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CONVERGENCE OF SUBSERIES OF THE HARMONIC SERIES

AND ASYMPTOTIC DENSITIES

OF SETS OF POSITIVE INTEGERS

Barry J. Powell and Tibor �Sal�at

Abstract. We investigate the relation between the convergence of subseries
P1
n=1m

�1
n of

the harmonic series
P1
n=1 n

�1 and the asymptotic densities d(M) of setsM = fm1 < m2 < . . . <
mn < . . . g of positive integers. Here, d(M) = limx!1M(x)=x, where M(x) =

P
a2M;a�x 1.

It is known that if
P1
n=1m

�1
n < +1, then d(M) = 0. We show that this relation cannot

be substantially improved. In particular, we give two counterexamples to the previous assertion
(contained in Theorem 3 of [3]) that if

P1
n=1m

�1
n < +1, then limx!1M(x) log x=x = 0.

Furthermore, we proceed to prove, more generally, in Theorems 1 and 2 herein that if
limsupx!1 g(x) = +1, where g : (0;+1) ! (0;+1), then there exists an in�nite set M � N

such that
P
m2M m�1n < +1 and simultaneously limsupx!1M(x)g(x)=x = +1.

Whereas, in Theorems 3, 4, and 5 we prove that if
P
m2M m�1n < +1, then L(M;g) =

lim infx!1M(x)g(x)=x = 0 for certain functions g(x), in particular, g(x) = log x � log log x.

In Theorem 7 we generalize Theorems 3, 4, and 5 by proving that if limx!1 g(x) = +1
and
P1
n=1 1=(ng(n)) = +1, then L(M; g) = 0 for the sets M referred to above.

In Theorem 6, in contrast to Theorem 7, we prove that if g(x) is a nondecreasing function
on (0;+1), and

P1
n=1 1=(ng(n)) < +1, then there exists a set M (as de�ned above) such that

L(M; g) > 0.

In Theorem 8 we give a new proof of the known result that
P
m2M m�1 < +1 if and only

if
P1
n=1M(n)=n2 < +1.

We thus give new formulations of well-known principles of analytic number theory.

Numerous remarks and examples are provided throughout the paper in supplement to and
clari�cation of the main Theorems.

There exists a relation between the convergence of subseries

(1)
1X
n=1

k�1n (k1 < k2 < . . . < kn < . . . )

of the harmonic series
P1

n=1 n
�1 and the asymptotic densities of sets

(10) K = fk1 < k2 < . . . < kn < . . . g
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(see Theorem A). We shall show that this relation cannot be substantially improved.

If M � N = f1; 2; . . . ; n; . . . g, then d(M) denotes the asymptotic density the
set M , i.e. d(M) = limx!1M(x)=x if the limit on the right-hand side exists, here

M(x) =
X

a2M;a�x

1

(cf. [1, p. xix]).

The following theorem expresses the mentioned relation between the conver-
gence of subseries (1) and the asymptotic densities of sets (10).

Theorem A. If
P1

n=1 k
�1
n < +1, then d(K) = 0.

For the proof of Theorem A see e.g. [5, Theorem 1]. Theorem A can be easily
deduced also from the following result:

Let
P1

n=1 an be a series with real terms, let a1 � a2 � . . . � an � . . . , an ! 0,P1

n=1 an < +1. Denote by N(x) the number of n's for which an an � x > 0.
Then

(2) lim
x!0+

xN(x) = 0

(cf. [4], [8]).

If we put an = k�1n (n = 1; 2; . . . ), then we have for x > 0:

N(x) = #fn : an � xg = #fn : kn � 1=xg = K(1=x):

Hence according to (2) we get

0 = lim
x!0+

xN(x) = lim
x!0+

K(1=x)

1=x
= lim

y!1

K(y)

y
= d(K); d(K) = 0:

In [3] the following theorem is introduced (see Theorem 3 in [3]).

Theorem B. If M � N and
P

m2M m�1 < +1, and if cM =
limx!1M(x) log x=x exists, then cM = 0�.

The following two examples show that Theorem B is not valid if the existence
of the limit cM is not assumed. (cf. [6]).

