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RADIAL N-TH DERIVATIVES OF BOUNDED

ANALYTIC OPERATOR FUNCTIONS

Du�san R. Georgijevi�c

Abstract. We give, roughly, necessary and suÆcient conditions, in terms of the Potapov-
Ginzburg factorization, for the existence of N-th radial derivatives of bounded analytic operator
functions. Our result is a generalization of the result of Ahern and Clark concerning scalar
functions [1]. For inner matrix functions (in the case N odd) such a result was proved in [2].

1. Introduction. Throughout this paper H will be a �xed separable (non-
trivial) Hilbert space. We denote by C, S1 and S1, respectively, the spaces of all
bounded, nuclear and compact linear operators from H into H . We will denote by
k � k the norm in C (the uniform norm), and by k � k1 the norm in S1 (the trace
norm). The identity operator on H will be denoted by I . By D we denote the unit
disc jzj < 1 in the complex plane. Some operator functions with values in C or
in S1 will be considered. Boundedness, limits, derivatives, analyticity etc. of such
functions will be understood in the sense of trace norm, except when it is stated
otherwise.

Let f : D ! C be an analytic operator function bounded by 1, in the sense of
uniform norm. We will use the following continuation of f : if jzj > 1 and f(z �1)
is boundedly invertible, then

(1) f(z) =: f(z �1)��1:

The continued function f is analytic at every point z in its domain.

Given a function f : D ! C, we will consider the kernel K(f ;w; z) =:
(1 � wz)�1(I � f(w)�f(z)), w; z 2 D. For the sake of shortness we shall write
Kj;m(f ;w; z) instead of @j+mK(f ;w; z)=@wj@zm, j;m 2 N [ f0g.

Note 1. If f is analytic and bounded by 1, in the sense of uniform norm, then
the kernel K(f ;w; z) is positive de�nite [3, 4]. But, by [5] Kj;m(f ;w; z) is also
positive de�nite.

AMS Subject Classi�cation (1985): Primary 30G35, Secondary 47 B38

Key words: analytic operator function, radial derivative, operator-valued kernel



112 Georgijevi�c

2. The Potapov-Ginzburg factorization. The well known Potapov-
Ginzburg factorization of bounded analytic operator functions [6], stated as Theo-
rem 1 below, will play an important role in this paper.

Let G be the class of functions � : D ! C analytic on D in the uniform
norm and such that: (1) �(z)��(z) � I , z 2 D; (2) there exists �(0)�1 2 C;
(3) �(0)� I 2 S1.

Theorem 1 [6]. A necessary and suÆcient condition for a function � : D !
C to belong to the class G is that for every z 2 D its value �(z) can be represented

in the form

�(z) = F (z) � U � B(z);(2)

B(z) =
xYp

j=1
bj(z) =

xYp

j=1

�
jaj j(aj � z)

aj(1� ajz)
Pj + (I � Pj)

�
;(3)

F (z) =

xZ l

0

expf�v(x; z) dE(x)g;(4)

where: p � 1; jaj j < 1; Pj are orthoprojectors, TrPj = dimPjH = pj < 1;Pp
j=1 pj(1�jaj j) <1; v(x; z) = (1+e�iy(x)z)(1�e�iy(x)z)�1, y is a nondecreasing

scalar function (0 � y(x) � 2�); E : [0; l]! S1 is an Hermitian-increasing operator

function satisfying TrE(x) = x, x 2 [0; l]; U is a unitary operator for which U �
I 2 S1. Here the partial products converge uniformly on compact subsets of D to

the product of Blaschke-Potapov type B(z), and in the same manner the integral

products converge to the multiplicative integral F (z).

The function y in the factorization (2){(4) can always be chosen to be left
continuous and to take the value 2� only at the point x = l or nowhere on [0; l].
From now on we will consider y as having these properties.

Note 2. It follows form Theorem 1 that �(z) � I 2 S1, z 2 D, and that the
function � � I is analytic on D.

We denote by Bm(z) the partial products of (3): Bm(z) =
xQm

j=1bj(z), 1 �

m � p; B0(z) � I . We set also Bm(z) = B(z)Bm(z)
�1, 1 � m � p. In connection

with (4), we set F b
a(z) =

xR b

a
expf�v(x; z) dE(x)g, 0 � a < b � l. We write

F u(z) instead of F u
0 (z) and Fu(z) instead of F l

u(z). Accordingly, we set �u(z) =
F u(z)UB(z).

