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RELATIONS WITH I-STRUCTURE
IN CATEGORIES WITH PULLBACKS

Mara Alagi�c

Abstract. Theory of relations in both set-theoretical and in categorical approach, rarely
is concerned with a possible existing structure between objects on which relations are de�ned.
The aim of this paper is to give one model of relations having in mind a speci�c structure, the
so-called I-structure, between objects in the domain of considered relations and to consider some
properties of such category of relations.

Introduction

An n-ary relation R on sets A1; A2; . . . ; An is usually de�ned as a subset of
A1 � A2 � � � � � An. In categories with pullbacks relations are de�ned by certain
collections of morphisms. In both, common set-theoretical and in more general
categorical approach possible existing relations between objects on which relations
are de�ned, are rarely considered. The aim of this paper is to de�ne one kind of
(abstract) relational structure and to consider corresponding relations in a category
K with pullbacks.

A relational structure I is de�ned as a kind of a free graph | category
with arrows corresponding to existing connections between objects on which rela-
tions are considered. Relations with such kind of structure are taken as objects
of a speci�c subcategory of the comma category (KI # D) where D is a functor
(\domain-functor"), D : I �! K. Objects of that subcategory RK(I;D) are nat-
ural transformations, namely those functors R : I �! K for which there exists
a natural transformation (extension) e : R �! D. Accordingly, some properties
and operations are considered. Among other results, let us emphasize one that
gives necessary and suÆcient conditions for respecting certain limits by extensions.
Those conditions enable us to recognize when a relation with I-structure decom-
posed by \projections" may be recomposed (by functional joins) into the primary
one.
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Many authors considered relations for di�erent categories, among others Y.
Kawahara [7] and L. Coppey and R. Davar-Panah [6]. Binary relations, de�ned by
pairs of morphisms in categories with pullbacks, have been studied in Kawahara's
paper and decompositions and categories of relations are considered in [6]. Some
views on di�erent relational models are given by this author in [2] and [3]. The
idea of considering abstract relational structure has come from paper by J. Rissanen
[10]. Necessary categorical preliminaries may be found in both S. Mac Lane's [8]
and E. Manes' book [9].

1. Relational structure

1.1. Let (E;�) be an order. A trivial relational structure T is a category
de�ned as follows. For an element X of E let X be an object of T ; for X and Y
objects of T , let the set of arrows T (X;Y ) consist of one arrow X �! Y , whenever
Y � X , otherwise let T (X;Y ) = ?.

1.2. A trivial relational structure T is a well-de�ned category. It de�nes
a graph G0 =

S
T , with the same objects as Ob(T ) (as knots) forgetting which

arrows are composition and which are identities. This graph is dual to one usually
induced and directed by the given order.

Example 1. Let M = (X;Y; Z) and E = P (M). Consider (P (M);�). A
trivial relational structure contains among others the following arrowsM �! fXg,
fX;Y g �! fY g, X �! ?, . . . and one possible interpretation of an arrow in T is
\. . . has more information than. . . "

1.3. Let (E;�; sup) be a sup-complete semi-lattice and G0 =
S
T . Let N

denote a new collection of arrows between some knots of the graph G0 (not adding
any new knots) and let G = G0 [N . A relational structure I := I(G) induced by a
graph G is a category constructed in the following three steps:

(i) Enlarge the graph G by one new arrow A �! XY := supfX;Y g whenever
G already contains two arrows A �! X and A �! Y , X 6= Y , and apply this rule
as long as new arrows may be produced. (Identify XX with X for X 2 E.)

(ii) Construct a category whose objects are those of G and whose arrows are
�nite strings A1 �! A2 �! . . . �! An composed of n� 1 arrows fi : Ai �! Ai+1
of G, and regard that string as an arrow A1 �! An. The composition of these
arrows is de�ned by juxtaposition of strings (therefore, associative) and the identity
arrows are strings An of length 1.