Example 1. Put M =
S1
n=2Mn, where Mn =

�
nn

2

+ 1; nn
2

+ 2; . . . ; nn
2

+

nn
2�2

	
(n = 2; 3; . . . ). Then it can be easily shown (cf. [6]) that

P
m2M m�1 < +1

and lim supx!1M(x)=x = +1.

Example 2. Let fpng1n=1 be the increasing sequence of all prime numbers.
We shall write p(k) instead of pk (k = 1; 2; . . . ). Put Q =

S1
n=1Qn, where

Qn =
�
p(nn

2

+ 1); p(nn
2

+ 2); . . . ; p(nn
2

+ tn)
	
;

tn =
�
n�2 � p(nn2)�; (n = 1; 2; . . . ):

�In [3] the notation vM (x) is used instead of M(x).
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A detailed computation shows (cf. [6]) that
P

q2Q q�1 < +1 and

lim sup
x!1

Q(x) log x

x
� a

2b2
> 0;

where a, b are positive constants occurring in the Tchebyshe�'s inequalities

an logn < pn < bn logn (n = 2; 3; . . . )

(cf. [6]). For example, if Q(x) represents the number of twin primes � x, the result
limx!1(Q(x)=�(x)) = 0 established in [3] does not follow from the fact that the
sum of the reciprocals of the twin primes converges.

Remark 1. In [5] the following result is proved (see Theorem 2 in [5]).

Let

d1 � d2 � . . . � dn � . . . ;

1X
n=1

dn = +1

and let
P1

k=1 "k(x)dk < +1, where "k(x) (k = 1; 2; . . . ) are dyadic digits of the

number x 2 (0; 1] (i.e. x =
P1

k=1 "k(x)2
�k is the nonterminating dyadic expansion

of x). Then we have p1 = lim infn!1 p(n; x)=n = 0, where p(n; x) =
Pn

k=1 "k(x)
(n = 1; 2; . . . ).

If we apply this result to the subseries of the series
P1

n=1 n
�1 we see that the

convergence of such subseries implies that \the lower density" of this subseries inP1

n=1 n
�1 is zero. An analogous consideration can be made also for subseries of

the series
P1

n=1 p
�1
n .

The foregoing examples 1, 2 suggest the formulation and the proof of the
following theorem which shows that the result obtained in Theorem A cannot be
substantially improved. In what follows we shall give the proof of Theorem 1
published in [6] without the proof.

Theorem 1. Let g : (0;+1)! (0;+1) and limx!1 g(x) = +1 (arbitrarily
slowly ). Then there exists an in�nite set M � N such that

P
m2M m�1 < +1

and simultaneously

(3) lim sup
x!1

M(x)g(x)=x = +1:

Proof . We can assume without loss of generality that g(t) � 1 for each t � 1.

We can construct (by induction) two sequences fxng1n=1, ftng1n=1, of positive
integers with the following properties:

(a) xn � n3 (n = 1; 2; . . . ), (c) tn = [n�2xn] (n = 1; 2; . . . ),

(b) 8t�xn g(t) � n3 (n = 1; 2; . . . ), (d) xn > xn�1 + tn�1 (n = 2; 3; . . . ).

Put

Mn = fxn + 1; xn + 2; . . . ; xn + tng; (n = 1; 2; . . . ; ); M =

1[
n=1

Mn:



Convergence of subseries of the harmonic series . . . 63

According to (d) the sets Mn, (n = 1; 2; . . . ) are mutually disjoint. A simple
estimation gives X

m2Mn

m�1 � tnx
�1
n � n�2 (n = 1; 2; . . . );

hence
P

m2M m�1 < +1.

Putting yn = xn + tn (n = 1; 2; . . . ) we have

M(yn) � tn > n�2xn � 1; yn � (1 + n�2)xn (n = 1; 2; . . . ):

Using (a), (b) we get

M(yn)g(yn)

yn
� n3

n�2xn � 1

(1 + n�2)xn
� 1

2
n3
�

1

n2
� 1

xn

�
� 1

2
(n�1)! +1 (as n!1).

Hence (3) holds and the proof is �nished.

A little modi�cation of the construction of the set M in the proof of Theorem
1 leads to the following more general result.

