Since the number of the members of the set f(k1; k2; . . . ; km) : k1+k2+� � �+km = n,

k1; k2; . . . ; km are non-negative integersg, is
(n+m� 1)!

(m� 1)!n!
, and

cn =
X

k1+k2+���+km=n

ak1ak2 � . . . � akm

we have, by the Cauchy-Schwartz inequality,

(2) jcnj
2 �

(n+m� 1)!

(m� 1)!n!

X
k1+k2+���+km=n

jak1 j
2jak2 j

2 � . . . � jakm j
2:

From (1) and (2) it follows that

(3) I(R; r) �

1X
n=0

�� X
k1+���+km=n

jak1 j
2 � . . . � jakm j

2

��
R2(n+m�1) � r2(n+m�1)

��
:

Next, the expression on the right hand side of (3) is equal to

(4)
�
R2�2=mI2(R; f)

�m
�
�
r2�2=mI2(R; f)

�m
:

Now the desired inequality follows from (3) and (4).

If 0 < p < +1, then using a Blaschke product, one can �nd an analytic
function g on jzj � R such that

jg(z)j2 � jf(z)jp for jzj � R and jg(z)j2 = jf(z)jp on jzj = R,

and consequently,

(5) Ip(R; f) = I2(R; g) and Ip(�; f) � I2(�; g) for � � R.

Since, by (5)

I(R; f) =
m� 1

�

�ZZ
r�jzj�R

jf(z)jmp(R2 � jzj2)m�2 dx dy

+

ZZ
jzj�r

jf(z)jmp
�
(R2 � jzj2)m�2 � (r2 � jzj2)m�2

�
dx dy

�

�
m� 1

�

�ZZ
r�jzj�R

jg(z)j2m(R2 � jzj2)m�2 dx dy

+

ZZ
jzj�r

jg(z)j2m
�
(R2 � jzj2)m�2 � (r2 � jzj2)m�2

�
dx dy

�

the proof follows from the case p = 2 and (5).

Theorem B is an easy corollary of Theorem 1. Namely, if f 2 H1 then
Ip(R; f)! kfk

p
p when R! 1�. Combining this with Theorem 1 and the fact that

for m � 2
r2�2=mIp(r; f)! 0 when r ! 0+,
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one can deduce Theorem B.

Theorem 2. Let f 2 Hp(U), 0 < p < +1, let n be a positive integer, n � 2,
and let � be a non-negative number such that n� < 2. Then

(6) I =

Z
U

jf(z)jnpjzj�n�(1� jzj2)n�2 dx dy � �B(1� b; n� 1)kfk
np
p ;

where b = n�=2 and B denotes the beta function, B(1 � �; n � 1) =
R 1
0
t�a �

(1� t)n�2 dt. Equality holds if and only if f is of the form f = K(�0)1=p for some

M�obius transformation � of U onto U and some constant K.

Proof . Using polar coordinates, we have

I =

Z 1

0

��2bI(�)(1� �2)n�2� d�;

where I(�) =
R 2�
0

jf(�ei�)jnp d� and 2b = n�.

An application of �Cebi�sev's inequality with respect to the probability measure
d�(�) = 2(n� 1)(1� �2)n�2� d� on [0; 1], gives

Z 1

0

��2bI(�) d�(�) �

�Z 1

0

��2b d�(�)

� �Z 1

0

I(�) d�(�)

�
:

Hence

I � (n� 1)B(1� b; n� 1)

Z
U

jf(z)jnp(1� jzj2)n�2 dx dy:

Now the inequality (7) follows from Theorem B.

Suppose that equality holds in (6). It is clear that equality holds in �Cebi�sev's
inequality (7). Hence,

[I(x) � I(y)][ (x) �  (y)] = 0

for all x; y 2 [0; 1], where  (x) = x�2b.

So, we can conclude that either I(x) or  (x) is a constant function on [0; 1].
In other words f(z) = c for some constant c or b = 0. If b = 0, we have, by [3,
Corollary 3.6], that f = K(�0)1=p for some M�obius transformation � of U onto itself
and some constant K.

4. Inequalities for subharmonic functions

In preparation for an extension of Huber's result mentioned above, we will
sketch an extension of the classical isoperimetric inequality to log-subharmonic
functions.

Let D be a region in C. We say that a non-negative function u is log-
subharmonic (l.s.h.) on D if the function logu is subharmonic on D. Suppose that



128 Mateljevi�c and Pavlovi�c

u is l.s.h. on U = fz : jzj � 1g, i.e. on a domain D containing U . If, in addition u
is continuous on U then the analytic function

F (z) = exp

�
1

2�

Z �

��

eit + z

eit � z
logu(eit) dt

�
; z 2 U;

can be extended to be continuous on U and jF (ei�)j = u(ei�) on T . Since log jF (z)j
is harmonic on U , by the maximum-principle, we get u(z) � jF (z)j, z 2 U . Hence,
by Theorem B,

1

�

Z
U

[u(z)]2 dx dy �

�
1

2�

Z
U

u(ei�) d�

�2
:

If u is only upper semi-continuous on U then, by [5, Theorem 1.4] there exists a
decreasing sequence un(z) of functions continuous on U such that un(z)! u(z) as
n!1. Then the proof can be reduced to the case in which u(z) is continuous on
U .

