TIGHT SEMIGROUPS

Stojan Bogdanović and Miroslav Ćirić

Abstract

We give a description of tight semigroups, i.e. semigroups in which for every subset $M,|M| \leq 2$ implies that $\left|M^{2}\right| \leq 2$.

Introduction

Freiman and Schein studied in [3] tight semigroups, i.e. semigroups in which, for every subset $M,|M| \leq 2$ implies $\left|M^{2}\right| \leq 2$. In this paper these semigroups will be completely described in two different ways.

A subset M of a semigroup S is n-closed if $M^{n} \subseteq M$, where n is an integer such that $n \geq 2$. A semigroup S is n-closed if every subset of S is n-closed [4]. Lyapin, [4] considered 3-closed semigroups. A semigroup S is a Rédei's band if $x y \in\{x, y\}$ for every $x, y \in S$. A semigroup S is 2 -closed if and only if S is a Rédei's band [8]. Here will be considered semigroups in which for every subset M there exists n such that M is n-closed and semigroups in which for every subset $M,|M| \leq 2$ implies that there exists n such that M is n-closed.

A group G with the identity element e is a Boolean group if $x^{2}=e$ for all $x \in G$. A semigroup S with zero 0 is a nil-semigroup if for every $x \in S$ there exists a positive integer n such that $x^{n}=0$. An ideal extension S of a semigroup T is a retract extension of T if there exists a homomorphism φ of S onto T such that $\varphi(t)=t$ for all $t \in T$. Such a homomorphism we call retraction. If φ is a retraction of S onto T and if $\Phi=\operatorname{ker} \varphi$, then by $\Phi_{a}, a \in T$, we denote the Φ-class containing the element $a \in T$, i.e. $\Phi_{a}=\{x \in S \mid \varphi(x)=a\}$.

It is clear that $S=\bigcup\left\{\Phi_{a} \mid a \in T\right\}$. We denote by $\operatorname{Reg}(S)(E(S))$ the set of all regular (idempotent) elements of a semigroup S. If X is a subset of a semigroup S, then $C(X)=\{a \in S \mid a x=x a$ for all $x \in X\}$. If S is a semigroup with zero 0 , then $C_{0}(X)=\{a \in S \mid a S=S a=0\}$. By \mathbf{Z}^{+}we denote the set of all positive integers.

In any semigroup S define the relation \mathcal{K} by

$$
a \mathcal{K} b \Longleftrightarrow\left(\exists m, n \in \mathbf{Z}^{+}\right) a^{m}=b^{n} .
$$

It is immediate that \mathcal{K} is an equivalence relation. The \mathcal{K}-class containing the element a is denoted by K_{a}. In particular, if S is periodic, then S is the union of the classes $K_{e}, e \in E(S)$.

For undefined notions and notations we refer to [1] and [6].

2. Tight semigroups with exactly one idempotent

Definition 2.1 [3]. A semigroup S with zero 0 is a semigroup of the first type if $(1)(\forall x \in S) x^{2}=0 ;(2)(\forall x, y \in S) x y=0 \vee y x=0 \vee x y=y x$.

Lemma 1.1. [3]. A semigroup of the first type is a tight semigroup.
Example. The three-element cyclic semigroup with zero is a tight semigroup and S is not a semigroup of the first type. It is clear that a semigroup S is a semigroup of the first type if and only if S is a tight semigroup with zero and $x^{2}=0$ for all $x \in S$. A construction of a semigroup of the first type is given in [3]. Here, a construction of a tight nil-semigroup will be given.

Lemma 1.2. Every subsemigroup and every homomorphic image of a tight semigroup is a tight semigroup.

Lemma 1.3. Every subsemigroup and every homomorphic image of a semigroup of the first type is a semigroup of the first type.

Theorem 1.1. Let A be a semigroup of the first type. Let $\left\{a_{\alpha} \mid \alpha \in Y\right\} \subseteq$ $C_{0}(A)$ and let $B_{\alpha}, \alpha \in Y$, be sets such that $B_{\alpha} \neq \varnothing, B_{\alpha} \cap B_{\beta}=\varnothing$ for $\alpha \neq \beta$ and $B \cap A=\varnothing$ for $B=\bigcup\left\{B_{\alpha} \mid \alpha \in Y\right\}$. Let $*$ be a multiplication on $S=A \cup B$ satisfying the following conditions:

$$
\begin{align*}
& (x, y) \in A \times A \Longrightarrow x * y=x y \tag{1.1}\\
& (x, y) \in B_{\alpha} \times B_{\beta} \Longrightarrow x * y \in\left\{a_{\alpha}, a_{\beta}\right\}, \quad \alpha \neq \beta \tag{1.2}\\
& (x, y) \in B_{\alpha} \times A \cup A \times B_{\alpha} \Longrightarrow x * y \in\left\{a_{\alpha}, 0\right\} \tag{1.3}\\
& (x, y) \in B_{\alpha} \times B_{\alpha} \Longrightarrow x * y \in C_{0}(A) \tag{1.4}
\end{align*}
$$

and the following conditions hold:
(i) $\quad x * y \neq y * x \Longrightarrow x * y=a_{\alpha} \vee y * x=a_{\alpha}$;
(ii) $x * x=a_{\alpha}$;
(iii) $(x * y) * z=0 \Longrightarrow x *(y * z)=0, \quad x, y, z \in B_{\alpha}$;

$$
\begin{align*}
& (x, y) \in B_{\alpha} \times A^{2} \cup A^{2} \times B_{\alpha} \Longrightarrow x * y=0 \tag{1.5}\\
& (x, y) \in B_{\alpha} \times\left\{a_{\alpha}\right\} \cup\left\{a_{\alpha}\right\} \times B_{\alpha} \Longrightarrow x * y=0 \tag{1.6}
\end{align*}
$$

$$
\begin{equation*}
(x, y) \in B_{\alpha} \times B_{\alpha}^{2} \cup B_{\alpha}^{2} \times B_{\alpha} \Longrightarrow x * y=0, \quad \alpha \neq \beta \tag{1.7}
\end{equation*}
$$

Then $(S, *)$ is a tight nil-semigroup.
Conversely, every tight nil-semigroup is isomorphic to some semigroup of the previous type.