Note 3. Let y(x) 6= 0, x 6= 0. It is not hard to see that then the function
F b
a is analytic at the point z = 1 and that K(F b

a ; � ; � ) is analytic at the point
(w; z) = (1; 1), whenever a 6= 0 and b 6= l.

Note 4. If � 2 G, then �(z) � I 2 S1 (as it was emphasized in Note 2),
which implies that det �(z) exists for every z 2 D [7]. One can easily see that this
determinant can be expressed in terms of the factorization (2){(4):

det �(z) =

pY
j=1

�
jaj j(aj � z)

aj(1� ajz)�1

�pj

� exp

�
�

Z l

0

v(x; z) dx

�
;
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and that det �(z) is an inner function.

De�nition 1. A function �1 2 G is called a (right) divisor of a function � 2 G
if � = �0�1, �0 2 G.

Note 5. It is not hard to see that, if �1 is a divisor of �, then the kernel
Kj;m(�;w; z)�Kj;m(�1;w; z) is positive-de�nite.

Note 6. Let � 2 G and let d(z) =: det �(z). Then for every divisor d1 of d
there exists a divisor �1 of � such that det �1(z) = d1(z), z 2 D. This divisor �1 is
unique up to a unitary left multiplicator [6].

3. Auxiliary statements. Lemma 1. Let f be a function de�ned on (0; 1)
and taking values in S1 and let f possess the N-th derivative on (0; 1). Let the limits

limr!1� f
(j)(r) (:= f (j)(1)), 0 � j � N � 1, exist, and let f (N)(r) be bounded as

r ! 1�. Then

(5) f(r) =

N�1X
j=0

f (j)(1)

j!
� (r � 1)j +

g(r)

N !
� (r � 1)N ; r 2 (0; 1);

where g is a function from (0; 1) into S1, bounded as r ! 1�.

Proof . The function g is de�ned by (5), which also implies that g(r) 2 S1,
r 2 (0; 1). Let A be an arbitrary operator in S1. Applying the Taylor theorem
(with remainder in the Lagrange form) to the real and imaginary parts of Tr(Af(r)),
we establish that Tr(Ag(r)) can be represented in the form

Tr(Ag(r)) = Re(Tr(Af (N)(r1))) + i Im(Tr(Af (N)(r2)));

for some points r1; r2 2 (r; 1). Therefore we have

jTr(Ag(r))j � 2kAk supfkf (N)(�)k1 : r � � < 1g:

Since A is an arbitrary operator in S1 and since S1 is the dual of S1 (via the
trace duality), it follows that kg(r)k1 � 2 supfkf (N)(�)k1 : r � � < 1g and the
boundedness of g(r) as r ! 1� is established.

Lemma 2. Let f : D ! C be an operator function bounded and analytic on

D, in the sense of uniform operator convergence, and let t 2 @D. If the radial limit

limr!1� f(rt) exists in the sense of uniform operator convergence, then the non-

tangential limit limz!t (n.-t.) f(z) also exists, again in the sense of uniform operator

convergence.

Proof . Assume that the radial limit is equal to 0, which does not a�ect
generality. Suppose that kf(rt)k � ", r � r0 (r < 1) and take an angle �, 0 <
� < �, with vertex at the point t and halved by the radius of the disc D ending at t.
For any a; b 2 H the function g(z) = hf(z)a; bi, z 2 D, is a scalar function bounded
and analytic on D. Moreover, for r � r0 the following inequality jg(rt)j � "kakkbk
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holds. According to the classical Lindel�of theorem (see the proof of Theorem 3{5
in [8]), for each z 2 � satisfying jzj � r1 = (r0 + 1)=2 the following holds: jg(z)j �
("kak kbk)�, where � > 0 depends only on the angle � (and not on a and b).
But, since kf(z)k = supfjhf(z)a; bij : a; b 2 H; kak = kbk = 1g, it follows that
kf(z)k � "�, z 2 �, jzj � r1. This means that limz!t (n.-t.) f(z) = 0 in the sense of
uniform convergence, q.e.d.

