PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 50 (64), 1991, 71–84

TIGHT SEMIGROUPS

Stojan Bogdanović and Miroslav Ćirić

Abstract. We give a description of tight semigroups, i.e. semigroups in which for every subset M, $|M| \leq 2$ implies that $|M^2| \leq 2$.

Introduction

Freiman and Schein studied in [3] tight semigroups, i.e. semigroups in which, for every subset M, $|M| \leq 2$ implies $|M^2| \leq 2$. In this paper these semigroups will be completely described in two different ways.

A subset M of a semigroup S is n-closed if $M^n \subseteq M$, where n is an integer such that $n \geq 2$. A semigroup S is n-closed if every subset of S is n-closed [4]. Lyapin, [4] considered 3-closed semigroups. A semigroup S is a Rédei's band if $xy \in \{x, y\}$ for every $x, y \in S$. A semigroup S is 2-closed if and only if S is a Rédei's band [8]. Here will be considered semigroups in which for every subset M there exists n such that M is n-closed and semigroups in which for every subset M, $|M| \leq 2$ implies that there exists n such that M is n-closed.

A group G with the identity element e is a Boolean group if $x^2 = e$ for all $x \in G$. A semigroup S with zero 0 is a nil-semigroup if for every $x \in S$ there exists a positive integer n such that $x^n = 0$. An ideal extension S of a semigroup T is a retract extension of T if there exists a homomorphism φ of S onto T such that $\varphi(t) = t$ for all $t \in T$. Such a homomorphism we call retraction. If φ is a retraction of S onto T and if $\Phi = \ker \varphi$, then by Φ_a , $a \in T$, we denote the Φ -class containing the element $a \in T$, i.e. $\Phi_a = \{x \in S \mid \varphi(x) = a\}$.

It is clear that $S = \bigcup \{ \Phi_a \mid a \in T \}$. We denote by $\operatorname{Reg}(S)$ (E(S)) the set of all regular (idempotent) elements of a semigroup S. If X is a subset of a semigroup S, then $C(X) = \{ a \in S \mid ax = xa \text{ for all } x \in X \}$. If S is a semigroup with zero 0, then $C_0(X) = \{ a \in S \mid aS = Sa = 0 \}$. By \mathbb{Z}^+ we denote the set of all positive integers.

AMS Subject Classification (1985): Primary 20 M 10

In any semigroup S define the relation \mathcal{K} by

 $a \mathcal{K} b \iff (\exists m, n \in \mathbf{Z}^+) a^m = b^n.$

It is immediate that \mathcal{K} is an equivalence relation. The \mathcal{K} -class containing the element a is denoted by K_a . In particular, if S is periodic, then S is the union of the classes $K_e, e \in E(S)$.

For undefined notions and notations we refer to [1] and [6].

2. Tight semigroups with exactly one idempotent

Definition 2.1 [3]. A semigroup S with zero 0 is a semigroup of the first type if (1) $(\forall x \in S) \ x^2 = 0; \ (2) \ (\forall x, y \in S) \ xy = 0 \lor yx = 0 \lor xy = yx.$

LEMMA 1.1. [3]. A semigroup of the first type is a tight semigroup.

Example. The three-element cyclic semigroup with zero is a tight semigroup and S is not a semigroup of the first type. It is clear that a semigroup S is a semigroup of the first type if and only if S is a tight semigroup with zero and $x^2 = 0$ for all $x \in S$. A construction of a semigroup of the first type is given in [3]. Here, a construction of a tight nil-semigroup will be given.

LEMMA 1.2. Every subsemigroup and every homomorphic image of a tight semigroup is a tight semigroup.

LEMMA 1.3. Every subsemigroup and every homomorphic image of a semigroup of the first type is a semigroup of the first type.

THEOREM 1.1. Let A be a semigroup of the first type. Let $\{a_{\alpha} \mid \alpha \in Y\} \subseteq C_0(A)$ and let $B_{\alpha}, \alpha \in Y$, be sets such that $B_{\alpha} \neq \emptyset$, $B_{\alpha} \cap B_{\beta} = \emptyset$ for $\alpha \neq \beta$ and $B \cap A = \emptyset$ for $B = \bigcup \{B_{\alpha} \mid \alpha \in Y\}$. Let * be a multiplication on $S = A \cup B$ satisfying the following conditions:

$$(x,y) \in A \times A \implies x * y = xy; \tag{1.1}$$

$$(x,y) \in B_{\alpha} \times B_{\beta} \implies x * y \in \{a_{\alpha}, a_{\beta}\}, \quad \alpha \neq \beta;$$
(1.2)

$$(x,y) \in B_{\alpha} \times A \cup A \times B_{\alpha} \implies x * y \in \{a_{\alpha},0\};$$
(1.3)

$$(x,y) \in B_{\alpha} \times B_{\alpha} \implies x * y \in C_0(A)$$
(1.4)

and the following conditions hold:

 $\begin{array}{ll} \text{(i)} & x*y \neq y*x \implies x*y = a_{\alpha} \lor y*x = a_{\alpha};\\ \text{(ii)} & x*x = a_{\alpha};\\ \text{(iii)} & (x*y)*z = 0 \implies x*(y*z) = 0, \quad x,y,z \in B_{\alpha}; \end{array}$

$$(x,y) \in B_{\alpha} \times A^{2} \cup A^{2} \times B_{\alpha} \implies x * y = 0;$$

$$(1.5)$$

$$(x,y) \in B_{\alpha} \times \{a_{\alpha}\} \cup \{a_{\alpha}\} \times B_{\alpha} \implies x * y = 0; \tag{1.6}$$

72

Tight semigroups

$$(x,y) \in B_{\alpha} \times B_{\alpha}^{2} \cup B_{\alpha}^{2} \times B_{\alpha} \implies x * y = 0, \quad \alpha \neq \beta.$$

$$(1.7)$$

Then (S, *) is a tight nil-semigroup.