Proof. Assume the conditions (1.1)-(1.7) hold. Let $(x, y, z) \in A \times A \times B$. Then

$$
\begin{aligned}
& (x * y) * z=x y * z=0 \\
& x *(y * z)=x(y * z)=0
\end{aligned}
$$

since $y * z \in\left\{a_{\alpha}, 0\right\} \subseteq C_{0}(A)$, where $\alpha \in Y$ is such that $z \in B_{\alpha}$. Similar proof we have in the case $(x, y, z) \in A \times B \times A \cup B \times A \times A$

Let $(x, y, z) \in A \times B \times B$. Then $y \in B_{\alpha}$ for some $\alpha \in Y$ and $x * y \in\left\{a_{\alpha}, 0\right\}$, so by (1.6) we obtain that $(x * y) * z=0$. Moreover, since $y * z \in C_{0}(A)$, then $x *(y * z)=x(y * z)=0=(x * y) * z$. The similar proof we have in the case $(x, y, z) \in B \times A \times B \cup B \times B \times A$.

Let $x, y, z \in B$. Assume that $(x, y, z) \in B_{\alpha} \times B_{\beta} \times B_{\gamma}$ for some $\alpha, \beta, \gamma \in Y$, $\alpha \neq \beta \neq \gamma \neq \alpha$. Then $x * y \in\left\{a_{\alpha}, a_{\beta}\right\}, y * z \in\left\{a_{\beta}, a_{\gamma}\right\}$, so by (1.6) we obtain that $x *(y * z)=0=(x * y) * z$. Let $(x, y, z) \in B_{\alpha} \times B_{\beta} \times B_{\beta}$, for some $\alpha, \beta \in Y, \alpha \neq \beta$. Then we have that $x * y \in\left\{a_{\alpha}, a_{\beta}\right\}$ and $y * z \in B_{\beta}^{2}$, so by (1.6) and (1.7) we have that

$$
x *(y * z)=0=(x * y) * z
$$

The similar proof we have in the case $(x, y, z) \in B_{\beta} \times B_{\alpha} \times B_{\beta} \cup B_{\beta} \times B_{\beta} \times B_{\alpha}$, $\alpha, \beta \in Y, \alpha \neq \beta$.

Let $x, y, z \in B_{\alpha}, \alpha \in Y$. Then

$$
(x * y) * z \in\left\{a_{\alpha}, 0\right\}, \quad x *(y * z) \in\left\{a_{\alpha}, 0\right\}
$$

since $x * y, y * z \in A$, so by (1.4) (iii) we have that

$$
(x * y) * z=0=x *(y * z) \quad \text { or } \quad(x * y) * z=a_{\alpha}=x *(y * z)
$$

Thus, $(S, *)$ is a semigroup.
Let $x \in B_{\alpha}, \alpha \in Y$. Then by (1.4) (ii) we have that $x^{2}=x * x=a_{\alpha}$, and by (1.6) we have that $x^{3}=x * a_{\alpha}=0$. Therefore, $(S, *)$ is a nil-semigroup.

Let $x \in B_{\alpha}, \alpha \in Y$ and let $y \in A$. Then

$$
x * y, y * x \in\left\{a_{\alpha}, 0\right\}, \quad y^{2}=0 \quad \text { and } \quad x^{2}=a_{\alpha}
$$

so

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x * y, y * x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, a_{\beta}\right\}\right| \leq 2
$$

Assume that $x, y \in B_{\alpha}$ for some $x \in Y$. Then $x^{2}=y^{2}=a_{\alpha}$. Assume that $x * y=y * x$. Then

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x * y, y * x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, x * y\right\}\right| \leq 2
$$

Let $x * y \neq y * x$. Then by (1.4) (i) we have that $x * y=a_{\alpha}$ or $y * x=a_{\alpha}$ so

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x * y, y * x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, x * y, y * x\right\}\right| \leq 2
$$

Finally, let $x, y \in A$. Since A is a semigroup of the first type, then $\left|\{x, y\}^{2}\right| \leq$ 2. Therefore, S is a tight nil-semigroup.

Conversely, let S be a tight nil-semigroup with the zero element 0 . By Lemma 2 [3] we obtain that $(x y)^{2}=0$ for all $x, y \in S$, so the relation ρ on S defined by

$$
x \rho y \Longleftrightarrow x^{2}=y^{2}
$$

is a congruence and S / ρ is a zero semigroup. Let $\varphi: S \rightarrow S / \rho$ be a natural homomorphism and let $Y=S / \rho-\{0 \rho\}, A=\varphi^{-1}(0 \rho), B_{\alpha}=\varphi^{-1}(\alpha), \alpha \in Y$, and $a_{\alpha}=x^{2}$ for $x \in B_{\alpha}$. Since $a_{\alpha}=x^{4}=0, x \in B_{\alpha}, \alpha \in Y$, then $\left\{a_{\alpha} \mid \alpha \in Y\right\} \subseteq A$.