Theorem 2. Let g : (0;+1)! (0;+1), and

(4) lim sup
x!1

g(x) = +1:

Then there exists an in�nite set M � N such that
P

m2M m�1 < +1 and simul-

taneously we have lim supx!1M(x)g(x)=x = +1.

Remark 2. Condition (4) cannot be omitted. If lim supx!1 g(x) < +1
holds, then it follows from Theorem A that limx!1M(x)g(x)=x = 0 for each set
M � N with

P
m2M m�1 < +1.

Proof of Theorem 2. Construct by induction a sequence

fxng1n=1; 2 � x1 < x2 < . . . < xn < . . .

of real numbers such that (a) xn � n3 (n = 1; 2; . . . ), (b) xn > (xn�1+1)(1�n�2)�1
(n = 2; 3; . . . ), (c) g(xn) � n3 (n = 1; 2; . . . ).

This is possible since (4) holds. Let us remark that from (b) we have

xn�1 + 1 < xn(1� n�2) (n � 2);

xn�1 + xnn
�2 < xn � 1 (n � 2);

xn�1 + [n�2xn] < xn � 1( < [xn]) (n � 2):

Hence

(5) xn�1 + [n�2xn] < [xn] (n � 2):

Put M =
S1
n=2Mn, where

Mn = f[xn]� tn; [xn]� tn + 1; . . . ; [xn]� 1g;
tn = [n�2xn] (n = 2; 3; . . . ):
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Let us remark that according to (5) the sets Mn (n = 2; 3; . . . ) are mutually
disjoint. By a simple estimation we getX

m2Mn

m�1 � 1

[xn]� tn
(n = 2; 3; . . . ):

But we have [xn]� tn � xn � 1� n�2xn = xn(1� n�2)� 1 (n � 2) and thereforeX
m2Mn

m�1 � 1

xn(1� n�2)� 1
n�2xn

� n�2
1

1� n�2 � x�1n
� n�2

1

1� 4�1 � 8�1
=

8

5

1

n2
:

Thus
P

m2M m�1 < +1.

Put An =M(xn)g(xn)=xn (n = 2; 3; . . . ). We have

M(xn) � tn � n�2xn � 1 (n = 2; 3; . . . ):

Using (a) and (c) we obtain

An � (n�2xn � 1)n3

xn
= (n�2 � x�1n )n3

= n� n3x�1n � n� 1! +1 as n!1.

Hence lim supx!1M(x)g(x)=x = +1. This ends the proof.

Note that the converse of Theorem A is false. For example, if K represents
the set of all prime numbers, d(K) = 0, while

P
p�1 diverges.

Professor A. Schinzel remarked�� in connection with Theorems A and B that
the following result holds.

Theorem 3. Let M � N and
P

m2M m�1 < +1. Then we have

lim infx!1M(x) log x=x = 0. Hence lim infx!1M(x)=�(x) = 0.

Remark 3. If cM = limx!1M(x) log x=x exists, then cM = 0.

Proof . We have from Theorem 3 above

cM = lim
x!1

M(x) log x

x
= lim inf

x!1

M(x) logx

x
= 0: Q.E.D.

This is the result actually proved in Theorem 3 of [3].

We shall not give the proof of Theorem 3 because it is an easy consequence
of Theorem 4. In what follows, we put for brevity logk x = log log . . . log| {z }

k times

x

Theorem 4. Suppose that the function g : (0;+1) ! (0;+1) satis�es the

condition

g(x) = O(log x log2 x) (x! +1):

��at Summer School on Number Theory 1985 in High Tatras, Czechoslovakia
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If M � N and
P

m2M m�1 < +1, then lim infx!1M(x)g(x)=x = 0.

Proof . Assume that there are a > 0 and x0 > 0 such that

(6) M(x)g(x)=x � a > 0 for x > x0:

According to the assumption there exists a K > 0 and x1 > 0 such that

(7) g(x) � K log log2 x

for x > x1.