Conversely, every tight nil-semigroup is isomorphic to some semigroup of the previous type.

Proof. Assume the conditions (1.1)–(1.7) hold. Let $(x, y, z) \in A \times A \times B$. Then

$$(x * y) * z = xy * z = 0$$
 (by (1.5)),
 $x * (y * z) = x(y * z) = 0,$

since $y * z \in \{a_{\alpha}, 0\} \subseteq C_0(A)$, where $\alpha \in Y$ is such that $z \in B_{\alpha}$. Similar proof we have in the case $(x, y, z) \in A \times B \times A \cup B \times A \times A$

Let $(x, y, z) \in A \times B \times B$. Then $y \in B_{\alpha}$ for some $\alpha \in Y$ and $x * y \in \{a_{\alpha}, 0\}$, so by (1.6) we obtain that (x * y) * z = 0. Moreover, since $y * z \in C_0(A)$, then x * (y * z) = x(y * z) = 0 = (x * y) * z. The similar proof we have in the case $(x, y, z) \in B \times A \times B \cup B \times B \times A$.

Let $x, y, z \in B$. Assume that $(x, y, z) \in B_{\alpha} \times B_{\beta} \times B_{\gamma}$ for some $\alpha, \beta, \gamma \in Y$, $\alpha \neq \beta \neq \gamma \neq \alpha$. Then $x * y \in \{a_{\alpha}, a_{\beta}\}, y * z \in \{a_{\beta}, a_{\gamma}\}$, so by (1.6) we obtain that x * (y * z) = 0 = (x * y) * z. Let $(x, y, z) \in B_{\alpha} \times B_{\beta} \times B_{\beta}$, for some $\alpha, \beta \in Y, \alpha \neq \beta$. Then we have that $x * y \in \{a_{\alpha}, a_{\beta}\}$ and $y * z \in B_{\beta}^2$, so by (1.6) and (1.7) we have that

$$x * (y * z) = 0 = (x * y) * z$$

The similar proof we have in the case $(x, y, z) \in B_{\beta} \times B_{\alpha} \times B_{\beta} \cup B_{\beta} \times B_{\beta} \times B_{\alpha}$, $\alpha, \beta \in Y, \alpha \neq \beta$.

Let $x, y, z \in B_{\alpha}, \alpha \in Y$. Then

$$(x * y) * z \in \{a_{\alpha}, 0\}, \qquad x * (y * z) \in \{a_{\alpha}, 0\},$$

since $x * y, y * z \in A$, so by (1.4) (iii) we have that

$$(x * y) * z = 0 = x * (y * z)$$
 or $(x * y) * z = a_{\alpha} = x * (y * z),$

Thus, (S, *) is a semigroup.

Let $x \in B_{\alpha}$, $\alpha \in Y$. Then by (1.4) (ii) we have that $x^2 = x * x = a_{\alpha}$, and by (1.6) we have that $x^3 = x * a_{\alpha} = 0$. Therefore, (S, *) is a nil-semigroup.

Let $x \in B_{\alpha}$, $\alpha \in Y$ and let $y \in A$. Then

$$x * y, y * x \in \{a_{\alpha}, 0\}, \quad y^2 = 0 \text{ and } x^2 = a_{\alpha}$$

 \mathbf{SO}

$$|\{x, y\}^2| = |\{x^2, x * y, y * x, y^2\}| = |\{a_{\alpha}, a_{\beta}\}| \le 2.$$

Assume that $x, y \in B_{\alpha}$ for some $x \in Y$. Then $x^2 = y^2 = a_{\alpha}$. Assume that x * y = y * x. Then

$$|\{x,y\}^2| = |\{x^2, x * y, y * x, y^2\}| = |\{a_\alpha, x * y\}| \le 2.$$

73

Let $x * y \neq y * x$. Then by (1.4) (i) we have that $x * y = a_{\alpha}$ or $y * x = a_{\alpha}$ so

$$|\{x,y\}^2| = |\{x^2, x * y, y * x, y^2\}| = |\{a_\alpha, x * y, y * x\}| \le 2.$$

Finally, let $x, y \in A$. Since A is a semigroup of the first type, then $|\{x, y\}^2| \leq 2$. Therefore, S is a tight nil-semigroup.