If $B=\varnothing$, then $S=A$ is a semigroup of the first type. Let $B \neq \varnothing$. Let $x \in B$. Then

$$
\left|\left\{x, x^{2}\right\}^{2}\right|=\left|\left\{x^{2}, x^{3}, x^{4}\right\}\right| \leq 2
$$

so $x^{3}=0$. Let $\alpha \in Y, x \in B_{\alpha}$ and $y \in A$. Then by

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, 0, x y, y x\right\}\right| \leq 2
$$

it follows that $x y, y x \in\left\{a_{\alpha}, a_{\beta}\right\}$, since $a_{\alpha} \neq a_{\beta}$ for $\alpha \neq \beta$. Therefore (1.3) holds.
Let $x \in B_{\alpha}, y \in B_{\beta}, \alpha, \beta \in Y$ and $\alpha \neq \beta$. Then by

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, a_{\beta}, x y, y x\right\}\right| \leq 2
$$

it follows that $x y, y x \in\left\{a_{\alpha}, a_{\beta}\right\}$, since $a_{\alpha} \neq a_{\beta}$ for $\alpha \neq \beta$. Thus, (1.2) holds.
Let $x, y \in B_{\alpha}$ for some $\alpha \in Y$. Then by

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=\left|\left\{a_{\alpha}, x y, y x\right\}\right| \leq 2
$$

it follows that $x y=a_{\alpha}$ or $y x=a_{\alpha}$ or $x y=y x$.
Let $z \in A$. Since (1.3) holds, we have that $x z=a_{\alpha}$ or $x z=0$, so $a_{\alpha} z=$ $x z^{2}=x 0=0$, if $x z=a_{\alpha}$, and $a_{\alpha} z=x^{2} z=0$ if $x z=0$. Therefore, $a_{\alpha} z=0$. In a similar way we prove that $z a_{\alpha}=0$, so $\left\{a_{\alpha} \mid \alpha \in Y\right\} \subseteq C_{0}(A)$. Moreover, $y z=a_{\alpha}$ or $y z=0$, whence it follows that

$$
(x y) z=x(y z)=x a_{\alpha}=x^{3}=0, \quad \text { or } \quad(x y) z=x(y z)=x 0=0
$$

Therefore $x y \in C_{0}(A)$, so (1.4) holds.
Let $x \in B, y \in A^{2}$, i.e. $y=u v, u, v \in A$. By (1.3) we have that

$$
x u=a_{\alpha}=x^{2} \quad \text { or } \quad x u=0
$$

and

$$
x v=a_{\alpha}=x^{2} \quad \text { or } \quad x v=0
$$

Assume that $x u=x^{2}$. Then

$$
x y=x u v=x^{2} v=x^{3}=0
$$

if $x v=x^{2}$, and

$$
x y=x u v=x^{2} v=0,
$$

if $x v=0$. If $x u=0$, then $x y=x u v=0$. Therefore $x y=0$ in any case. In a similar way we prove that $y x=0$, so (1.5) holds.

Let $x \in B_{\alpha}, \alpha \in Y$. Then $x a_{\alpha}=x x^{2}=x^{3}=0=x^{2} x=a_{\alpha} x$, so (1.6) holds.
Finally, let $x \in B_{\alpha}, y \in B_{\alpha}^{2}, \alpha \neq \beta$. Then $y=u v$, where $u, v \in B_{\alpha}$ and $x u, x v \in\left\{a_{\alpha}, a_{\beta}\right\}$. Assume that $x u=a_{\beta}$. Then $x y=x u v=a_{\beta} v=v^{2} v=v^{3}=0$. Let $x u=a_{\alpha}$. Then

$$
x y=x u v=a_{\alpha} v=x^{2} v=x a_{\beta}=x v^{2}=a_{\beta} v=v^{3}=0
$$

if $x v=a_{\beta}$ and

$$
x y=x u v=a_{\alpha} v=x^{2} v=x a_{\alpha}=x x^{2}=x^{3}=0,
$$

if $x v=a_{\alpha}$. Therefore $x y=0$. In a similar way we prove that $y x=0$, so (1.7) holds.

A group G is a tight group if G is a tight semigroup.
Lemma 1.4. G is a tight group if and only if G is a Boolean group.
Proof. This follows by Lemma 1 [3] and by the commutativity of Boolean groups.

Theorem 1.2. S is a tight semigroup with exactly one idempotent if and only if one of the following conditions holds:

1. S is a tight nil-semigroup;
2. S is a retract extension of a Boolean group G by a semigroup of the first type with the retraction φ such that:

$$
\begin{equation*}
\Phi_{a} \subseteq C\left(\Phi_{b}\right) \quad \text { for all } a, b \in G \text { such that } a \neq b \tag{1.8}
\end{equation*}
$$

where $\Phi=\operatorname{ker} \varphi$.
Proof. Let S be a tight semigroup with exactly one idempotent e. Since S is periodic, then S is an ideal extension of a group G by a nil-semigroup $Q=S / G$. If $|G|=1$, then $S=Q$ is a tight nil-semigroup. Assume that $|G| \geq 2$. By Proposition III 4.5. [6], we have that the mapping $\varphi: S \rightarrow G$ given by $\varphi(x)=e x, x \in S$, is a retraction of S onto G. By Lemma 1.2 and Lemma 1.4, we have that G is a Boolean group.

