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CONVERGENCE OF SUBSERIES OF THE HARMONIC SERIES
AND ASYMPTOTIC DENSITIES
OF SETS OF POSITIVE INTEGERS

Barry J. Powell and Tibor Salat

Abstract. We investigate the relation between the convergence of subseries 3 > ; myt of
the harmonic series 3o ; n~! and the asymptotic densities d(M) of sets M = {m; < ma < ... <
mp < ...} of positive integers. Here, d(M) = limz— 00 M(x)/x, where M(x) =3, car a<a 1-

It is known that if 3752 | mp ! < 400, then d(M) = 0. We show that this relation cannot
be substantially improved. In particular, we give two counterexamples to the previous assertion
(contained in Theorem 3 of [3]) that if Y °° , mp ! < +00, then limy— 0o M(x)logz/z = 0.

Furthermore, we proceed to prove, more generally, in Theorems 1 and 2 herein that if
limsup,_, ., 9(z) = +oo, where g : (0,+00) — (0,+00), then there exists an infinite set M C N
such that 7 s mn! < 400 and simultaneously limsup,,_, .. M (x)g(x)/2z = +oo.

Whereas, in Theorems 3, 4, and 5 we prove that if 3 ., my' < +o0, then L(M,g) =
liminfy o0 M(x)g(x)/x = 0 for certain functions g(x), in particular, g(z) = log x - log log x.

In Theorem 7 we generalize Theorems 3, 4, and 5 by proving that if limz o g(z) = 400
and Y02, 1/(ng(n)) = +oo, then L(M, g) = 0 for the sets M referred to above.

In Theorem 6, in contrast to Theorem 7, we prove that if g(x) is a nondecreasing function
on (0,+400), and >.7° , 1/(ng(n)) < +oo, then there exists a set M (as defined above) such that
L(M,g) > 0.

In Theorem 8 we give a new proof of the known result that >/ m~1 < 400 if and only
if 300 M(n)/n? < +oo.
We thus give new formulations of well-known principles of analytic number theory.

Numerous remarks and examples are provided throughout the paper in supplement to and
clarification of the main Theorems.

There exists a relation between the convergence of subseries

[ee]
(1) Dkt (ki <ka<...<kn<...)
n=1

1

of the harmonic series > -, n~' and the asymptotic densities of sets

(1" K={k <k <..<k,<...}
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Convergence of subseries of the harmonic series ... 61

(see Theorem A). We shall show that this relation cannot be substantially improved.

IfMcN={1,2,...,n,...}, then d(M) denotes the asymptotic density the
set M, i.e. d(M) = limy oo M (x)/x if the limit on the right-hand side exists, here

Ma@)= Y 1
a€EM,a<lz
(cf. [1, p. xix]).

The following theorem expresses the mentioned relation between the conver-
gence of subseries (1) and the asymptotic densities of sets (1').

THEOREM A. If Y7 k,* < +o0, then d(K) = 0.
For the proof of Theorem A see e.g. [5, Theorem 1]. Theorem A can be easily

deduced also from the following result:

Let >°°° | a, be a series with real terms, let a1 > as > ... > ap > ..., a, — 0,
> Jan < +o0o. Denote by N(z) the number of n’s for which an a,, > = > 0.
Then

(2) lim zN(z) =0

@0+
(cf. [4], [8]).
If we put a, = k,;* (n=1,2,...), then we have for x > 0:
N@E)=#{n:a, >z} =#{n:k, <1/z} = K(1/z).
Hence according to (2) we get
K(1/2) K(y)

0:zgrg+xN(m):Ili%1+1/T:ylgI;oT =d(K), d(K) =0.

In [3] the following theorem is introduced (see Theorem 3 in [3]).

TueoREM B. If M C N and Y, .,,m™" < 400, and if cy =
lim, 0o M(x)logz/x exists, then cpr = 0*.

The following two examples show that Theorem B is not valid if the existence
of the limit cps is not assumed. (cf. [6]).

Ezample 1. Put M = J,~, M, where M, = {n”2 +1,n" 2, 0" +
n"2_2} (n=2,3,...). Then it can be easily shown (cf. [6]) that > _,, m™" < +o0
and limsup,_, ., M(z)/z = +o0.