In order to obtain further generalizations we need the Riesz decomposition
theorem, one of the most fundamental results in the theory of subharmonic func-
tions (see [5, Theorem 3.14).

Theorem R. Let S(z) be s.h. and not identically �1 on U . Then we have

for z = rei� 2 U

S(z) =
1

2�

Z 2�

0

P (r; � � t)S(eit) dt�

Z
U

log

����1� z��

z � �

���� d�(�);
where P (r; t) is the Poisson kernel and � is a positive, �nite Borel measure on U .

Theorem 3. Let uj (j = 1; 2) be log-subharmonic functions on U and u =
u1=u2. Let � = �2 be the measure in the Riesz decomposition of logu2 and � =
�(U) < 2=n, n = 2; 3; . . . . Then

(8)

Z
U

u(z)n(1� jzj2)n�2 dx dy � �B(1� n�=2; n� 1)

�
1

2�

Z 2�

0

u(eit) dt

�n
;

where B denotes the beta function.

Equality holds if and only if logu1 and logu2 are harmonic functions on U
and u(z) = Kj�0(z)j, z 2 U , where K is a positive constant and � is a M�obius

transformation of the unit disk U onto itself.

Proof . By the Riesz decomposition,

(9) logui(z) = hi(z)�

Z
U

log

����1� z��

z � �

���� d�i(�); (i = 1; 2);

where hi(z) = (2�)�1
R 2�
0 P (r; � � t) logui(e

it) dt, z = reit 2 U , and �i positive

�nite Borel measures on U .
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Suppose �rst that � > 0. Let h(z) = h1(z)� h2(z). By (9),

(10) u(z)n � exp

�
nh(z) +

Z
U

log

����1� z��

z � �

����
n�

d�(�)

�

�
:

Let h� be the conjugate harmonic function of h in U and let f = exp(h + ih�).
Since jf j = eh by Jensen's inequality and (10), we �nd that

(11) u(z)n � jf(z)jn
Z
U

����1� z��

z � �

����
n�

d�(�);

where d�(�) = d�(�)=�. From (11) and Fubini's theorem, it follows thatZ
U

u(z)n(1� jzj2)n�2 dx dy �

Z
U

I(�) d�(�);

where

I(�) =

Z
U

jf(z)jn(1� jzj2)n�2
����1� z��

z � �

����
n�

dx dy:

Let w = w(z) = (z��)=(1�z��). Since the hyperbolic metric is invariant under
a conformal map of the unit disc onto itself, we have 1 � jzj2 = (1 � jwj2)jz0(w)j.
Thus

I(�) =

Z
U

jf(z(w))jn

jwjn�
(1� jwj2)n�2jz0(w)jn du dv:

Let F (w) = F�(w) = f(z(w))z0(w). By Theorem 2,

(12) I(�) � �B(1� b; n� 1)kFk
n
1 ;

where n� = 2b. SinceZ
T

jF (w)j jdwj =

Z
T

jf(z(w))j jz0(w)j jdwj =

Z
T

jf(z)j jdzj

and f(z) = u1(z)=u2(z) for z 2 T , the desired inequality follows from (12).

If � = 0, then u(z)n � jf(z)jn and the inequality (8) follows from Theorem
B.

We proceed to prove that if equality holds in (8), then � = 0. Suppose on
the contrary, that � > 0 and that equality holds in (8). Then an inspection of the
proof of inequality (8) shows that we haveZ

U

I(�) d�(�) = K;

whereK denotes the right-hand side of (8). (From the previous proof it is clear that
K is also the right hand side of (12). Hence I(�) = K for at least one � 2 U and
consequently, by Theorem 2, � = 0. Thus we have a contradiction and therefore
� = 0. Next, equality holds in (10) and (11) for almost all z 2 U with respect to
the area measure. In particular, we haveZ

U

log

����1� z��

z � �

���� d�(�) = 0
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for some z 2 U and consequently �1(U) = 0, i.e. log u1(z) = h1(z). Now, by
Theorem 2, u(z) has the form stated in Theorem 3.

Since B(1��; n� 1) =
R 1
0 t

��(1� t)n�2 dt we have B(1� �; 1) = (1� �)�1.
Hence, in the case n = 2, we get Huber's Theorem 1 [6]. We refer to Huber's paper
[6], where the reader can �nd some interesting corollaries of this result.

Finally, note that although our motivation is Huber's paper mentioned above,
our proof is di�erent. Only the starting point, Riesz's decomposition theorem, is the
same. Huber's proof is based on the change of variables w = F (z) =

R z
0
expfh(�)+

ih�(�)g d� and the fact that the area surrounded by the level line of the Green's
function of a domain is not greater than the corresponding area of the corresponding
disk. The main ingredients of our proof are Jensen's inequality and Theorem 2.
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