4. Main result. Theorem 2. Let � 2 G and t 2 @D.

(i) If N is an odd natural number, then the following are equivalent :

(a1) The limit

(6) lim
r!1

�(j)(rt) (:= �(j)(t))

exists for 0 � j � N � 1, and the N -th derivative �(N)(rt) remains bounded as

r ! 1�.

(b1) The derivative f (N)(rt) remains bounded as r ! 1� and the limit

limr!1 f(rt) exists for f = � and every divisor of �.

(c1) The limit (6) exists for all j, 0 � j � N .

(d1) The mixed partial derivative Kj;m(�; rt; rt) remains bounded as r ! 1�,
for 0 � j +m � N � 1.

(e1)

(7) RN+1(�) =:

pX
j=1

j1� ajtj
�N�1(1� jaj j)pj +

Z 1

0

j1� e�iy(x)tj�N�1 dx <1

(with the notation introduced in Theorem 1).

(ii) If N is an even natural number, then the following are equivalent :

(b1).

(a2) The limit

(8) lim
r!1

f (j)(rt)

exists for 0 � j � N , for f = � and every divisor of �.

(b2) The mixed partial derivative Kj;m(f ; rt; rt) remains bounded as r ! 1�,
for 0 � j +m � N � 1, for f = � and every divisor of �.

(e1).

We will begin the procedure of proving this theorem with the proof that
(7) implies (a2) for every nonnegative integer N , which we will give as a separate
lemma. Actually, the lemma will contain slightly more, in accordance with what is
needed in the course of the proof.

Lemma 3. In Theorem 2 condition (7) implies (a2), for every nonnegative

integer N . Even more, if (7) is satis�ed, then there exist numbers MN > 0 and
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r0 > 1, such that kf (j)(rt)k1 � MN , r 2 [0; r0], 0 � j � N , for f = � and every

divisor of �.

Proof . We assume that t = 1, without loss of generality. It can be easily seen
that (7) implies that for every angle � < � with vertex at the point 1, halved by
the radius of the disc D ending at 1, there exists a disc of radius r1 < 1 centered at
the point 1, such that the intersection of this disc and the angle � does not contain
any point aj , i.e. that we have det �(z) 6= 0 there. We assume that � = �=3 and
set r0 = 2=(2� r1).

The case �(z) � B(z). From (2) and (1) it follows that

(9) B(r) � I =

pX
m=1

(bm(r) � I)Bm�1(r);

for r 2 [0; 1) [ (1; r0]. Since

(10) bm(r)� I = (jamj�1)(1� �amr)
�1(jamj=am � r+1)Pm; r 2 [0; 1)[ (1; r0];

and

(11) j1� �amrj > j1� �amj=2; r 2 [0; 1);

it follows that

(12) kbm(r) � Ik1 � 4j1� �amj
�1(1� jamj)pm; r 2 [0; 1):

Taking into account that kBm�1(r)k � 1, r 2 [0; 1), we see that the series (9) can
be majorized by a convergent numerical series and that we have kB(r) � Ik1 �
4R1(B), r 2 [0; 1). From the uniform convergence just established of the series (9)
on [0; 1) it follows that

(13) lim
r!1�

B(r) =
xYp

j=1
bj(1):

In order to establish analogous facts for r > 1, �rst let am be outside the
angle �. Since then j1� �amrj � j1� �amj

�1 > sin(�=2), it follows that for am outside
the angle the inequality (11) is true also if r > 1, which means, according to (10),
that (12) is satis�ed for r 2 (1; r0], with 2(r0 + 1) instead of 4. For the remaining
am's we must have j1� amj � r1 and therefore

(14) j1� �amrj � 1� (1� r1)r0 = r0 � 1; r 2 (1; r0]:

In this case instead of (12) we have

(15) kbm(r) � Ik1 � (r0 + 1)(r0 � 1)�1(1� jamj)pm; r 2 (1; r0]:

We also have to establish the boundedness of Bm�1(r). Applying (13) to the scalar
function detB(z) (the case dimH = 1), we see that S =: supfj detB(r)j : r 2
(1; r0]g <1. Now for r 2 (1; r0] it follows that

(16) kBm�1(r)k � j detBm�1(r)j � j detB(r)j � S;
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and the boundedness is established. As S does not depend on m, the se-
ries (9) is majorized by a convergent numerical series and thus kB(r)� Ik1 �
2(r0+1)SR1(B)+(r0+1)(r0�1)�1SR0(B). From the uniform convergence of the
series (9) on (1; r0] it follows that (13) is also satis�ed as r ! 1+, so that the limit
limr!1B(r) exists.