(iii) If X and Y are objects of I , identify all arrows that belong to hom(X;Y ).
Then hom(X;Y ) is either empty or consists of only one arrow.

Example 2. (P (M);�;[), M = fX;Y; Zg, nontrivial arrows fY g �! fXg,
fZg ! fXg. A relational structure I consists of all (trivial) T -arrows, nontrivial
arrows, fY g ! fXg, fZg �! fXg and new-constructed arrows: fY g �! fX;Y g,
fY; Zg �! fXg.
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1.4. Proposition. A relational structure I := I(G) is a well de�ned category
and

(a) A trivial relational structure T is a subcategory of a corresponding rela-
tional structure I,

(b) I has �nite products, X � Y = supfX;Y g (Note : XX = X )

(c) I has �nite pullbacks : for a pair of arrows X �! A, Y �! A pullback is
XY �! A ; and

(d) I has an initial object (namely supE = 1 ).

(e) If (E;�) is a complete lattice, I has initial and terminal objects.

1.5. Let (F;U) : Graph �! Kat be a pair of adjoint functors between the
category of (small) graphs and the category of (small) categories. FG is a free
category constructed over a graph G of Graph and UK is a graph-like category
under the forgetful functor U .

Proposition. There exists a quotient category FG== and a functor Q, Q :
FG �! FG== such that:

(a) if f1 : X �! Y and f2 : X �! Y are arrows of FG, then Qf1 = Qf2;

(b) if H : FG �! K is any functor, satisfying Hf1 = Hf2, for all f1; f2 :
X �! Y , then there exists a unique functor H 0 : FG== �! K such that H 0Q = H;

(c) there is an isomorphism between categories FG== and I(G).

Proof . Functor Q is a bijection on objects and it maps all arrows from X to
Y to a unique arrow X �! Y of FG==, so that for any X , Y objects of FG== the
set of arrows with domain X and codomain Y contains at most one element. The
isomorphism between FG==and I(G) exists by the construction of I(G).

1.6. A morphismM : I1 �! I2, of relational structures is a covariant functor
which respects (preserves) products. A composition of morphisms of relational
structures is the usual composition of covariant functors.

1.7. Proposition. Relational structures together with morphisms of rela-
tional structures form a category.

1.8. Proposition. Arrows of a relational structure I possess the following
properties :

(a) X �! Y , X �! Z if and only if X �! Y Z,

(b) If X �! Y and V �! W then XV �! YW ,

(c) If X �! Y and Y V �! Z then XV �! Z,

(d) X �! Y if and only if X �! XY .

The proof is a consequence of well known lattice properties and the construc-
tion of products (universal) in relational structure I .
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1.9. Let X be an arbitrary object of I and let z(X) denote a collection of
I-objects de�ned by the following:

(i) X is an object of z(X),

(ii) If Y is an object of z(X) and there exists in I an arrow Y �! V , then V is
an object of z(X)-collection, and

(iii) all objects of z(X) are given by (i) and (ii).

Consider z(X). If a relational structure has products, one may de�ne a
functor (endofunctor) Cl : I �! I , where Cl(X) is the product of all objects of
z(X), for any object X in I , and on arrows Cl(f) : Cl(X) �! Cl(Y ) is induced by
z(X) �! z(Y ), for any arrow f : X �! Y in I .

Let h : Cl �! 1 and k : Cl �! Cl2 be two natural transformations de�ned
on components by hX : Cl(X) �! X and kX : Cl �! Cl(Cl(X)).

1.10. Proposition. (Cl; h; k) is a comonad in a relational structure I
with products. The corresponding Cl-coalgebras are those objects of I for which
Cl(X) = X.

2. Relations of the given relational structure

Any relational structure I de�nes, in an abstract manner, relations that may
be de�ned starting form I and corresponding to I-objects suitable domains and
subobjects of products of domains, having in mind already existing arrows between
objects.