Let $a \in G$ and let $x \in \Phi_{a}$. Let $b \in G$ and $b \neq a$. Since G is a Boolean group, then $a b=b a \neq e$, so

$$
x b=\varphi(x) b=a b=b a=b \varphi(x)=b x \neq e
$$

Since

$$
\left|\{x, b\}^{2}\right|=\left|\left\{x^{2}, x b, b x, b^{2}\right\}\right|=\left|\left\{x^{2}, a b, e\right\}\right| \leq 2
$$

and $x^{2} \in \Phi_{a} \cdot \Phi_{a} \subseteq \Phi_{e}$, it follows that $x^{2}=e$ for all $x \in S$. Therefore, by this and by Lemma 1.2, we have that Q is a semigroup of the first type.

Let $a, b \in G$ be such that $a \neq b$, and let $x \in \Phi_{a}, y \in \Phi_{b}$. Then $a b=b a \neq e$ and $x y, y x \in \Phi_{a b}=\Phi_{b a} \neq \Phi_{e}$, so by

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=|\{e, x y, y x\}| \leq 2
$$

it follows that $x y=y x$, so (1.8) holds.
Conversely, let S be a retract extension of a Boolean group G by a semigroup of the first type Q with the retraction φ for which (1.8) holds. Let $x, y \in S$. Then $x \in \Phi_{a}, y \in \Phi_{b}$ for some $a, b \in G$. Since Q is a semigroup of the first type, then we have that $x^{2}, y^{2} \in G$, so

$$
x^{2}=\varphi\left(x^{2}\right)=\varphi(x) \varphi(x)=a^{2}=e \quad \text { and } \quad y^{2}=\varphi\left(y^{2}\right)=\varphi(y) \varphi(y)=b^{2}=e
$$

If $a \neq b$, then by (1.8) it follows that $x y=y x$, so

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=|\{e, x y\}| \leq 2
$$

Assume that $a=b$. Then $x y, y x \in \Phi_{a} \cdot \Phi_{a} \subseteq \Phi_{e}$. If $x \in G$ or $y \in G$, then $x y, y x \in G \cap \Phi_{e}=\{e\}$, so $x y=y x=e$, whence

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=|\{e\}| \leq 2
$$

Let $x, y \in S-G=Q-\{0\}$. Since Q is a semigroup of the first type, then

$$
x y=0 \quad \text { or } \quad y x=0 \quad \text { or } \quad x y=y x \neq 0 \quad \text { in } Q
$$

so

$$
x y=e \quad \text { or } \quad y x=e \quad \text { or } \quad x y=y x \notin G \quad \text { in } S,
$$

whence

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=|\{e, x y, y x\}| \leq 2 .
$$

Therefore, S is a tight semigroup.

2. Regular tight semigroups

The following theorem gives a characterization of regular tight semigroups.
THEOREM 3.1. The following conditions on a semigroup S are equivalent:
(i) S is a regular tight semigroup;
(ii) for every subset M of $S,|M| \leq 2$ implies that there exists n such that M is n-closed;
(iii) for S one of the following conditions holds:
(a) S is a Rédei's band;
(b) $S=P \cup Q$, where P is a Boolean group, Q is a Rédei's band, $P \cap Q=$ \varnothing and

$$
\begin{equation*}
(\forall x \in P)(\forall y \in Q) \quad x y=y x=y \tag{2.1}
\end{equation*}
$$

(c) S is a Boolean group.

Proof. (i) \Longrightarrow (iii). Let S be a regular tight semigroup. Then by Lemmas 1 and 5 [3] we have that S is periodic and that $E(S)$ is a Rédei's band. Let $a \in S$. Then $a=a x a$ for some $x \in S$, so

$$
\left|\{a, x\}^{2}\right|=\left|\left\{a^{2}, a x, x a, x^{2}\right\}\right| \leq 2
$$

If $a x=x a$, then a is completely regular. Let $a x \neq x a$. Then $a^{2}=a x$ or $a^{2}=x a$, whence it follows that $a=a x a=a^{3}$, so a is completely regular. Therefore, S is a completely regular semigroup.

If $|E(S)|=1$, then S is a group and by Lemma 1.4 it follows that S is a Boolean group. Let $|E(S)| \geq 2$.

Assume that $E(S)$ has the identity e. Let $y \in G_{f}, f \in E(S)$ and $f \neq e$. Since G_{f} is a Boolean group (by Lemmas 1.2 and 1.4) we have that $y^{2}=f$ and

$$
e y=e f y=f y=y=y f=y f e=y e
$$

Now, by

$$
\left|\{e, y\}^{2}\right|=|\{e, e y, y e, f\}|=|\{e, y, f\}| \leq 2
$$

it follows that $y=f$, i.e. $G_{f}=\{f\}$ for all $f \in E(S)-\{e\}$.
Let $G_{e}=P, Q=S-P=E(S)-\{e\}$. Then P is a Boolean group, Q is a Rédei's band and $P \cap Q=\varnothing$. Let $x \in P$ and $y \in Q$. By

$$
\left|\{x, y\}^{2}\right|=|\{e, y, x y, y x\}| \leq 2
$$

it follows that $x y=e$ or $x y=y$. Assume that $x y=e$. Then we have that $e=x y=x y y=e y=y$. Thus, $x y=y$. In a similar way we prove that $y x=y$. Therefore, (2.1) holds.