It is clear that in the considerations above an arbitrary divisor of B can be
put instead of B. (We note that the same r0 can serve for all divisors.) This proves
the statement for N = 0.

We proceed by induction over N . Di�erentiating the equality

(17) B0(z) =

pX
m=1

Bm(z)b0m(z)Bm�1(z)

N � 1 times at the point z = r, we obtain

B(N)(r) =
N�1X
j=0

�
N � 1

j

� jX
u=0

�
j

u

� pX
m=1

(Bm)(N�1�j)(r)b(u+1)m (r)B
(j�u)
m�1 (r);

r 2 [0; 1) [ (1; r0]:

By the induction hypothesis it suÆces to show that the series

(18)

pX
m=1

Bm(r)b(N)
m (r)Bm�1(r)

can be majorized by a convergent numerical series for r 2 [0; 1)[ (1; r0]. But, since

(19) b(N)
m (r) = �jamj=am � (1� jamj

2)N !�aN�1m (1� �amr)
�N�1Pm;

it follows, according to (11), that for r 2 [0; 1) we have

(20) kb(N)
m (r)k1 � 2N+2N !j1� �amj

�N�1(1� jamj)pm;

and the same is also true for r 2 (1; r0] if am lies outside the angle �. For the
remaining am's, according to (14), it follows that

(21) kb(N)
m (r)k1 � 2(r0 � 1)�N�1N !(1� jamj)pm:

Now, the conclusion we needed about the series (18) follows easily. The same
reasoning holds also for an arbitrary divisor of B.

The case �(z) � F (z). It is clear that (7) implies that y(x) 6= 0, x 2 (0; l].
We will apply a reasoning analogous to that in the preceding case. In this case one
can set r0 = 2. The following equality is an analogue of (9):

F b
a(r) � I = �

Z b

a

v(u; r) dE(u)F u
a (r); r 2 [0; 1) [ (1; 2]; 0 < a < b < l:
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Instead of (11) and (14) we have now j1�e�iy(u)rj � j1�e�iy(u)j=2, r 2 [0; 1)[(1; 2].
Instead of (12) and (15) the following estimate holds: jv(u; r)j � 6j1� e�iy(u)j�1,
r 2 [0; 1) [ (1; 2], and instead of (16) the following estimate:

kF u
a (r)k � expf6R1(F )g; r 2 [0; 1) [ (1; 2]:

From these estimates it follows that

kF b
a(r) � Ik1 � 6 expf6R1(F )g

Z b

a

j1� e�iy(u)j�1 du;

r 2 [0; 1) [ (1; 2]; 0 < a < b < l;

which shows that F l�"
" (r)! F (r), as "! 0+, uniformly in r 2 [0; 1)[(1; 2]. Hence

it follows that the statement is true for N = 0, taking into account the fact that
the function F u

a is analytic at the point z = 1, for 0 < a < u < l (Note 3).

Further, the analogue of (17) is the relation

F 0(z) = �

Z l

0

Fu(z)[@v(u; z)=@z] dE(u)F
u(z):

As for the analogues of (19), (20) and (21), we will have now

@Nv(u; r)=@zN = 2e�iNy(u)N !(1� e�iy(u)r)�N�1;

and hence

j@Nv(u; r)=@zN j � 2N+2N !j1� e�iy(u)j�N�1; r 2 [0; 1) [ (1; 2]:

The rest is clear.

The general case. The statement in the general case follows now from the
factorization (2) and from the statements already proved for the previous cases.

Proof of Theorem 2. We can assume that t = 1, without loss of generality.

The case N = 1. It is clear that in this case the implications (c1) ) (b1) and
(b1) ) (a1) are true.