2.1. Let K be a category (base-category) with the following pairs of adjoint
functors: (�; TK) : K * 1 and (�; P 0) : K * K!� (i.e. K possesses a terminal
object and pullbacks) and let D : I �! K be a covariant functor that respects
products for di�erent knots from I (domain-functor). A comma category (KI #
D) de�ned for the following pair of functors (id : KI �! KI , D : 1 �! KI)
has as objects all those functors S : I �! K for which there exists a natural
transformation eS : S �! D and as morphisms all arrows (natural transformations)

� : S ! S0 such that eS
0

� = eS where S0 : I �! K.

2.2. Arrows of DT may be considered as \projections" and therefore the
existence of the following morphisms in K is obvious:

(i) If f : X �! U and g : Y �! V are arrows of I there exists a unique
arrow r : DX � DY �! DU � DV in category K such that (pU ; pV )r =
(DfpX ; DgpY ), where pX : DX � DY �! DX , pY : DX � DY �! DY ,
pU : DU �DV �! DU , pV : DU �DV �! DV

(ii) If X �! Y and Y V �! Z are I-arrows then there exists a unique arrow
s : DX �DV �! DZ such that s = DgD(f; 1V ) ' Dg(Df;D1V ).

2.3. Natural transformations e : R �! D of (KI # D) with all components
eX : RX �! DX (mono) subobjects are called extensions .
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For X 2 Ob(I), the following diagram is commutative

E
?
?
y

X

RE
eE����! DE

qX

?
?
y

?
?
ypX

RX
eX����! DX

Since e : R �! D is an extension, for a collection fXi j i = 1; 2; . . . g of I-objects,
there is a morphism

(Dp)esupXi = eXi
Rp : R(supXi) �! DX; where p : supXi �! Xi:

A monic arrow esupXi
: R(supXi) �! D(supXi) de�nes R(supXi) as a subobject,

of D(supXi).

2.4. A functor R : I �! K is a relation with I-structure (I-relation) when-
ever there exists in (KI # D) an extension e : R �! D, D being a domain functor.
Let R;S : I �! K be two I-relations. A morphism between two I-relations R and
S is a natural transformation t : R �! S such that teR = eS where eR : R �! D
and eS : S �! D are extensions.

Example 3. (a) One simple interpretation of the Example 2 is the following:
Let DX = faddressesg; DY = fcitiesg; DZ = fphone numbersg and consider
R(XY Z) as a relation (in DX �DY �DZ) for a restricted number of cities (for
example, in one state) and the corresponding addresses and phone numbers.

(b) Consider Example 1 with nontrivial arrows X �! Y , Y �! Z, Z �!
X and let D : I �! Set (preserving products for di�erent knots) be given by
DX = DY = DZ = [0; 1] and let R : I �! Set be de�ned by R(XY Z) =
f(x; y; z) j x2 + y2+ z2 = 1g. Relation e : R �! D is determined by an embedding
eXY Z : R(XYZ) �! D(XY Z) and the corresponding projections: eX , eY , eZ ,
eXY , eXZ , eY Z , eXY Z .

2.5. An I-morphism f : X �! Y is embedded into a relation R if and only if
R(f)R(tX) = R(tY ) where tX : 1 �! X , tY : 1 �! Y , (1 = supE) are T -arrows.

2.6. Proposition. I-relations and morphisms between them, in base
category K and with the domain functor D : I �! K, form a subcategory
Rel := RelK(I;D) of the comma category (KI # D) and the following properties
are valid :

(i) For any I-relation R, e : R �! D and for any I-object X, eXRtX = DtXe1
where RtX : R1 �! RX, DtX : D1 �! DX and 1 = supE.

(ii) Let R be an Rel-object, e : R �! D. Any I-morphism f : X �! Y is
embedded into R and (Df)eX = eYRf .

(iii) Extensions of T -arrows are (mono- ) restrictions of projections.