Conversely, let S be a tight nil-semigroup with the zero element 0. By Lemma 2 [3] we obtain that $(xy)^2 = 0$ for all $x, y \in S$, so the relation ρ on S defined by

$$x \ \rho \ y \iff x^2 = y^2$$

is a congruence and S/ρ is a zero semigroup. Let $\varphi : S \to S/\rho$ be a natural homomorphism and let $Y = S/\rho - \{0\rho\}, A = \varphi^{-1}(0\rho), B_{\alpha} = \varphi^{-1}(\alpha), \alpha \in Y$, and $a_{\alpha} = x^2$ for $x \in B_{\alpha}$. Since $a_{\alpha} = x^4 = 0, x \in B_{\alpha}, \alpha \in Y$, then $\{a_{\alpha} \mid \alpha \in Y\} \subseteq A$.

If $B = \emptyset$, then S = A is a semigroup of the first type. Let $B \neq \emptyset$. Let $x \in B$. Then

$$|\{x, x^2\}^2| = |\{x^2, x^3, x^4\}| \le 2,$$

so $x^3 = 0$. Let $\alpha \in Y$, $x \in B_{\alpha}$ and $y \in A$. Then by

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{a_\alpha, 0, xy, yx\}| \le 2$$

it follows that $xy, yx \in \{a_{\alpha}, a_{\beta}\}$, since $a_{\alpha} \neq a_{\beta}$ for $\alpha \neq \beta$. Therefore (1.3) holds.

Let $x \in B_{\alpha}$, $y \in B_{\beta}$, $\alpha, \beta \in Y$ and $\alpha \neq \beta$. Then by

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{a_\alpha, a_\beta, xy, yx\}| \le 2$$

it follows that $xy, yx \in \{a_{\alpha}, a_{\beta}\}$, since $a_{\alpha} \neq a_{\beta}$ for $\alpha \neq \beta$. Thus, (1.2) holds.

Let $x, y \in B_{\alpha}$ for some $\alpha \in Y$. Then by

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{a_\alpha, xy, yx\}| \le 2$$

it follows that $xy = a_{\alpha}$ or $yx = a_{\alpha}$ or xy = yx.

Let $z \in A$. Since (1.3) holds, we have that $xz = a_{\alpha}$ or xz = 0, so $a_{\alpha}z = xz^2 = x0 = 0$, if $xz = a_{\alpha}$, and $a_{\alpha}z = x^2z = 0$ if xz = 0. Therefore, $a_{\alpha}z = 0$. In a similar way we prove that $za_{\alpha} = 0$, so $\{a_{\alpha} \mid \alpha \in Y\} \subseteq C_0(A)$. Moreover, $yz = a_{\alpha}$ or yz = 0, whence it follows that

$$(xy)z = x(yz) = xa_{\alpha} = x^3 = 0$$
, or $(xy)z = x(yz) = x0 = 0$.

Therefore $xy \in C_0(A)$, so (1.4) holds.

Let $x \in B$, $y \in A^2$, i.e. y = uv, $u, v \in A$. By (1.3) we have that

$$xu = a_{\alpha} = x^2$$
 or $xu = 0$

 and

$$xv = a_{\alpha} = x^2$$
 or $xv = 0$.

Assume that $xu = x^2$. Then

$$xy = xuv = x^2v = x^3 = 0.$$

if $xv = x^2$, and

$$xy = xuv = x^2v = 0,$$

if xv = 0. If xu = 0, then xy = xuv = 0. Therefore xy = 0 in any case. In a similar way we prove that yx = 0, so (1.5) holds.

Let $x \in B_{\alpha}$, $\alpha \in Y$. Then $xa_{\alpha} = xx^2 = x^3 = 0 = x^2x = a_{\alpha}x$, so (1.6) holds.

Finally, let $x \in B_{\alpha}$, $y \in B_{\alpha}^2$, $\alpha \neq \beta$. Then y = uv, where $u, v \in B_{\alpha}$ and $xu, xv \in \{a_{\alpha}, a_{\beta}\}$. Assume that $xu = a_{\beta}$. Then $xy = xuv = a_{\beta}v = v^2v = v^3 = 0$. Let $xu = a_{\alpha}$. Then

$$xy = xuv = a_{\alpha}v = x^{2}v = xa_{\beta} = xv^{2} = a_{\beta}v = v^{3} = 0,$$

if $xv = a_\beta$ and

$$y = xuv = a_{\alpha}v = x^{2}v = xa_{\alpha} = xx^{2} = x^{3} = 0,$$

if $xv = a_{\alpha}$. Therefore xy = 0. In a similar way we prove that yx = 0, so (1.7) holds. \Box

A group G is a tight group if G is a tight semigroup.

LEMMA 1.4. G is a tight group if and only if G is a Boolean group.

Proof. This follows by Lemma 1 [3] and by the commutativity of Boolean groups. \Box

THEOREM 1.2. S is a tight semigroup with exactly one idempotent if and only if one of the following conditions holds:

1. S is a tight nil-semigroup;

x

2. S is a retract extension of a Boolean group G by a semigroup of the first type with the retraction φ such that:

$$\Phi_a \subseteq C(\Phi_b) \qquad \text{for all } a, b \in G \text{ such that } a \neq b, \tag{1.8}$$

where $\Phi = \ker \varphi$.

Proof. Let S be a tight semigroup with exactly one idempotent e. Since S is periodic, then S is an ideal extension of a group G by a nil-semigroup Q = S/G. If |G| = 1, then S = Q is a tight nil-semigroup. Assume that $|G| \ge 2$. By Proposition III 4.5. [6], we have that the mapping $\varphi : S \to G$ given by $\varphi(x) = ex$, $x \in S$, is a retraction of S onto G. By Lemma 1.2 and Lemma 1.4, we have that G is a Boolean group.