Ezample 2. Let {p,}5>, be the increasing sequence of all prime numbers.
We shall write p(k) instead of p, (k =1,2,...). Put Q@ = J,~, Qn, where

Qn = {p(" +1),p(n™ +2),...,p(n"™ +tn)},

2

ty = [n"? p(n™)], (n=1,2,...).

*In [3] the notation vy (z) is used instead of M(z).
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A detailed computation shows (cf. [6]) that > o ¢ ' < 400 and

. Q(z)logx a
1 C\T) 0BT, 9
P T

where a, b are positive constants occurring in the Tchebysheff’s inequalities

>0,

anlogn < p, < bnlogn n=2,3,...)

(cf. [6]). For example, if Q(z) represents the number of twin primes < z, the result
limg 00 (Q(z)/II(x)) = 0 established in [3] does not follow from the fact that the
sum of the reciprocals of the twin primes converges.

Remark 1. In [5] the following result is proved (see Theorem 2 in [5]).
Let

diy>dy> ... >dy> ..., > dn =400
n=1

and let > "7, ex(z)dr < +o0, where ex(z) (k = 1,2,...) are dyadic digits of the
number z € (0,1] (i.e. = Y 4o, ex(2)27" is the nonterminating dyadic expansion
of z). Then we have p; = liminf,_, p(n,z)/n = 0, where p(n,z) = > ,_, k()
(n=1,2,...).

If we apply this result to the subseries of the series Y-, n~ ' we see that the
convergence of such subseries implies that “the lower density” of this subseries in
oo, n~tis zero. An analogous consideration can be made also for subseries of
the series > pyt.

The foregoing examples 1, 2 suggest the formulation and the proof of the
following theorem which shows that the result obtained in Theorem A cannot be
substantially improved. In what follows we shall give the proof of Theorem 1
published in [6] without the proof.

THEOREM 1. Let g : (0,+00) = (0,400) and lim,_,~ g(z) = 400 (arbitrarily
slowly). Then there exists an infinite set M C N such that )., m™' < +00
and simultaneously

(3) lim sup M (z)g(z)/xz = +oo.

T—00

Proof . We can assume without loss of generality that g(t) > 1 for each ¢ > 1.

We can construct (by induction) two sequences {z,}52;, {tn}52,, of positive
integers with the following properties:

(@) zp, >n® (n=1,2,...), (€) th =[n2z,] (n=1,2,...),
(b) Vise, gt) >n3 (n=1,2,...), (d) zp > xp—1 +tn—1 (R=2,3,...).
Put

o0
My ={z,+ 1,2, +2,...,2p+t,}, (n=1,2,...,); M= M,.

n=1
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According to (d) the sets M,, (n = 1,2,...) are mutually disjoint. A simple
estimation gives

Z m~ <tpxt <nT? (n=1,2,...),
meM,,

hence ) o, m ™! < +oo.

Putting y, =z, + t, (n =1,2,...) we have

M(yn) > th >n 2z, — 1, yp < (1+n"Hz, (n=1,2,...).

Using (a), (b) we get
M (yn)g(yn)

Yn
Hence (3) holds and the proof is finished.

A little modification of the construction of the set M in the proof of Theorem
1 leads to the following more general result.

P N PR T S TR U
jatl (1+n_2)£6n -2 n2 -2 ‘

THEOREM 2. Let g : (0, +00) — (0, 4+00), and
(4) lim sup g(z) = +o0.

r—>00

Then there exists an infinite set M C N such that EmeMm’l < +00 and simul-
taneously we have limsup,_,  M(z)g(z)/z = +o0.

Remark 2. Condition (4) cannot be omitted. If limsup,_, . g(z) < 400
holds, then it follows from Theorem A that lim,_,.o M(z)g(z)/2z = 0 for each set
M C N with ¥,y m~t < +00.

Proof of Theorem 2. Construct by induction a sequence
{zn}niss 2< < <... <2 < ...

of real numbers such that (a) z,, > n® (n = 1,2,...), (b) z,, > (z_1+1)(1-n"2)~!
(n=2,3,...), (c) g(z,) >n® (n=1,2,...).