Proof . (iii) If t : X �! Y is a T -arrow, then supfX;Y g = X and hence

t : supfX;Y g �! Y . Further, DX �DY ' DXY
Dt
�! DY is a projection and Rt

is a restriction of the projection Dt.
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2.7. Proposition. For any I-relation R from the category Rel,

(a) A morphism (eX ; eY ) : RX � RY �! DX � DY is an embedding (mono-
morphism ).

(b) There exists a unique monomorphism m : R(XY ) �! RX � RY such that
i(eX ; eY )m = eXY (where eXY : R(XY ) �! D(XY ), i : DX � DY '
D(XY ) ).

Proof . (a) By a standard categorical argument.

(b) Since XY is a product in I and e : R �! D is a natural transformation,
eXRtX = pXeXY and eYRtY = pY eXY where eXY : R(XY ) �! D(XY ) '
DX � DY is an XY -component of e. Since DX � DY is a product, (eX ; eY ) is
a unique morphism such that i(eX ; eY )m = eXY . Also, since eXY is monic, m is
monic. If m is not unique, let m;m1 : R(XY ) � RX � RY , m 6= m1. Then,
i(eX ; eY )m = eXY = i(eX ; eY )m1 and since i(eX ; eY ) is monic, m = m1.

2.8. Lemma. Let � : R �! S be a morphism between two I-relations. An I-
morphism f : X �! Y is embedded in both R and S, and the following connections
are valid: S(f)�X = �Y R(f), (e

S)X�X = (eR)X and (eS)Y �Y = (eR)Y .

2.9. Proposition. A relation R from the category RelK(I;D) is determined
in a unique way by a graph-morphism h : G �! UK.

Proof . An adjoint pair of functors (F;U) : Graph * Kat extends a mor-
phism h : G �! UK to a unique functor H : FG �! UK and then by Proposition
1.4. it extends a functor H to a unique H 0 : FG== �! K so that H 0Q = H .

3. Operations

3.1. Projections of a relation R with an extension e : R �! D are e-images
of the corresponding projections in a relational structure.

Clearly, for a trivial arrow t : XY �! X the commutativity (Dt)eXY =
eX(Rt) illustrates the presence of one possible projection.

3.2. The product of two I-relations R and S, with extensions eR and eS ,
denoted by eR � eS : R� S �! D, is de�ned by components

(eR � eS)(X) := ((eR)X ; (e
S)X ) : RX � SX �! DX:

3.3. For any given pair of arrows from the relational structure I , f : Y �! X ,
g : Z �! X , the functional join of Rf and Rg is a pullback of a pair of morphisms
(Rf;Rg) in the base category K. It is denoted by R(Y ) ÆX R(Z).

3.4. A functional join of relations R and S (with extensions eR and eS)
is a pullback of a pair of morphisms (components) (eR)X , (eS)X de�ned by
(R Æ S)(X) := RX ÆDX SX and denoted by eR Æ eR : R Æ S �! D. Actually,
if RX and SX are treated as subobjects of DX , (R ÆS)X is the intersection of the
subobjects (eR)X and (eS)X in the partially ordered set of all subobjects of DX .
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3.5. In the category Set, a composition of relations R(XY ) and R(XZ) is
de�ned in the usual way, by R(XY )ÆR(XZ) := f(x; y; z) j (x; y) 2 R(XY ); (x; z) 2
R(XZ)g.

3.6. Proposition. In the category of sets, a composition of relations R(XY )
and R(XZ) is exactly the functional join of a pair of projections pX : R(XY ) �!
RX, qX : R(XZ) �! RX.