Let $a \in G$ and let $x \in \Phi_a$. Let $b \in G$ and $b \neq a$. Since G is a Boolean group, then $ab = ba \neq e$, so

$$xb = \varphi(x)b = ab = ba = b\varphi(x) = bx \neq e.$$

Since

$$|\{x,b\}^2| = |\{x^2, xb, bx, b^2\}| = |\{x^2, ab, e\}| \le 2$$

and $x^2 \in \Phi_a \cdot \Phi_a \subseteq \Phi_e$, it follows that $x^2 = e$ for all $x \in S$. Therefore, by this and by Lemma 1.2, we have that Q is a semigroup of the first type.

Let $a, b \in G$ be such that $a \neq b$, and let $x \in \Phi_a$, $y \in \Phi_b$. Then $ab = ba \neq e$ and $xy, yx \in \Phi_{ab} = \Phi_{ba} \neq \Phi_e$, so by

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{e, xy, yx\}| \le 2$$

it follows that xy = yx, so (1.8) holds.

Conversely, let S be a retract extension of a Boolean group G by a semigroup of the first type Q with the retraction φ for which (1.8) holds. Let $x, y \in S$. Then $x \in \Phi_a, y \in \Phi_b$ for some $a, b \in G$. Since Q is a semigroup of the first type, then we have that $x^2, y^2 \in G$, so

$$x^2 = \varphi(x^2) = \varphi(x)\varphi(x) = a^2 = e$$
 and $y^2 = \varphi(y^2) = \varphi(y)\varphi(y) = b^2 = e$.

If $a \neq b$, then by (1.8) it follows that xy = yx, so

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{e, xy\}| \le 2.$$

Assume that a = b. Then $xy, yx \in \Phi_a \cdot \Phi_a \subseteq \Phi_e$. If $x \in G$ or $y \in G$, then $xy, yx \in G \cap \Phi_e = \{e\}$, so xy = yx = e, whence

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{e\}| \le 2.$$

Let $x, y \in S - G = Q - \{0\}$. Since Q is a semigroup of the first type, then

$$xy = 0$$
 or $yx = 0$ or $xy = yx \neq 0$ in Q ,

 \mathbf{SO}

$$xy = e$$
 or $yx = e$ or $xy = yx \notin G$ in S_{\pm}

whence

$$|\{x,y\}^2| = |\{x^2, xy, yx, y^2\}| = |\{e, xy, yx\}| \le 2.$$

Therefore, S is a tight semigroup. \Box

2. Regular tight semigroups

The following theorem gives a characterization of regular tight semigroups.

THEOREM 3.1. The following conditions on a semigroup S are equivalent:

- (i) S is a regular tight semigroup;
- (ii) for every subset M of S, |M| ≤ 2 implies that there exists n such that M is n-closed;
- (iii) for S one of the following conditions holds:
 - (a) S is a $R\acute{e}dei$'s band;
 - (b) $S = P \cup Q$, where P is a Boolean group, Q is a Rédei's band, $P \cap Q = \emptyset$ and

$$(\forall x \in P)(\forall y \in Q) \ xy = yx = y; \tag{2.1}$$

(c) S is a Boolean group.

Proof. (i) \implies (iii). Let S be a regular tight semigroup. Then by Lemmas 1 and 5 [3] we have that S is periodic and that E(S) is a Rédei's band. Let $a \in S$. Then a = axa for some $x \in S$, so

$$|\{a,x\}^2| = |\{a^2, ax, xa, x^2\}| \le 2.$$

If ax = xa, then a is completely regular. Let $ax \neq xa$. Then $a^2 = ax$ or $a^2 = xa$, whence it follows that $a = axa = a^3$, so a is completely regular. Therefore, S is a completely regular semigroup.

If |E(S)| = 1, then S is a group and by Lemma 1.4 it follows that S is a Boolean group. Let $|E(S)| \ge 2$.

Assume that E(S) has the identity e. Let $y \in G_f$, $f \in E(S)$ and $f \neq e$. Since G_f is a Boolean group (by Lemmas 1.2 and 1.4) we have that $y^2 = f$ and

$$ey = efy = fy = y = yf = yfe = ye$$

Now, by

$$|\{e, y\}^2| = |\{e, ey, ye, f\}| = |\{e, y, f\}| \le 2$$

it follows that y = f, i.e. $G_f = \{f\}$ for all $f \in E(S) - \{e\}$.

Let $G_e = P$, $Q = S - P = E(S) - \{e\}$. Then P is a Boolean group, Q is a Rédei's band and $P \cap Q = \emptyset$. Let $x \in P$ and $y \in Q$. By

$$|\{x,y\}^2| = |\{e,y,xy,yx\}| \le 2$$

it follows that xy = e or xy = y. Assume that xy = e. Then we have that e = xy = xyy = ey = y. Thus, xy = y. In a similar way we prove that yx = y. Therefore, (2.1) holds.