Choose an n1 2 N such that mn > maxfx0; x1g for n > n1, M = fm1 <
m2 < . . . < mn < . . . g. Then putting x = mn in (6) we get

(8) ng(mn)=mn � a > 0 for n > n1:

Using (7), (8) we get for n > n1

(9) a=n � K logmn log2mn=mn:

But logmn log2mn <
p
mn for each n > n2 > n1 (n2 is a suitable number). Then

a=n � K=
p
mn; mn � (K=a)2n2;

logmn � 2 logn+ C1; C1 = 2 log(K=a);

log2mn � log2 n+ log 2 + �(1) (n!1):

We obtain by (9)

dn =
a

K

1

n(2 logn+ C1)(log2 n+ log 2 + �(1))
� m�1

n

for n > n2. Since
P

n>n2
dn = +1, we have

P1
n=1m

�1
n = +1 | a contradiction.

In an analogous way the following more general result can be proved.

Theorem 5. Suppose that the function g : (0;+1) ! (0;+1) satis�es the

condition

g(x) = O(log x log2 x . . . logkx) (x!1):

If M � N and
P

m2M m�1 < +1, then lim infx!1M(x)g(x)=x = 0.

Observe that the conditions satis�ed by g in the Theorems 4 and 5 imply thatP1

n=1 1=(ng(n)) = +1. In the following theorem we shall investigate the behavior
of

L(M; g) = lim inf
x!1

M(x)g(x)

x
for sets M = fm1 < m2 < . . . < mn < . . . g � N with

P1

n=1m
�1
n < +1. In the

�rst place we shall do it under the assumption that
P1

n=1 1=(ng(n)) < +1.

Theorem 6. Let g : (0;+1) ! (0;+1) be a nondecreasing function. Sup-

pose that

(10)

1X
n=1

1

ng(n)
< +1:
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Then there exists a set M = fm1 < m2 < . . .mn . . . g � N with
P1

n=1m
�1 < +1

such that L(M; g) > 0.

Proof . Since the function g is nondecreasing, it follows from (10) that
limx!1 g(x) = +1. In the contrary case, if g(n) � K, n = 1; 2; . . . we have
1=(ng(n)) � 1=(Kn) and so

P1

n=1 1=(ng(n)) = +1 by the comparison test, a
contradiction to (10).

De�ne fmngn=1;2;... as follows:

m1 = 1; m2 = 2;

mn = n; if n > 2 and g(n� 1) � 2

mn = [(n� 1)g(n� 1)]; if n > 2 and g(n� 1) > 2.

If i is the �rst integer > 2 for which g(i� 1) > 2, we have

mi = [(i� 1)g(i� 1)] > (i� 1)g(i� 1)� 1

> 2(i� 1)� 1 = 2i� 3 > i� 1 = mi�1:

Therefore mi > mi�1. Furthermore, for j � 1,

mi+j = [(i+ j � 1)g(i+ j � 1)] > (i+ j � 1)g(i+ j � 1)� 1

� (i+ j � 1)g(i+ j � 2)� 1 > (i+ j � 2)g(i+ j � 2)

� mi+j�1;

therefore mi+j > mi+j�1, j � 1, and so m1 < m2 < m3 < . . . < mn < . . . .

Since limn!1 g(n � 1) = +1, we have mn+1 = [ng(n)], n > T for some
T 2 N .

Since limn!1(ng(n))=[ng(n)] = 1, we have
P1

n=T+2m
�1
n < +1 by the limit

comparison test. Therefore
P1

n=1m
�1
n < +1. As

P1
n=1 n

�1 = +1, and from
Theorem A, limn!1M(n)=n = limn!1 nm�1

n = 0, so that mn > n for n > J for
some positive integer J .

Thus for maxfJ; Tg < n, we have n < mn, and hencemn � x < mn+1 implies
that

M(x)g(x)

x
>

ng(mn)

mn+1
� ng(n)

[ng(n)]
� 1 > 0;

since g(x) is nondecreasing, and thus g(x) � g(mn) � g(n) for x � mn > n. Thus
M(x)g(x)=x > 1 for x > mJ ;mT . Therefore L(M; g) � 1 > 0. Q.E.D.

Example 3(a). The function g, g(x) = maxf1; (logx)�g (� > 1) or more
generally g(x) = maxf1; logx log2 x . . . (logk x)�g (� > 1) satis�es Theorem 6, i.e.
g is nondecreasing and

P1

n=1 1=(ng(n)) < +1. Hence there exists a set M =
fm1 < m2 < . . . < mn < . . . g � N with

P1

n=1m
�1
n < +1 such that L(M; g) > 0

(compare this fact with Theorems 4, 5).