3.7. Lemma. Let f : X �! Y be an arrow of a relational structure I and R
an I-relation. Then, RX ÆX RY ' RXY .

Proof . It is enough to prove that a morphism r : RXY �! RX ÆX RY ,
de�ned by the universal construction of a pullback for a pair of arrows (R idX ; Rf)
is an isomorphism. Obviously, pY r = idRY where pY : RXÆXRY �! RY . Further,
pY is a monomorphism. For let r1; r2 : N � RX ÆXRY be a pair of di�erent arrows
in the base categoryK, with pY r1 = pY r2. Hence, R(f)pY r1 = R(f)pY r2 and since
R(f)pY = pX , it would be pXr1 = pXr2. Now, a pair of arrows pXr1 = pXr2 :
N �! RX , pY r1 = pY r2 : N �! RY , together with idRX and R(f) forms a
commutative square. By the universal property of pullback square, there exists a
unique arrow r1 = r2 : N �! RX ÆX RY . Therefore, pY is a monomorphism and
hence r is an isomorphism.

3.8. Corollary. Let I be a relational structure with terminal object 0 and
let R be an I-relation. Then,

(a) RX ÆX RX ' RX; (b) RX ÆX R0 ' R0; (c) R1 ÆX RY ' RY:

The following proposition describes (existing) K-arrow between some objects
| R(Y Z), RY ÆX RZ, RY �RZ.

3.9. Proposition. There are unique K-monomorphisms g : R(Y Z) �!
RY ÆX RZ, k : R(Y Z) �! RY �RZ, and h : RY ÆX RZ �! RY �RZ such that
hg = k.

Proof . Consider commutative diagrams (3.9) and the corresponding universal
arrows:

R(Y Z)
g

����! RY ÆX RZ
?
?
yh

RY
r1����! RY �RZ

r2����! RZ

RX

3.10. Proposition. Let Y �! A  � Z and a : A �! B be arrows of a
relational structure I. Then, the chain of arrows 1 �! A �! B �! 0 induces, for
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any I-relation R, a chain of K-arrows

R1
R(t)
����! R(Y Z)

gA
����! RY ÆA RZ

m
����! RY ÆB RZ �! RY �RZ;

with the following equalities: mgA = gB, gBhB = k = gAhA, gAR(t) = tA,
gBR(t) = tB, where tA : R1 �! RY ÆA RZ, tB : R1 �! RY ÆB RZ.

3.11. Theorem. For any I-relation in base category K and with the domain
functor D, R(XY Z) ' R(XY ) ÆX R(XZ) if and only if there exists in a relational
structure I either an arrow X �! Y or X �! Z.

Proof . Without loss of generality, suppose X �! Y is an I-arrow. This
arrow yields a unique arrow X �! XY and hence X ' XY . Then, since R is a
functor, and by 3.7. R(XY ) ÆX R(XZ) ' R(X) ÆX R(XZ) ' R(XZ). On the other
hand, the arrow X �! XY yields an (unique) arrow XZ �! XY Z and therefore,
R(XY Z) ' R(XZ). Hence R(XY Z) ' R(XY ) ÆX R(XZ).

The converse is obvious by the following example: Let R be an I-relation in
RelSet(I;D) whereG is a graph with three objects and no arrows and let R(XY Z) =
f(x; y; z) j x2 + y2 + z2 = 1g. Then R(XY ) ÆX R(XZ) 6' R(XY Z).

3.12. Corollary. A functional join operation (whenever de�ned) has the
following properties :

(a) RX Æ1 RY ' RX �RY ,

(b) RX ÆX RX ' RX ,

(c) RX ÆA RY ' RY ÆA RX ,

(d) (RX ÆA RY ) ÆA RZ ' RX ÆA (RY ÆA RZ),

(e) (RX ÆA RY ) ÆB RZ ' RX ÆA (RY ÆB RZ),

(f) (RX ÆA RY ) ÆY RZ ' RX ÆA RZ,

(g) (RX �RY ) ÆA RZ ' (RX ÆA RZ)�RY .

4. Decompositions of relations

Corollary 3.12 suggests a generalization of a functional join operation to a
successive join operation and, as its special case, multiple functional join.