Assume that E(S) is without the identity. Let $e \in E(S)$ and $x \in G_e$. Since e is not the identity of E(S), there exists $f \in E(S)$ such that $ef \neq f$ or $fe \neq f$. Since E(S) is a Rédei's band we obtain that ef = e or fe = e. Clearly, $e \neq f$. Now we have

$$xf = xef = xe = x$$
, if $ef = e$, or
 $fx = fex = ex = x$, if $fe = e$.

Therefore,

$$|\{x,f\}^2| = |\{x^2, xf, fx, f\}| = |\{e, f, xf, fx\}| \le 2,$$

whence $x \in \{xf, fx\} \subseteq \{e, f\}$, so x = e. Thus $G_e = \{e\}$ for all $e \in E(S)$, so S = E(S) is a Rédei's band.

(iii) \implies (i). This follows immediately.

(ii) \implies (iii). Let for every subset M of S for which $|M| \leq 2$ there exists n such that M is n-closed. Let $x \in S$. Then there exists n such that $\{x\}$ is n-closed, i.e. $x^n = x$ ($n \geq 2$), so S is periodic and completely regular. Thus S is a union of periodic groups G_e , $e \in E(S)$. Let $e \in E(S)$ and $x \in G_e$. Then there exists n such that $\{x, e\}$ is n-closed. Then

$$x^{2} = x^{2}e^{n-2} \in \{x, e\}^{n} \subseteq \{x, e\}$$
 (if $n = 2$, then $x^{2} \in \{x, e\}$)

whence $x^2 = e$ for all $x \in G_e$, so G_e is a Boolean group for all $e \in E(S)$.

If |E(S)| = 1, then S is a Boolean group. Assume that $|E(S)| \ge 2$. Let $e, f \in E(S)$. Then $\{e, f\}$ is n-closed for some n, whence

$$ef = ef^{n-1} \in \{e, f\}^n \subseteq \{e, f\},\$$

so E(S) is a Rédei's band. Assume that E(S) does not contain an identity. Let $e \in E(S)$ and let $x \in G_e$. Then there exists $f \in E(S)$ such that $f \neq e$ and ef = e or fe = e. Let ef = e (in a similar way we consider the case fe = e). Then $\{x, f\}$ is *n*-closed for some *n*. If n = 2, then

$$e = x^2 \in \{x, f\}^2 \subseteq \{x, f\}.$$

In $n \geq 3$, then

$$e=ef=x^2f^{n-2}\in\{x,f\}^n\subseteq\{x,f\}$$

Therefore, $e \in \{x, f\}$, whence we have that x = e, so $G_e = \{e\}$ for all $e \in E(S)$. Thus S = E(S), i.e. S is a Rédei's band.

Assume that E(S) contains the identity e. Let $f \in E(S)$, $f \neq e$ and let $y \in G_f$. Then $\{e, y\}$ is *n*-closed for some n. If n = 2, then

$$f = y^2 \in \{e, y\}^2 \subseteq \{e, y\}.$$

Let $n \geq 3$. Then

$$f = ef = e^{n-2}y^2 \in \{e, y\}^2 \subseteq \{e, y\}.$$

Therefore, $f \in \{e, y\}$, whence y = f, so $G_f = \{f\}$ for every $f \in E(S) - \{e\}$. Let $G_e = P, Q = S - P = E(S) - \{e\}$. Then we have that P is a Boolean group, Q is a Rédei's band and $P \cap Q = \emptyset$, Let $x \in P, y \in Q$. Then $\{x, y\}$ is n-closed for some n, so

$$xy = xy^{n-1} \in \{x, y\}^n \subseteq \{x, y\}.$$

If xy = x, then we have that $e = x^2 = x^2y = ey = y$ (since e is the identity of E(S)), which is not possible. Thus, xy = y. In a similar way we prove that yx = y. Therefore, (2.1) holds.

(iii) \implies (ii). If S is a Rédei's band, then we have that $M^2 \subseteq M$ for every subset M of S. If S is a Boolean group, then $M^3 = M$ for every subset M of S such that $|M| \leq 2$. By this and by (2.1) we obtain that (ii) holds. \Box

By Theorem 2.1 the following corollaries follow:

COROLLARY 2.1. S is a semigroup in which for every subset M of S there exists n such that M is n-closed if and only if one of the following conditions holds:

1. S is a Rédei's band;

2. S is a group of order 2;

3. $S = P \cup Q$, where P is a group of order 2, Q is a Rédei'S band, $P \cap Q = \emptyset$ and (2.1) holds.

Proof. Let S be a semigroup in which for every subset M there exists n such that M is n-closed. Then by Theorem 2.1 it follows that S satisfies one of the

conditions (a), (b) or (c) of this theorem. Let G be a Boolean subgroup of S with the identity e and let $x, y \in G$. Then $\{x, y, e\}$ is n-closed for some n, so

$$xy = xye^{n-2} \in \{x, y, e\}^n \subseteq \{x, y, e\}, \quad \text{if } n \ge 2,$$

and

$$xy \in \{x, y, e\}^2 \subseteq \{x, y, e\},$$
 if $n = 2$.

If xy = x, then it follows that y = e, and, if xy = y, then x = e. If xy = e, then $y = x^{-1} = x$. Therefore, G is a group of order 2, so one of the conditions 1, 2 or 3 holds.