(a1) ) (d1). Existence of the limit (6) for j = 0 means that limr!1� �(r) =
limr!1+ �(r) = �(1), where, according to (1), we must have �(1)�1 = �(1)�. By
Lemma 1, we have �(r) = �(1)+(r�1)g(r), r 2 (0; 1), where g is a bounded operator
function. Therefore K(�; r; r) = (r + 1)�1(2Re(�(1)�g(r)) + (r � 1)g(r)�g(r)), and
hence the boundedness of K(�; r; r), as r ! 1�, follows immediately.

(d1)) (e1). According to Note 5, and to factorization (2), the boundedness of
K(�; r; r) as r ! 1� implies that we have, for someM > 0 and some r0, 0 < r0 < 1,

TrK(B; r; r) �M; r 2 [r0; 1);(22)

Tr(B(r)�U�K(F ; r; r)UB(r)) �M; r 2 [r0; 1):(23)
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It is easy to see that

(24) K(B;w; z) =

pX
m=1

km(w; z); w; z 2 D;

where km(w; z) = Bm�1(w)
�K(bm;w; z)Bm�1(z). From (22) and (24) it follows

that

(25)

pX
m=1

Tr(km(r; r)) �M; r 2 [r0; 1):

But, as Tr(km(r; r)) = j1 � �amrj
�2(1 � jamj

2) Tr(Bm�1(r)
�PmBm�1(r)) and

Tr(Bm�1(1)
�PmBm�1(1)) = TrPm, we obtain from (25), letting r ! 1�, that

(26) R2(B) �M:

In order to establish that such an inequality is valid also for F , we will apply
a reasoning analogous to the above. Now instead of (24) we have

(27)

B(w)�U�K(F ;w; z)UB(z)

= (1� wz)�1
Z l

0

�u(w)�(v(u;w) + v(u; z)) dE(u)�u(z); w; z 2 D:

Instead of (25) we have, by (23),

(28) (1� r2)�1
Z l

0

2Re v(u; r) Tr(�u(r)�dE(u)�u(r)) �M; r 2 [r0; 1):

It is clear by Note 5 that (22) remains valid also if B is replaced by an arbitrary
divisor �1 of �. Hence it follows that for every h 2 H satisfying khk = 1 we have

(29) 1� k�1(r)hk
2
�M(1� r20); r 2 [r0; 1):

Here we may assume that M(1� r20) < 1 in which case (29) implies

(30) k�1(r)
�1k �

�
1�M(1� r20)

�
�1=2

(:= S); r 2 [r0; 1):

Putting �u(r) instead of �1(r) in (30) we can easily establish the following inequality:
Tr(�u(r)�dE(u)�u(r)) � S�2 du, r 2 [r0; 1), u 2 [0; l]. With this inequality in hand,
according to the fact that (1 � r2)�1Re v(u; r) = j1 � e�iy(u)rj�2, we let r ! 1�
in (28), and so we obtain

(31) 2S�2R2(F ) �M:

Since it is R2(�) = R2(B)+R2(F ), the statement follows from (26) and (31).

(e1) ) (c1). Established in Lemma 3.

We proceed by induction over N . Of course, we separate the case N even
and the case N odd.
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The case N = 2n, n 2 N. It is clear that (a2) ) (b1) is true.

(b1) ) (b2). By the induction hypothesis, we may assume that (a1) is
satis�ed, for � and also for every divisor of �. Existence of the limit (8) for
j = 0 implies the possibility of analytic continuation of the function � to some
segment z = r, 1 < r < r0. Hence it follows that K(�;w; z) is analytic in
w and z at every point (w; z) = (�; r), �; r 2 [0; 1) [ (1; r0]. Let L(w; z) =
(1 � wz)j+m+1Kj;m(�;w; z). Assume that w = z = r, r 2 (0; 1). By Lemma 1

�(�)(r) =
PN�1��

u=0 (u!)�1�(�+u)(1)(r�1)u+[(N ��)!]�1g�(r)(r�1)N�� , r 2 (0; 1),
where the function g� remains bounded as r ! 1�, for � = 0; 1; . . . ; N �1. Substi-
tuting this into L(r; r) we can derive the formula (5) for the function L(r; r), with
j + m + 1 instead of N . We will show that here the coeÆcients by (r � 1)u for
u � j +m must vanish. The coeÆcient by (r � 1)u equals to the expression