Assume that $E(S)$ is without the identity. Let $e \in E(S)$ and $x \in G_{e}$. Since e is not the identity of $E(S)$, there exists $f \in E(S)$ such that $e f \neq f$ or $f e \neq f$. Since $E(S)$ is a Rédei's band we obtain that $e f=e$ or $f e=e$. Clearly, $e \neq f$. Now we have

$$
\begin{aligned}
x f=x e f=x e=x, & \text { if } \quad e f=e, \quad \text { or } \\
f x=f e x=e x=x, & \text { if } \quad f e=e
\end{aligned}
$$

Therefore,

$$
\left|\{x, f\}^{2}\right|=\left|\left\{x^{2}, x f, f x, f\right\}\right|=|\{e, f, x f, f x\}| \leq 2
$$

whence $x \in\{x f, f x\} \subseteq\{e, f\}$, so $x=e$. Thus $G_{e}=\{e\}$ for all $e \in E(S)$, so $S=E(S)$ is a Rédei's band.
(iii) \Longrightarrow (i). This follows immediately.
(ii) \Longrightarrow (iii). Let for every subset M of S for which $|M| \leq 2$ there exists n such that M is n-closed. Let $x \in S$. Then there exists n such that $\{x\}$ is n-closed, i.e. $x^{n}=x(n \geq 2)$, so S is periodic and completely regular. Thus S is a union of periodic groups $G_{e}, e \in E(S)$. Let $e \in E(S)$ and $x \in G_{e}$. Then there exists n such that $\{x, e\}$ is n-closed. Then

$$
x^{2}=x^{2} e^{n-2} \in\{x, e\}^{n} \subseteq\{x, e\} \quad\left(\text { if } n=2, \text { then } x^{2} \in\{x, e\}\right)
$$

whence $x^{2}=e$ for all $x \in G_{e}$, so G_{e} is a Boolean group for all $e \in E(S)$.
If $|E(S)|=1$, then S is a Boolean group. Assume that $|E(S)| \geq 2$. Let $e, f \in E(S)$. Then $\{e, f\}$ is n-closed for some n, whence

$$
e f=e f^{n-1} \in\{e, f\}^{n} \subseteq\{e, f\},
$$

so $E(S)$ is a Rédei's band. Assume that $E(S)$ does not contain an identity. Let $e \in E(S)$ and let $x \in G_{e}$. Then there exists $f \in E(S)$ such that $f \neq e$ and $e f=e$ or $f e=e$. Let $e f=e$ (in a similar way we consider the case $f e=e$). Then $\{x, f\}$ is n-closed for some n. If $n=2$, then

$$
e=x^{2} \in\{x, f\}^{2} \subseteq\{x, f\} .
$$

In $n \geq 3$, then

$$
e=e f=x^{2} f^{n-2} \in\{x, f\}^{n} \subseteq\{x, f\} .
$$

Therefore, $e \in\{x, f\}$, whence we have that $x=e$, so $G_{e}=\{e\}$ for all $e \in E(S)$. Thus $S=E(S)$, i.e. S is a Rédei's band.

Assume that $E(S)$ contains the identity e. Let $f \in E(S), f \neq e$ and let $y \in G_{f}$. Then $\{e, y\}$ is n-closed for some n. If $n=2$, then

$$
f=y^{2} \in\{e, y\}^{2} \subseteq\{e, y\} .
$$

Let $n \geq 3$. Then

$$
f=e f=e^{n-2} y^{2} \in\{e, y\}^{2} \subseteq\{e, y\} .
$$

Therefore, $f \in\{e, y\}$, whence $y=f$, so $G_{f}=\{f\}$ for every $f \in E(S)-\{e\}$. Let $G_{e}=P, Q=S-P=E(S)-\{e\}$. Then we have that P is a Boolean group, Q is a Rédei's band and $P \cap Q=\varnothing$, Let $x \in P, y \in Q$. Then $\{x, y\}$ is n-closed for some n, so

$$
x y=x y^{n-1} \in\{x, y\}^{n} \subseteq\{x, y\} .
$$

If $x y=x$, then we have that $e=x^{2}=x^{2} y=e y=y$ (since e is the identity of $E(S)$), which is not possible. Thus, $x y=y$. In a similar way we prove that $y x=y$. Therefore, (2.1) holds.
(iii) \Longrightarrow (ii). If S is a Rédei's band, then we have that $M^{2} \subseteq M$ for every subset M of S. If S is a Boolean group, then $M^{3}=M$ for every subset M of S such that $|M| \leq 2$. By this and by (2.1) we obtain that (ii) holds.

By Theorem 2.1 the following corollaries follow:
Corollary 2.1. S is a semigroup in which for every subset M of S there exists n such that M is n-closed if and only if one of the following conditions holds:

1. S is a Rédei's band;
2. S is a group of order 2;
3. $S=P \cup Q$, where P is a group of order $2, Q$ is a Rédei'S band, $P \cap Q=\varnothing$ and (2.1) holds.

Proof. Let S be a semigroup in which for every subset M there exists n such that M is n-closed. Then by Theorem 2.1 it follows that S satisfies one of the
conditions (a), (b) or (c) of this theorem. Let G be a Boolean subgroup of S with the identity e and let $x, y \in G$. Then $\{x, y, e\}$ is n-closed for some n, so

$$
x y=x y e^{n-2} \in\{x, y, e\}^{n} \subseteq\{x, y, e\}, \quad \text { if } n \geq 2
$$

and

$$
x y \in\{x, y, e\}^{2} \subseteq\{x, y, e\}, \quad \text { if } n=2
$$

If $x y=x$, then it follows that $y=e$, and, if $x y=y$, then $x=e$. If $x y=e$, then $y=x^{-1}=x$. Therefore, G is a group of order 2 , so one of the conditions 1,2 or 3 holds.

The converse follows by [4].
Corollary $2.2[\mathbf{7}, 8]$. For every $m \in \mathbf{Z}^{+}$the following conditions on a semigroup S are equivalent:
(i) S is $2 m$-closed;
(ii) S is 2-closed;
(iii) S is a Rédei's band.