The converse follows by [4]. \Box

COROLLARY 2.2 [7, 8]. For every $m \in \mathbb{Z}^+$ the following conditions on a semigroup S are equivalent:

- (i) S is 2m-closed;
- (ii) S is 2-closed;
- (iii) S is a Rédei's band. \Box

COROLLARY 2.3 [4, 5, 7]. For every $m \in \mathbb{Z}^+$ the following conditions on a semigroup S are equivalent:

- (i) *S* is (2m+1)-closed;
- (ii) S is 3-closed;
- (iii) for every subset M of S there exists n such that M is n-closed;
- (iv) for every subset M of S, $|M| \leq 3$ implies that there exists n such that M is n-closed;
- (v) $(\forall x, y, z \in S) xyz \in \{x, y, z\}. \square$

3. The general case

In this part, in two different ways, the general case of tight semigroups will be considered. First,

THEOREM 3.1. A semigroup S is a tight semigroup if and only if one of the following conditions holds:

(A1) S is a Rédei's band Y of semigroups of the first type S_{α} with the zero $e_{\alpha}, \alpha \in Y$, and

$$S_{\alpha} \cdot S_{\beta} = \{e_{\alpha\beta}\} \tag{3.1}$$

for all $\alpha, \beta \in Y$ such that $\alpha \neq \beta$.

(A2) $S = P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q = \emptyset$ and

$$(\forall x \in P) (\forall y \in Q) \ xy = yx = y^2; \tag{3.2}$$

(A3) S is a tight semigroup with exactly one idempotent.

.

Proof. Let S be a tight semigroup. Then by Lemma 1 of [3] we have that S is periodic. By Lemma 4 of [3], E(S) is a Rédei's band and by Proposition 1 of [2] Reg(S) is a subsemigroup of S. Also, by Lemma 4 of [3] it follows that the function $\psi: S \to E(S)$ defined by $\psi(x) = x^4$, $x \in S$, is a retraction. It is clear that $\mathcal{K} = \ker \psi$, so K_e is a subsemigroup for every $e \in E(S)$.

If |E(S)| = 1, then (A3) holds. Assume that $|E(S)| \ge 2$ and that E(S) does not contain the identity. Then by Theorem 2.1 we have that $\operatorname{Reg}(S) = E(S)$. Let $e \in E(S)$ and let $x \in K_e$. Then there exists $f \in E(S) - \{e\}$ such that ef = e or fe = e. Let ef = e (the similar proof we have in the case fe = e). Then

$$|\{x,f\}^2| = |\{x^2, xf, fx, f\}| \le 2.$$

If xf = f, then $x^n f = f$ for every $n \in \mathbb{Z}^+$, so ef = f, which is not possible. Thus, $xf = x^2$. Now we have that

$$x^2 = xf = xff = x^2f = xxf = xx^2 = x^3,$$

whence $x^2 = e$. By this and by Lemma 1.2 it follows that K_e is a semigroup of the first type for every $e \in E(S)$.

Let $x \in K_e, y \in K_f, e, f \in E(S), e \neq f$. Since

$$\psi(xy) = \psi(x)\psi(y) = ef$$

then $xy \in K_{ef}$, so S is a Rédei's band E(S) of semigroups of the first type K_e , $e \in E(S)$. Moreover, by

$$|\{x, y\}^2| = |\{e, f, xy, yx\}| \le 2,$$

it follows that $xy \in \{e, f\}$, so $K_e K_f = \{ef\}$. Therefore, (A1) holds.

Let E(S) contain the identity e. Then by Theorem 2.1 we have that $\operatorname{Reg}(S) = G \cup H$, where G is a Boolean group with the identity e and $H = \operatorname{Reg}(S) - G = E(S) - \{e\}$ is a Rédei's band. Let $Q = \bigcup \{K_f \mid f \in H\}, P = S - Q = K_e$. Then P is a tight semigroup with exactly one idempotent. Let $f \in H$ and let $x \in K_f$. Then

$$\{x, e\}^2| = |\{x^2, xe, ex, e\}| \le 2$$

Since $x^2 \neq e$, then $xe, ex \in \{x^2, e\}$. If xe = e, then $x^4e = e$, so $e = x^4e = fe = f$, which is not possible. Therefore, $xe = x^2$, so

$$x^2 = xe = xee = x^2e = xxe = xx^2 = x^3.$$

Hence, $x^2 = f$, so K_f is a semigroup of the first type for every $f \in H$. As in the previous case we prove that Q is a Rédei's band H of semigroups of the first type K_f , $f \in H$ and that $K_f K_g = \{fg\}$ for all $f, g \in H$, $f \neq g$. Therefore, Q is a semigroup from (A1). Let $x \in P$, $y \in Q$. Then $y \in K_f$ for some $f \in H$, so

$$|\{x, y\}^2| = |\{x^2, f, xy, yx\}| \le 2.$$

If $xy = x^2$, then

$$xf = xy^2 = xyy = x^2y = xxy = xx^2 = x^3$$

so $f = ef = x^4 f = x^6$, which is not possible. Therefore, $xy = f = y^2$. In a similar way we prove that $yx = f = y^2$, so (3.2) holds. The converse follows immediately. \Box

By Theorem 3.1 we obtain the following corollary:

COROLLARY 3.1. Let S be a tight semigroup. Then $\operatorname{Reg}(S)$ is an ideal of S and the mapping $\varphi: S \to \operatorname{Reg}(S)$ defined by

$$\varphi(x) = ex \quad if \quad x \in K_e, \qquad e \in E(S), \tag{3.3}$$

is a retraction.