4.1. For any given collection W = f(fi; gi) : dom gi = dom fi+1; cod gi =
cod fi; i = 1; 2; . . . g of I-arrows, R-successive functional join is a limit for the
diagram scheme WR := f(Rfi; Rgi) j (fi; gi) 2 Wg. It is a K-object ÆWR together
with a sequence of K-arrows ri : ÆWR �! R(dom fi), i = 1; 2; . . . with the corre-
sponding universal property: First, for any i = 1; 2; . . . R(gi)ri+1 = R(fi)ri, and
second, for given collection of arrows mi :M �! R(dom fi), i = 1; 2; . . . for which
R(fi+1)mi+1 = R(fi)mi there exists a unique arrow t : M �! ÆWR such that
rit = mi for i = 1; 2; . . . .

For a given collection of I-arrows fi : Xi �! Ai, i = 1; 2; . . . a multiple func-
tional join is an R-successive join for a collection W = f(fi; fi+1) j i = 1; 2; . . .g.
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4.2. An extension e : R �! D from a category of relations RelK(I;D)
preserves (respects ) the limit of a functor V : J �! I whenever the following
conditions are satis�ed:

(L1) If u : � lim V �! V is the limit of a functor V , then Ru : �R limV �! RV
is the limit of the composition RV : J �! K,

(L2) There exists a mono-natural transformation � : limRV �! DV , such that

(L3) (eV )(Ru) = (Du)(�elimV ).

4.3. Let Q(x; y) denote any diagram of the form x ! �  y, and let V :
Q(x; y) �! I be a functor from the diagram category Q(x; y) into a relational
structure I such that the middle object in V Q cannot be the initial object.

Proposition. An extension e : R �! D preserves the limit of a functor
V : Q(x; y) �! I (i.e. binary functional join ) whenever there exists in I either
V (�) �! V (x) or V (�) �! V (y).

The proof follows immediately from 3.11.

4.4. Corollary. Let M 0 and M 00 be such �nite collections of I-arrows
for which an extension e : R �! D preserves a successive functional join. If
there exists a functor V1 : Q(x; y) �! I such that V1(x) =

S
fdom f j f 2 M 0g

and V1(y) =
S
fdom f j f 2 M 00g and e preserves the limit of a functor V1 then,

e : R �! D preserves a successive functional join for a collection of I-arrows
M =M 0 [M 00.

Proof . By induction, from 4.3.

4.5. Proposition. An extension e : R �! D preserves limit of V : G �! I
for those and only those subfamilies of objects in I satisfying the following condi-
tions :

(i) For any subdiagram Q(x; y) from G for which inffV (x); V (y)g 6= 0 there exist a
lim(V jQ), and

(ii) there is no �nite subdiagram Z of G with Ob(V Z) = fZ1; Z2; Y1; Y2; . . .
. . . ; Yng for which

(a) an extension e preserves the limit of V jQ(yi;yj) for each i; j = 1; 2; . . . ; n,
but

(b) e preserves neither the limit of V jQ(yi;zk) nor V jQzk;zm
for i; j =

1; 2; . . . ; n and k;m = 1; 2.

To prove this Proposition one needs two following lemmas.

4.6. Lemma. Let G? be a diagram satisfying condition (i) of Proposition 4.5
and let Z be a �nite subdiagram of G? of the form (ii) in 4.5. Then, there is no
extension e : R �! D preserving the limit of V : G? �! I.