Corollary $2.3[\mathbf{4}, \mathbf{5}, \mathbf{7}]$. For every $m \in \mathbf{Z}^{+}$the following conditions on a semigroup S are equivalent:
(i) S is $(2 m+1)$-closed;
(ii) S is 3 -closed;
(iii)for every subset M of S there exists n such that M is n-closed;
(iv)for every subset M of $S,|M| \leq 3$ implies that there exists n such that M is n-closed;
(v) $(\forall x, y, z \in S) x y z \in\{x, y, z\}$.

3. The general case

In this part, in two different ways, the general case of tight semigroups will be considered. First,

Theorem 3.1. A semigroup S is a tight semigroup if and only if one of the following conditions holds:
(A1) S is a Rédei's band Y of semigroups of the first type S_{α} with the zero $e_{\alpha}, \alpha \in Y$, and

$$
\begin{equation*}
S_{\alpha} \cdot S_{\beta}=\left\{e_{\alpha \beta}\right\} \tag{3.1}
\end{equation*}
$$

for all $\alpha, \beta \in Y$ such that $\alpha \neq \beta$.
(A2) $S=P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q=\varnothing$ and

$$
\begin{equation*}
(\forall x \in P)(\forall y \in Q) \quad x y=y x=y^{2} \tag{3.2}
\end{equation*}
$$

(A3) S is a tight semigroup with exactly one idempotent.

Proof. Let S be a tight semigroup. Then by Lemma 1 of [3] we have that S is periodic. By Lemma 4 of [3], $E(S)$ is a Rédei's band and by Proposition 1 of [2] $\operatorname{Reg}(S)$ is a subsemigroup of S. Also, by Lemma 4 of [3] it follows that the function $\psi: S \rightarrow E(S)$ defined by $\psi(x)=x^{4}, x \in S$, is a retraction. It is clear that $\mathcal{K}=\operatorname{ker} \psi$, so K_{e} is a subsemigroup for every $e \in E(S)$.

If $|E(S)|=1$, then (A3) holds. Assume that $|E(S)| \geq 2$ and that $E(S)$ does not contain the identity. Then by Theorem 2.1 we have that $\operatorname{Reg}(S)=E(S)$. Let $e \in E(S)$ and let $x \in K_{e}$. Then there exists $f \in E(S)-\{e\}$ such that $e f=e$ or $f e=e$. Let $e f=e$ (the similar proof we have in the case $f e=e$). Then

$$
\left|\{x, f\}^{2}\right|=\left|\left\{x^{2}, x f, f x, f\right\}\right| \leq 2
$$

If $x f=f$, then $x^{n} f=f$ for every $n \in \mathbf{Z}^{+}$, so $e f=f$, which is not possible. Thus, $x f=x^{2}$. Now we have that

$$
x^{2}=x f=x f f=x^{2} f=x x f=x x^{2}=x^{3},
$$

whence $x^{2}=e$. By this and by Lemma 1.2 it follows that K_{e} is a semigroup of the first type for every $e \in E(S)$.

Let $x \in K_{e}, y \in K_{f}, e, f \in E(S), e \neq f$. Since

$$
\psi(x y)=\psi(x) \psi(y)=e f
$$

then $x y \in K_{e f}$, so S is a Rédei's band $E(S)$ of semigroups of the first type K_{e}, $e \in E(S)$. Moreover, by

$$
\left|\{x, y\}^{2}\right|=|\{e, f, x y, y x\}| \leq 2
$$

it follows that $x y \in\{e, f\}$, so $K_{e} K_{f}=\{e f\}$. Therefore, (A1) holds.
Let $E(S)$ contain the identity e. Then by Theorem 2.1 we have that $\operatorname{Reg}(S)=$ $G \cup H$, where G is a Boolean group with the identity e and $H=\operatorname{Reg}(S)-G=$ $E(S)-\{e\}$ is a Rédei's band. Let $Q=\bigcup\left\{K_{f} \mid f \in H\right\}, P=S-Q=K_{e}$. Then P is a tight semigroup with exactly one idempotent. Let $f \in H$ and let $x \in K_{f}$. Then

$$
\left|\{x, e\}^{2}\right|=\left|\left\{x^{2}, x e, e x, e\right\}\right| \leq 2
$$

Since $x^{2} \neq e$, then $x e, e x \in\left\{x^{2}, e\right\}$. If $x e=e$, then $x^{4} e=e$, so $e=x^{4} e=f e=f$, which is not possible. Therefore, $x e=x^{2}$, so

$$
x^{2}=x e=x e e=x^{2} e=x x e=x x^{2}=x^{3}
$$

Hence, $x^{2}=f$, so K_{f} is a semigroup of the first type for every $f \in H$. As in the previous case we prove that Q is a Rédei's band H of semigroups of the first type $K_{f}, f \in H$ and that $K_{f} K_{g}=\{f g\}$ for all $f, g \in H, f \neq g$. Therefore, Q is a semigroup from (A1). Let $x \in P, y \in Q$. Then $y \in K_{f}$ for some $f \in H$, so

$$
\left|\{x, y\}^{2}\right|=\left|\left\{x^{2}, f, x y, y x\right\}\right| \leq 2
$$

If $x y=x^{2}$, then

$$
x f=x y^{2}=x y y=x^{2} y=x x y=x x^{2}=x^{3},
$$

so $f=e f=x^{4} f=x^{6}$, which is not possible. Therefore, $x y=f=y^{2}$. In a similar way we prove that $y x=f=y^{2}$, so (3.2) holds. The converse follows immediately.