Proof. Let S be a Rédei's band Y of semigroups S_{α} of the first type with the zero e_{α} , $\alpha \in Y$, and let (3.1) hold. Then we have $\text{Reg}(S) = E(S) = \{e_{\alpha} \mid \alpha \in Y\}$. Let $x \in S_{\alpha}$ for some $\alpha \in Y$. Then

$$xe_{\alpha} = e_{\alpha}x = e_{\alpha}, \tag{3.4}$$

since S_{α} is a semigroup of the first type. Moreover, if $\beta \in Y$, then by (3.1) it follows that $xe_{\beta} = e_{\alpha\beta}$ and $e_{\beta}x = e_{\beta\alpha}$, so $\operatorname{Reg}(S)$ is an ideal of S. It is clear that \mathcal{K} -classes of S are semigroups $S_{\alpha}, \alpha \in Y$, so by (3.4) we obtain that (3.3) has the form

$$\varphi(x) = e_{\alpha}x = e_{\alpha} \quad \text{if} \quad x \in S_{\alpha}, \quad \alpha \in Y.$$
(3.5)

So φ is a retraction.

Let $S = P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q = \emptyset$ and (3.2) holds. Then $\operatorname{Reg}(S) = G \cup H$, where G is a Boolean group, $\operatorname{Reg}(P) = G$, H is a Rédei's band and $\operatorname{Reg}(Q) = H$. Let $x \in S$ and let $a \in \operatorname{Reg}(S)$. Since

$$GP \cup PG \subseteq G \subseteq \operatorname{Reg}(S) \quad \text{and} \quad QH \cup HQ \cup PQ \cup QP \subseteq H \subseteq \operatorname{Reg}(S),$$

(by the previous case and by (3.2)), then we have that $\operatorname{Reg}(S)$ is an ideal of S. Let φ be a mapping defined by (3.3) and let $x, y \in S$. If $x, y \in Q$ or $x, y \in P$, then by the previous case and by proof of Theorem 1.2 we have that $\varphi(xy) = \varphi(x)\varphi(y)$. Assume that $x \in P$ and $y \in Q$. Then $x \in K_e$, $y \in K_f$ where e is an identity of G, $f \in H$ and by (3.2) we have that $xy = yx = y^2 = f$, so

$$\varphi(x)\varphi(y) = exyf = f = fxy = \varphi(xy),$$

and

$$\varphi(y)\varphi(x) = fyex = f = fyx = \varphi(yx).$$

Therefore, φ is a retraction.

If S is a tight semigroup with exactly one idempotent, then the proof follows by the proof of Theorem 1.2. \Box

Secondly, we give a description of tight semigroups by retract extensions.

THEOREM 3.2. A semigroup S is a tight semigroup if and only if one of the following conditions holds:

(B1) S is a retract extension of a Rédei's band E by a semigroup of the first type with the retraction φ satisfying the condition

$$\Phi_a \cdot \Phi_b = \{ab\} \qquad for \ all \ a, b \in E, \ a \neq b, \tag{3.6}$$

where $\Phi = \ker \varphi$.

(B2) S is a retract extension of a Rédei's band E with the identity e by a tight nil-semigroup with the retraction φ satisfying conditions

$$x^2 = a$$
 for all $a \in E$, $a \neq e$ and all $x \in \Phi_a$; (3.7)

$$\Phi_a \cdot \Phi_b = \{ab\} \qquad \text{for all } a, b \in E, a \neq b; \tag{3.8}$$

where $\Phi = \ker \varphi$.

(B3) S is a retract extension of a regular tight semigroup T with a nontrivial maximal subgroup G by a semigroup of the first type with the retraction φ satisfying the conditions

$$\Phi_a \subseteq C(\Phi_b) \qquad \text{for all } a, b \in G \text{ such that } a \neq b; \tag{3.9}$$

$$\Phi_a \cdot \Phi_b = \{ab\} \qquad \text{for all } a, b \in T, a \neq b \text{ and } a \notin G \text{ or } b \notin G; \qquad (3.10)$$

where $\Phi = \ker \varphi$.

(B4) S is a tight semigroup with exactly one idempotent.

Proof. Let S be a tight semigroup. Then the conditions of Theorem 2.1 hold. By Corollary 3.1 it follows that $T = \operatorname{Reg}(S)$ is an ideal of S and the mapping φ of S in T defined by (3.3) is a retraction. Let $\Phi = \ker \varphi$. If |E(S)| = 1, then we obtain (B4). Let $|E(S)| \geq 2$.

Assume that S is a Rédei's band Y of semigroups of the first type S_{α} with the zero e_{α} , $\alpha \in Y$, and that (3.1) holds. Then $T = E(S) = \{e_{\alpha} \mid \alpha \in Y\}$. Since $x^2 \in T$ for all $x \in S$, we have that S/T is a semigroup of the first type. It is clear that S_{α} , $\alpha \in Y$, are all Φ -classes, so by (3.1) we obtain (3.6).