(32) (@=@w + @=@z)(u)L(1; 1);

where all the derivatives �(�)(1) for � � N are replaced by 0. As the function L(�; r)
is \divisible" by (1��r)j+m+1, it follows that at every point (�; r) = (r�11 ; r1) (r1 2

(r�10 ; 1)[ (1; r0)) all its partial derivatives of order less than j+m+1 must vanish,

so that ((@=@w) � r�11 + (@=@z) � r1)
(u)L(r�11 ; r1) = 0 for u � j +m. It is clear that

derivatives of � of order grater thanN�1 do not enter in the expression above. Now,
letting r1 ! 1, we establish that (32) vanishes for u � j+m. Thus, the formula (5)
for L(r; r) reduces to: L(r; r) = [(j +m+1)!]�1g(r)(r � 1)j+m+1, where g(r) stays
bounded as r ! 1�. Here it is shown that Kj;m(�; r; r) = (1� r2)�(j+m+1)L(r; r)
stays bounded as r ! 1�, for 0 � j +m � N � 1. Clearly, in the reasoning above
an arbitrary divisor of � can stay instead of �.

(b2)) (e1). By the induction hypothesis and Lemma 3, we may assume that
RN (f) < 1 and kf (j)(r)k1 � MN�1, r < 1, 0 � j � N � 1, for f = � and every
divisor of �, and also that the limit limr!1 f(r) := f(1) exists and that f(1) is a
unitary operator for f = � and every divisor of �.

First let �(z) � B(z) and Im aj > 0, all j, or Im aj < 0, all j, and aj =2 �, all
j, where � is the angle introduced at the beginning of the proof of Lemma 3. By
di�erentiating (24) for w = z = r we can obtain

(33) Kn�1;n(B; r; r) =

pX
m=1

@2n�1km(r; r)

@w n�1@zn
:

The boundedness of the right-hand side as r ! 1� and the induction hypothe-
sis together with the de�nition of km imply the boundedness as r ! 1� of the
expression

(34)

pX
m=1

Bm�1(r)
�Kn�1;n(bm; r; r)Bm�1(r):

But since

Kn�1;n(bm; r; r) = (n� 1)!n!
jamj

2n�2�am(1� jamj
2)

j1� �amrj2n(1� �amr)
Pm;
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since

Im
�am

1� �amr
= Im

�am
j1� �amrj2

(< 0, all m, or > 0, all m)

and j Im �amj � j1� �amj
�1 > sin(�=2), it follows that the expression

pX
m=1

j1� �amj(1� jamj
2)

j1� �amrj2n+2
Bm�1(r)

�PmBm�1(r)

also stays bounded as r ! 1�. Hence it follows easily that RN+1(B) <1.

In the case when �(z) � B(z) and aj 2 � for all j, it follows by induction
hypothesis and Lemma 2 that there exists an r1, 0 < r1 < 1, such that jaj�1j > r1
for all j. Hence RN+1(B) � r�N�11 R0(B) follows.

Assume now that �(z) � F (z), with 0 � y(x) < 5�=6 or 7�=6 < y(x) � 2�,
all x. In the proof of this case we will follow the analogy with the proof of the �rst
of cases considered above. First, by di�erentiating the equality

K(F ;w; z) =

Z l

0

F u(w)�ku(w; z) dE(u)F
u(z)

for w = z = r, where

ku(w; z) = (1� wz)�1
�
v(u;w) + v(u; z)

�
= 2(1� eiy(u)w)�1(1� e�iyz)�1;

we obtain the analogue of (33)

Kn�1;n(F ; r; r) = 2

Z l

0

@n�1

@w n�1

�
F u(w)�

1� eiy(u)w

�����
w=r

dE(u)
@n

@zn

�
F u(z)

1� e�iy(u)z

�����
z=r

:

The analogue of (34) is the following expression:

Z l

0

F u(r)�
@2n�1

@w n�1@zn
ku(r; r) dE(u)F

u(r):

Since
@2n�1

@w n�1@zn
ku(r; r) = 2(n� 1)!n!

e�iy(u)

j1� e�iy(u)j2n(1� e�iy(u)r)
;

since

Im

�
e�iy(u)