By Theorem 3.1 we obtain the following corollary:
Corollary 3.1. Let S be a tight semigroup. Then $\operatorname{Reg}(S)$ is an ideal of S and the mapping $\varphi: S \rightarrow \operatorname{Reg}(S)$ defined by

$$
\begin{equation*}
\varphi(x)=e x \quad \text { if } \quad x \in K_{e}, \quad e \in E(S) \tag{3.3}
\end{equation*}
$$

is a retraction.
Proof. Let S be a Rédei's band Y of semigroups S_{α} of the first type with the zero $e_{\alpha}, \alpha \in Y$, and let (3.1) hold. Then we have $\operatorname{Reg}(S)=E(S)=\left\{e_{\alpha} \mid \alpha \in Y\right\}$. Let $x \in S_{\alpha}$ for some $\alpha \in Y$. Then

$$
\begin{equation*}
x e_{\alpha}=e_{\alpha} x=e_{\alpha} \tag{3.4}
\end{equation*}
$$

since S_{α} is a semigroup of the first type. Moreover, if $\beta \in Y$, then by (3.1) it follows that $x e_{\beta}=e_{\alpha \beta}$ and $e_{\beta} x=e_{\beta \alpha}$, so $\operatorname{Reg}(S)$ is an ideal of S. It is clear that \mathcal{K}-classes of S are semigroups $S_{\alpha}, \alpha \in Y$, so by (3.4) we obtain that (3.3) has the form

$$
\begin{equation*}
\varphi(x)=e_{\alpha} x=e_{\alpha} \quad \text { if } \quad x \in S_{\alpha}, \quad \alpha \in Y \tag{3.5}
\end{equation*}
$$

So φ is a retraction.
Let $S=P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q=\varnothing$ and (3.2) holds. Then $\operatorname{Reg}(S)=G \cup H$, where G is a Boolean group, $\operatorname{Reg}(P)=G, H$ is a Rédei's band and $\operatorname{Reg}(Q)=H$. Let $x \in S$ and let $a \in \operatorname{Reg}(S)$. Since

$$
G P \cup P G \subseteq G \subseteq \operatorname{Reg}(S) \quad \text { and } \quad Q H \cup H Q \cup P Q \cup Q P \subseteq H \subseteq \operatorname{Reg}(S)
$$

(by the previous case and by (3.2)), then we have that $\operatorname{Reg}(S)$ is an ideal of S. Let φ be a mapping defined by (3.3) and let $x, y \in S$. If $x, y \in Q$ or $x, y \in P$, then by the previous case and by proof of Theorem 1.2 we have that $\varphi(x y)=\varphi(x) \varphi(y)$. Assume that $x \in P$ and $y \in Q$. Then $x \in K_{e}, y \in K_{f}$ where e is an identity of G, $f \in H$ and by (3.2) we have that $x y=y x=y^{2}=f$, so

$$
\varphi(x) \varphi(y)=\operatorname{exy} f=f=f x y=\varphi(x y)
$$

and

$$
\varphi(y) \varphi(x)=\text { fyex }=f=f y x=\varphi(y x)
$$

Therefore, φ is a retraction.
If S is a tight semigroup with exactly one idempotent, then the proof follows by the proof of Theorem 1.2.

Secondly, we give a description of tight semigroups by retract extensions.
Theorem 3.2. A semigroup S is a tight semigroup if and only if one of the following conditions holds:
(B1) S is a retract extension of a Rédei's band E by a semigroup of the first type with the retraction φ satisfying the condition

$$
\begin{equation*}
\Phi_{a} \cdot \Phi_{b}=\{a b\} \quad \text { for all } a, b \in E, a \neq b \tag{3.6}
\end{equation*}
$$

where $\Phi=\operatorname{ker} \varphi$.
(B2) S is a retract extension of a Rédei's band E with the identity e by a tight nil-semigroup with the retraction φ satisfying conditions

$$
\begin{gather*}
x^{2}=a \quad \text { for all } a \in E, a \neq e \text { and all } x \in \Phi_{a} ; \tag{3.7}\\
\Phi_{a} \cdot \Phi_{b}=\{a b\} \quad \text { for all } a, b \in E, a \neq b \tag{3.8}
\end{gather*}
$$

where $\Phi=\operatorname{ker} \varphi$.
(B3) S is a retract extension of a regular tight semigroup T with a nontrivial maximal subgroup G by a semigroup of the first type with the retraction φ satisfying the conditions

$$
\begin{gather*}
\Phi_{a} \subseteq C\left(\Phi_{b}\right) \quad \text { for all } a, b \in G \text { such that } a \neq b ; \tag{3.9}\\
\Phi_{a} \cdot \Phi_{b}=\{a b\} \quad \text { for all } a, b \in T, a \neq b \text { and } a \notin G \text { or } b \notin G ; \tag{3.10}
\end{gather*}
$$

where $\Phi=\operatorname{ker} \varphi$.
(B4) S is a tight semigroup with exactly one idempotent.
Proof. Let S be a tight semigroup. Then the conditions of Theorem 2.1 hold. By Corollary 3.1 it follows that $T=\operatorname{Reg}(S)$ is an ideal of S and the mapping φ of S in T defined by (3.3) is a retraction. Let $\Phi=\operatorname{ker} \varphi$. If $|E(S)|=1$, then we obtain (B4). Let $|E(S)| \geq 2$.

Assume that S is a Rédei's band Y of semigroups of the first type S_{α} with the zero $e_{\alpha}, \alpha \in Y$, and that (3.1) holds. Then $T=E(S)=\left\{e_{\alpha} \mid \alpha \in Y\right\}$. Since $x^{2} \in T$ for all $x \in S$, we have that S / T is a semigroup of the first type. It is clear that $S_{\alpha}, \alpha \in Y$, are all Φ-classes, so by (3.1) we obtain (3.6).