Example 3(b). The function g, g(x) = maxf1; xxg (x > 0) also satis�es
Theorem 6 | g is nondecreasing and

P1

n=1 1=(ng(n)) < +1. Hence there exists
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again a set M = fm1 < m2 < . . . < mn < . . . g � N with
P1

n=1m
�1
n < +1 such

that L(M; g) > 0.

The foregoing Theorem 6 can suggest the conjecture that in general ifP1

n=1 1=(ng(n)) < +1, then there is a setM = fm1 < m2 < . . . < mn < . . . g � N
with

P1

n=1m
�1
n < +1 such that L(M; g) > 0. The following example shows that

such conjecture is false.

Example 4. Let f : (0;+1) ! (0;+1) where
P1

n=1 1=(ng(n)) < +1 and
limx!1 f(x) = +1. Choose the function g : (0;+1) ! (0;+1) in the following
way: Put g(j2) = log j2 (j = 2; 3; . . . ) and g(x) = f(x) for each x 2 (0;+1),
x 6= j2 (j = 2; 3; . . . ). Then evidently

1X
n=1

1

ng(n)
�

1X
n=1

1

nf(n)
+

1X
j=2

1

j2 log(j2)
< +1:

We shall show that for each set M = fm1 < m2 < . . . g � N withP1

n=1m
�1
n < +1 we have L(M; g) = 0. Let M be such a set. Then accord-

ing to Theorem 3 we have

lim inf
x!1

M(x) log x=x = 0:

Hence there exists a sequence x1 < x2 < . . . < xn < . . . , xn ! +1 of real numbers
such that

(11) lim inf
k!1

M(xk) logxk=xk = 0:

For each xk 2 R there exists a j = j(xk) 2 N such that j2 < xk � (j + 1)2.
But then by a simple estimation we get

(12)
M(j2) log j2

(j + 1)2
� M(xk) logxk

xk
:

According to (11) for each " > 0 there exists a k0 such that for each k > k0
we have

(13) M(xk) logxk=xk < ":

But then for j = j(xk) we get from (12) and (13)

M(j2) log j2

(j + 1)2
< ":

For such j we have

(14)
j2

(j + 1)2
� M(j2) log j2

j2
< ":

Since limn!1 n2=(n+1)2 = 1, it is evident from (14) that for each suÆciently large
k (say for k > k1 > k0) we have (for j = j(xk))

(15) M(j2) log j2=j2 < ":
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Hence for an in�nite number of j's we have (15). From this the equality L(M; g) = 0
follows at once.

In this example f(x) = xx would suÆce to disprove the conjecture.

Remark 4. Let g : (0;+1) ! (0;+1) and let lim infx!1 g(x) < +1. If
M = fm1 < m2 < . . . g � N and

P1

n=1m
�1
n < +1, then according to Theorem A

we have
lim inf
x!1

M(x)g(x)=x = 0

holds. This shows that by investigation of the behavior of L(M; g) we can restrict
ourselves to the case if limx!1 g(x) = +1. The following theorem is a generaliza-
tion of Theorems 4, 5.

Theorem 7. Let g : (0;+1) ! (0;+1) with limx!1 g(x) = +1. LetP1
n=1 1=(ng(n)) = +1. Then for each set M = fm1 < m2 < . . . g � N withP1
n=1m

�1
n < +1 we have L(M; g) = 0.

Proof . Suppose that L(M; g) > 0. Then there exists a Æ > 0 and n0 2 N
such that

M(n)g(n)=n � Æ > 0

for each n > n0. From this we get

(16)
Æ

ng(n)
� M(n)

n2
(n > n0):

Let i0 be the �rst positive integer with n0 < mi0 . Then the set of all positive
integers n > mi0 can be partitioned into the intervals (mr;mr+1], (r = i0; i0 + 1;
. . . ).