1� e�iy(u)r

�
= �

sin y(u)

j1� e�iy(u)rj2
(< 0, all u, or > 0, all u),

and j sin y(u)j � j1� e�iy(u)j�1 > sin(�=2), it follows that the expression

Z l

0

j1� e�iy(u)rj�2n�2j1� e�iy(u)jF u(r)�dE(u)F u(r)

is bounded as r ! 1�. Hence we conclude easily that RN+1(F ) < 1, because of
Tr(F u(1)�dE(u)F u(1)) = du.
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If �(z) � F (z) and 5�=6 � y(x) � 7�=6, all x, then j1 � e�iy(x)j � 31=2, so
that RN+1(F ) � 3�(N+1)=2l.

In the general case the statement follows from the fact that, according to
Note 6, � has divisors of all types considered, such that det �(z) is the product of
these divisors, which implies that RN+1(�) is the sum of quantities RN+1 of these
divisors.

(e1) ) (a2). Established in Lemma 3.

The case N = 2n+ 1, n 2 N. It is clear that (c1) ) (a1) is true.

(b1) ) (a1). Since (b1) for N implies (b1) for N � 1, it follows, by the
induction hypothesis, that (a2) for N � 1 is satis�ed. Thus, (a1) is true for N .

(a1) ) (d1). This statement can be proved in the same way as (b1) ) (b2).

(d1) ) (e1). According to Note 5 and to factorization (2), the boundedness
of Kn;n(�; r; r) as r ! 1� implies that for some M > 0 and r0, 0 < r0 < 1, the
following holds

(35) Tr(Kn;n(B; r; r)) �M; r 2 [r0; 1);

and

(36) Tr(@2n=@w n@zn(B(w)�U�K(F ;w; z)UB(z))jw=r; z=r) �M; r 2 [r0; 1):

By the induction hypothesis, by Note 5 and Lemma 3, we may assume that RN (f) <
1 and that kf (j)(r)k1 � MN�1, r < 1, 0 � j � N � 1, and also that the limit
limr!1 f(r) := f(1) exists and that f(1) is a unitary operator, for f = � and every
divisor of �.

By di�erentiating the equality (24) for w = z = r, we obtain the relation

(37) Kn;n(B; r; r) =

pX
m=1

@2nkm(r; r)

@w n@zn
;

which shows, by taking into account the de�nition of the kernel km, that (35) and
the induction hypothesis imply boundedness, as r ! 1�, of the expression

(38)

pX
m=1

Bm�1(r)
�Kn;n(bm; r; r)Bm�1(r):

But, since Kn;n(bm; r; r) = (n!)2jamj
2nj1� �amrj

�2n�2(1�jamj
2)Pm, it follows that

the expression

(39)

pX
m=1

j1� �amrj
�2n�2(1� jamj)Bm�1(r)

�PmBm�1(r)

also stays bounded as r ! 1�. Hence already it follows that

(40) RN+1(B) <1;
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for Tr(Bm�1(1)
�PmBm�1(1)) = pm.

In order to establish such a fact for F , we will follow the analogy with
the reasoning just applied. By di�erentiating the relation (27), and putting

(1� wz)�1(v(u;w) + v(u; z)) = ku(w; z) there, we obtain the relation

@2n

@w n@zn
(B(w)�U�K(F ;w; z)UB(z)) =

Z l

0

@2n

@w n@zn
(�u(w)�ku(w; z) dE(u)�

u(z));

which can be considered as the analogue od (37). Now, (36) and induction hy-
pothesis imply that the following expression (the analogue of (38)) is bounded as
r ! 1�: Z l

0

�u(r)�
@2n

@w n@zn
ku(r; r) dE(u)�

u(r):

But, since
@2nku(r; r)=@w

n@zn = 2(n!)2j1� e�iy(u)rj�2n�2;

it follows that the expressionZ l

0

j1� e�iy(u)rj�2n�2�u(r)� dE(u)�u(r)

is also bounded as r ! 1�. Hence it follows easily that

(41) RN+1(F ) <1;

for Tr(�u(1)� dE(u)�u(1)) = du.

Since RN+1(�) = RN+1(B) +RN+1(F ), the statement follows from (40) and
(41).

(e1) =) (c1) ^ (b1). Established in Lemma 3.

This completes the proof of Theorem 2.
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