Let $S=P \cup Q$, where P is a tight semigroup with exactly one idempotent, Q is a semigroup from (A1), $P \cap Q=\varnothing$ and (3.2) holds. Then $T=G \cup H$, where G is a Boolean group, $\operatorname{Reg}(P)=G, H$ is a Rédei's band and $\operatorname{Reg}(Q)=H$. Assume that $|G|=1$, i.e. $G=\{e\}$. Then T is a Rédei's band with the identity e. Let $a \in T$, $a \neq e$ and let $x \in \Phi_{a}$. Since $\Phi_{a} \subseteq Q$ and Q is a semigroup from (A1), we have that $x^{2} \in H \subseteq T$, so (3.7) holds. If $a, b \in H, a \neq b$, then by (3.6) (i.e. by (3.1)) we obtain (3.8). Let $a \in H$. Since $\Phi_{e}=P$ and $\Phi_{a} \subseteq Q$, then by (3.2) and by (3.7) we get

$$
\Phi_{a} \cdot \Phi_{e}=\Phi_{e} \cdot \Phi_{a}=\{a\}=\{e a\}=\{a e\}
$$

Therefore, (3.8) holds. Let $|G| \geq 2$. Then by the proof of Theorem 1.2 we have that P / G is a semigroup of the first type, so $x^{2} \in G \subseteq T$ for all $x \in P$. Since Q / H is a semigroup of the first type, then $x^{2} \in H \subseteq T$ for all $x \in Q$, so $x^{2} \in T$ for all $x \in S$, whence it follows that S / T is a semigroup of the first type. By Theorem 1.2
it follows that (3.9) holds. Let $a, b \in T, a \neq b$. If $a, b \in H, b \in G$. Since $\Phi_{b}=P$ and $\Phi_{a} \subseteq Q$, then by (3.2) and by (3.7) we have

$$
\Phi_{a} \cdot \Phi_{b}=\Phi_{b} \cdot \Phi_{a}=\{a\}=\{b a\}=\{a b\}
$$

Therefore, (3.10) holds.
Conversely, let S be a semigroup from (B1), i.e. let S be a retract extension of a Rédei's band E by a semigroup of the first type with the retraction φ for which (3.6) holds. Then, for every $a \in E, \Phi_{a}$ is a semigroup isomorphic to some subsemigroup of S / E, so Φ_{a} is a semigroup of the first type for every $a \in E$. By this and by (3.6) it follows that S is a tight semigroup.

Let S be a semigroup from (B2), i.e. S is a retract extension of a Rédei's band E with the identity e by a tight nil-semigroup with the retraction φ for which (3.7) and (3.8) hold. Then Φ_{a} is a subsemigroup of S and is isomorphic to some subsemigroup of S / E, so Φ_{a} is a tight semigroup for all $a \in E$. By this and by (3.7) and (3.8) we obtain that S is a tight semigroup.

Let S be a semigroup from (B3), i.e. S is a retract extension of a regular tight semigroup T with a nontrivial maximal subgroup G by a semigroup of the first type with the retraction φ for which (3.9) and (3.10) hold. Then by Theorem 2.1 it follows that G is a Boolean group, $T=G \cup H$, where H is a Rédei's band and (2.1) holds. Let $P=\bigcup\left\{\Phi_{a} \mid a \in G\right\}$. Then P is a ret ract extension of G. Since P / G is isomorphic to some subsemigroup of S / T, then P / G is a semigroup of the first type. By this, by (3.9) and by Theorem 2.2 we obtain that P is a tight semigroup. Moreover, for every $a \in H, \Phi_{a}$ is a semigroup isomorphic to some subsemigroup of S / T, so Φ_{a} is a semigroup of the first type. By this and by (3.10) and (2.1) it follows that

$$
\left|\{x, y\}^{2}\right|=\left|\{y, x\}^{2}\right|=\left|\left\{x^{2}, x y, y x, y^{2}\right\}\right|=\left|\left\{x^{2}, a\right\}\right| \leq 2
$$

for all $x \in P, y \in \Phi_{a}, a \in H$. Therefore, S is a tight semigroup.
If S is a semigroup from (B4), then the proof follows immediately.
Acknowledgement. We express many thanks to Professor B. Alimpić for useful advices during the preparation of this paper.

REFERENCES

[1] S. Bogdanović, Semigroups with a system of subsemigroups, Inst. of Math., Novi Sad, 1985.
[2] S. Bogdanović, Nil-extensions of a completely regular semigroup, in: Proc. Conference "Algebra and Logic", Sarajevo, 1987, Univ. Novi Sad, 1988.
[3] G. A. Freiman and B. M. Schein, Group and semigroup theoretic considerations inspired by inverse problems of the additive number theory, Proc. Oberwolfach Conf. 121-140, Lecture Notes Math. 1320.
[4] E.S. Lyapin, Semigroups, all subset of which are ternary closed (in Russian), in: Algebraic operations and orderings, Interuniv. Collect. Sci. Works, Leningrad 1983, 82-88 (1983).
[5] I. L. Mel'nichuk, Semigroups with n-closed subsets, Semigroup Forum 39 (1989), 105-108.
[6] M. Petrich, Introduction to Semigroups, Merill Columbus, Ohio, 1973.
[7] J. Pelikan, On semigroups in which products are equal to one of the factors, Per. Math. Hung. 4 (2-3) (1973), 103-106.
[8] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967.
Univerzitet u Nišu
Ekonomski fakultet
(Revised 2412 1990)
Trg JNA 11
18000 Niš
Univerzitet u Nišu Filozofski fakultet Ćirila i Metodija 2 18000 Niš