Let $S = P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q = \emptyset$ and (3.2) holds. Then $T = G \cup H$, where G is a Boolean group, $\operatorname{Reg}(P) = G$, H is a Rédei's band and $\operatorname{Reg}(Q) = H$. Assume that |G| = 1, i.e. $G = \{e\}$. Then T is a Rédei's band with the identity e. Let $a \in T$, $a \neq e$ and let $x \in \Phi_a$. Since $\Phi_a \subseteq Q$ and Q is a semigroup from (A1), we have that $x^2 \in H \subseteq T$, so (3.7) holds. If $a, b \in H$, $a \neq b$, then by (3.6) (i.e. by (3.1)) we obtain (3.8). Let $a \in H$. Since $\Phi_e = P$ and $\Phi_a \subseteq Q$, then by (3.2) and by (3.7) we get

$$\Phi_a \cdot \Phi_e = \Phi_e \cdot \Phi_a = \{a\} = \{ea\} = \{ae\}$$

Therefore, (3.8) holds. Let $|G| \geq 2$. Then by the proof of Theorem 1.2 we have that P/G is a semigroup of the first type, so $x^2 \in G \subseteq T$ for all $x \in P$. Since Q/His a semigroup of the first type, then $x^2 \in H \subseteq T$ for all $x \in Q$, so $x^2 \in T$ for all $x \in S$, whence it follows that S/T is a semigroup of the first type. By Theorem 1.2 it follows that (3.9) holds. Let $a, b \in T$, $a \neq b$. If $a, b \in H$, $b \in G$. Since $\Phi_b = P$ and $\Phi_a \subseteq Q$, then by (3.2) and by (3.7) we have

$$\Phi_a \cdot \Phi_b = \Phi_b \cdot \Phi_a = \{a\} = \{ba\} = \{ab\}.$$

Therefore, (3.10) holds.

Conversely, let S be a semigroup from (B1), i.e. let S be a retract extension of a Rédei's band E by a semigroup of the first type with the retraction φ for which (3.6) holds. Then, for every $a \in E$, Φ_a is a semigroup isomorphic to some subsemigroup of S/E, so Φ_a is a semigroup of the first type for every $a \in E$. By this and by (3.6) it follows that S is a tight semigroup.

Let S be a semigroup from (B2), i.e. S is a retract extension of a Rédei's band E with the identity e by a tight nil-semigroup with the retraction φ for which (3.7) and (3.8) hold. Then Φ_a is a subsemigroup of S and is isomorphic to some subsemigroup of S/E, so Φ_a is a tight semigroup for all $a \in E$. By this and by (3.7) and (3.8) we obtain that S is a tight semigroup.

Let S be a semigroup from (B3), i.e. S is a retract extension of a regular tight semigroup T with a nontrivial maximal subgroup G by a semigroup of the first type with the retraction φ for which (3.9) and (3.10) hold. Then by Theorem 2.1 it follows that G is a Boolean group, $T = G \cup H$, where H is a Rédei's band and (2.1) holds. Let $P = \bigcup \{ \Phi_a \mid a \in G \}$. Then P is a ret ract extension of G. Since P/G is isomorphic to some subsemigroup of S/T, then P/G is a semigroup of the first type. By this, by (3.9) and by Theorem 2.2 we obtain that P is a tight semigroup. Moreover, for every $a \in H$, Φ_a is a semigroup isomorphic to some subsemigroup of S/T, so Φ_a is a semigroup of the first type. By this and by (3.10) and (2.1) it follows that

$$|\{x,y\}^2| = |\{y,x\}^2| = |\{x^2,xy,yx,y^2\}| = |\{x^2,a\}| \le 2,$$

for all $x \in P$, $y \in \Phi_a$, $a \in H$. Therefore, S is a tight semigroup.

If S is a semigroup from (B4), then the proof follows immediately. \Box

Acknowledgement. We express many thanks to Professor B. Alimpić for useful advices during the preparation of this paper.

REFERENCES

- [1] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
- [2] S. Bogdanović, Nil-extensions of a completely regular semigroup, in: Proc. Conference "Algebra and Logic", Sarajevo, 1987, Univ. Novi Sad, 1988.
- [3] G. A. Freiman and B. M. Schein, Group and semigroup theoretic considerations inspired by inverse problems of the additive number theory, Proc. Oberwolfach Conf. 121-140, Lecture Notes Math. 1320.
- [4] E. S. Lyapin, Semigroups, all subset of which are ternary closed (in Russian), in: Algebraic operations and orderings, Interuniv. Collect. Sci. Works, Leningrad 1983, 82-88 (1983).

Bogdanović and Ćirić

- [5] I.L. Mel'nichuk, Semigroups with n-closed subsets, Semigroup Forum 39 (1989), 105-108.
- [6] M. Petrich, Introduction to Semigroups, Merill Columbus, Ohio, 1973.
- J. Pelikan, On semigroups in which products are equal to one of the factors, Per. Math. Hung. 4 (2-3) (1973), 103-106.
- [8] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967.

Univerzitet u Nišu Ekonomski fakultet Trg JNA 11 18000 Niš (Received 18 09 1989) (Revised 24 12 1990)

Univerzitet u Nišu Filozofski fakultet Ćirila i Metodija 2 18000 Niš

84