Let mr < n � mr+1. Then M(n) � r + 1 and so M(n)=n2 � (r + 1)=n2. By
a simple estimation we get

(17)

X
mr<n�mr+1

M(n)

n2
� (r + 1) �

X
mr<n�mr+1

1

n2

< (r + 1)

Z mr+1

mr

dt

t2
= (r + 1)

�
1

mr

� 1

mr+1

�
:

We shall show that

(18)
1X
n=1

M(n)

n2
< +1:

For this it suÆces to show by Cauchy's condition for convergence of series that for
each " > 0 there is a j0 � i0 such that for any two numbers j � j0 and k 2 N we
have

(19)

mj+kX
n=mj+1

M(n)

n2
< ":
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Using (17) we get

mj+kX
n=mj+1

M(n)

n2
<

j+k�1X
r=j

(r + 1)

�
1

mr

� 1

mr+1

�

= (j + 1)

�
1

mj

� 1

mj+1

�
+ (j + 2)

�
1

mj+1
� 1

mj+2

�

+ � � �+ (j + k � 1)

�
1

mj+k�2
� 1

mj+k�1

�
+ (j + k)

�
1

mj+k�1
� 1

mj+k

�

=
j + 1

mj

+
1

mj+1
+ � � �+ 1

mj+k�1
� j + k

mj+k

<
j + 1

mj

+
1

mj+1
+ � � �+ 1

mj+k�1
:

Hence we get

(20)

mj+kX
n=mj+1

M(n)

n2
<

j + 1

mj

+
1

mj+1
+ � � �+ 1

mj+k�1
:

Choose a j0 such that for each j � j0 we have

(21) (j + 1)=mj < "=2

(see Theorem A) and

(22)
1X

n=j+1

1

mn

<
"

2
:

Then (19) follows from (20) because of (21), (22). Hence (18) holds and from (16)
we get

P1

n=1 1=(ng(n)) < +1 | a contradiction. Q.E.D.

Theorem 8. Let M = fm1 < m2 < . . . g � N . Then
P1

n=1m
�1
n < +1 If

and only if
P1

n=1M(n)=n2 < +1.

Proof . (1) Let
P1

n=1m
�1
n < +1. The convergence of the seriesP1

n=1M(n)=n2 is already proved in the proof of Theorem 7.

(2) Let
P1

n=1M(n)=n2 < +1. We shall prove that
P1

n=1m
�1
n < +1.

Put Ck =
P

mk�n<mk+1
M(n)=n2 (k = 1; 2; . . . ). Then C =

P1

n=1M(n)=n2 =P1
k=1 Ck. By a simple estimation we get

Ck = k �
X

mk�n<mk+1

n�2 � k

Z mk+1

mk

dt

t2
= k

�
1

mk

� 1

mk+1

�
:

But then we have for each n = 1; 2; . . .

C �
nX

k=1

Ck � 1

�
1

m1
� 1

m2

�
+ 2

�
1

m2
� 1

m3

�
+ � � �+ n

�
1

mn

� 1

mn+1

�

=
1

m1
+

1

m2
+ � � �+ 1

mn

� n

mn+1
;
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hence

(23)

nX
k=1

1

mk

� C +
n

mn+1
� C + 1

since n=mn+1 � 1. As (23) holds for each n = 1; 2; . . . , we get by n!1
1X
k=1

m�1
k � C + 1 < +1: �

Another proof of Theorem 8 is given by Krzy�s [2] and is also noted by �Sa-
l�at [7].

Remark 5. (to Theorem B and previous theorems) For each set M = fm1 <
m2 < . . .mn < . . . g � N satisfying M(x) = O

�
x=(logx)1+"

�
,
P

m2M m�1 < +1,
then cM = 0, where cM = limx!1M(x) log x=x.

Proof . We have

M(x) logx

x
� Kx

(log x)1+"
� logx

x
=

K

(log x)"

for some constants K; " > 0. Hence

lim
x!1

K

(log x)"
= 0 and thus lim

x!1

M(x) log x

x
= 0:

Thus Theorem B with stronger hypothesis is true.

Example 5. Let M = f12; 22; 32; . . . ; n2; . . . g. Then
M(x) =

p
x = O

�
x=(log x)1+"

�
; cM = lim

x!1

p
x logx

x
= 0:
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