Proof . It is enough to prove that for each e : R �! D, limRV (G?) 6'
R lim V (G?). An image V (G?) generates a subcategory of the relational structure
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I . Let C = Cl(Y1; . . . ; Ym). If Z1 is an object in C, there are arrows K �! Y1 �!
C �! Z1 and hence K �! Z1, and therefore e preserves the limit of V jQ(y1;z1)
which contradicts the assumption of this lemma. Similarly, forQ(yn; z2). Therefore,
neither Z1 nor Z2 does belong to the considered closure. On the other hand,
since neither Q(z1; z2) nor Q(z2; z1) are subdiagrams of G?, for which e preserves
lim(V jQ) only I-arrows between Z1 and Z2 are Z1 �! 1 and Z2 �! 1, and hence
R(Z1)�1R(Z2) ' R(Z1)�R(Z2). Now, limR(V ) ' R(Z1)�R(Z2)�R(Y1Y2 . . .Yn),
but R(limV ) ' R(Z1Z2Y1Y2 . . .Yn) and obviously, R(limV ) 6' R(limV ).

4.7. Lemma. Under assumptions of the Proposition 4.5, for any two I-
objects A and B from V (G) there exists an object C from the relational structure
I and subcollections A = A0; A1; . . . ; An = C and C = B0; B1; . . . ; Bm = B, such
that e preserves limV jQ for Q(ai; ai�1), and Q(bj ; bj�1), (i = 0; 1; . . . ; n� 1 and
j = 0; 1; . . . ;m� 1 ) where Q(ai; ai�1), and Q(bj ; bj�1) are subdiagrams of G.

The proof goes by induction on the number of objects between a and b, i.e. on
the least number of objects a = y0; y1; . . . ; yk = b such that Q(yi; yj) is subdiagram
of G for all i; j = 1; 2; . . . ; k (and e preserves lim(V jQ)).

�D lim V
Du
����! DV

x
?
?�elimV

x
?
?eV

limV limV �! V � limRV = �R(lim V )
Ru
����! RV

x
?
?

x
?
?

W W S

I IG KI

(4.5)

Proof of the Proposition 4.5. Let V G? be a collection of objects from the
relational structure, satisfying (i). By (ii), there exists an I-object Z1 from V (G?)
such that V Q(z1; a) is a subdiagram of G? and e preserves lim(V jQ) for each
V (a) = A from G?. If that is not true, let z1 be such that Q(z1; a) is a subdiagram
of G? for maximal number of elements a from G? and let Z2 be an I-object for
which Q(z1; z2) is not a subdiagram of G?. By the Lemma 4.7 there exists an
object Z = V (z) with both Q(z; z1) and Q(z; z2) subdiagrams of V G?. But, that
contradicts the maximality of a's, i.e. the maximality of A's. Hence, V G? may be
ordered as a sequence of I-objects X1; X2; . . . ; Xn; . . . such that Q(xi; xj) for all
i < j is a subdiagram of G? and e preserves lim(V jQ). Let the limiting cone of V
be given by a natural transformation u : � limV �! V . By 4.3 a limit of a functor
RV : G? �! K is de�ned by Ru : �R(limV ) = �RV (G?) = � limRV �! RV
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and therefore, the proof follows by induction on the number i. Since e : R �! D
is a mono-natural transformation, for each I-object B, eB is monic in K. Since
limV is also an I-object, there exists a monomorphism e0limV : R(limV ) �! DV
and hence (L2) of 4.2 is satis�ed.

Under conditions given in 4.5, (L1) and (L2) of 4.2 are valid and for any IG?

morphism �W �! V and KI-morphism �S �! RV the diagrams labeled by
(4.5) are commutative. Therefore, the condition (L3) of 4.2 is satis�ed (eV )(Ru) =
(Du)�elimV = lim eV .

Conversely, if an extension e : R �! D of relation R from Rel respects either
successive or multiple pullback for a subdiagram G? of the relational structure I ,
we shall show that conditions (i) and (ii) are satis�ed. If condition (i) doesn't hold,
extension e doesn't respect pullbacks by the Corollary 4.5. In case (ii) doesn't hold,
extension e doesn't preserve pullbacks by the Lemma 4.7.

Remark . A simple graph-like version of the question considered in this para-
graph may be found in [1].
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