This is possible since (4) holds. Let us remark that from (b) we have
Tpo1 +1<2p(l—n"?) (n>2),
Tyl +Tan 2 <z, —1 (n > 2),
Tpo1 + [0 2w <z — 1( < [22]) (n > 2).
Hence
(5) Tyt +[n 23] < [24] (n >2).
Put M = J,, M, where
My ={[zn] = tn, [wn] —tn +1,...,[zn] = 1},
th = [n 2z, (n=2,3,...).
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Let us remark that according to (5) the sets M, (n =2,3,...) are mutually
disjoint. By a simple estimation we get

Z mflgé n=2,3,...).

me M, [«Tn] —tn

But we have [z,] —t, > ¥, — 1 —n"22, = 2,(1 —n~2) — 1 (n > 2) and therefore

E m~! < ;n_%
“z,(1-n"2) -1 "
meM,

<n? L <n? 1 =
T l-n2—gyt T 1-471-871
Thus Y, oy m™" < +00.
Put 4, = M(zpn)g9(zn)/zn (n =2,3,...). We have

M(zp) >t >n "2, —1 (n=2,3,...).

i

n2

o] oo

Using (a) and (c) we obtain

4> (n" 2z, — 1)n?
R

72_

z, n?

= (n n

T
=n-nz;' >n—1- 400 asn — oo.
Hence limsup,_, ., M (x)g(z)/x = 4+o00. This ends the proof.

Note that the converse of Theorem A is false. For example, if K represents
the set of all prime numbers, d(K) = 0, while " p~! diverges.

Professor A. Schinzel remarked** in connection with Theorems A and B that
the following result holds.

THEOREM 3. Let M C N and ) .., m ' < +oo. Then we have
liminf, .o M(z)logz/x =0. Hence liminf,_, M(z)/II(x) = 0.

Remark 3. If c¢py = lim,_, oo M (x)log z/z exists, then cpr = 0.

Proof. We have from Theorem 3 above

M 1 M I
cop = lim M@logz o M(x)logz
xr—00 x r—00 T

=0. Q.E.D.

This is the result actually proved in Theorem 3 of [3].

We shall not give the proof of Theorem 3 because it is an easy consequence
of Theorem 4. In what follows, we put for brevity log, = loglog...log x
—_—

k times
THEOREM 4. Suppose that the function g : (0,4+00) — (0,+00) satisfies the

condition
g(z) = O(log z log, x) (x = 400).

**at Summer School on Number Theory 1985 in High Tatras, Czechoslovakia
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If M CN and Y, cpym™" < +oo, then liminf, o M(z)g(x)/z = 0.

Proof. Assume that there are a > 0 and zg > 0 such that

(6) M(z)g(z)/z>a >0 for > zo.

According to the assumption there exists a K > 0 and x; > 0 such that
(7) g(z) < Kloglog, =
for x > x1.

Choose an n; € N such that m, > max{zg,z1} for n > ny, M = {m; <
mz < ...<mp < ...} Then putting z =m, in (6) we get

(8) ng(my)/my >a >0 for n > ny.
Using (7), (8) we get for n > n;
(9) a/n < Klogm,, log, my, /m,.
But log m, log, m, < /m, for each n > ny > n; (no is a suitable number). Then
a/n < K/\/m,, m, < (K/a)’n?
logmy, <2logn+ Cy, Cy=2log(K/a),
log, m,, <logyn+log2+0(1) (n — o0).
We obtain by (9)

- L <m,*
K n(2logn + Cy)(logyn +log2 + (1)) = "

for n > ny. Since Y

dn
nong dn = 400, we have 322 m, ! = +00 — a contradiction.
In an analogous way the following more general result can be proved.

THEOREM 5. Suppose that the function g : (0,4+00) — (0,+00) satisfies the
condition
g(xz) = O(logzlog, z .. .logy) (z — o00).
IfM CN and Y, cpym™" < +oo, then liminf, o M(z)g(x)/x = 0.

Observe that the conditions satisfied by ¢ in the Theorems 4 and 5 imply that
>0, 1/(ng(n)) = 4+00. In the following theorem we shall investigate the behavior
of

L(M,g) = liminf M{x)g(x)
z—00 T
for sets M = {m; <my <...<my, <...} CN with 3 ° , m,! < +oo. In the
first place we shall do it under the assumption that Y~ , 1/(ng(n)) < +oc.

THEOREM 6. Let g : (0,+00) = (0,400) be a nondecreasing function. Sup-
pose that

(10) f: ! < 400.

ng(n)

n=1
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Then there exists a set M = {m; < ma < ... ..} C N with En ,mt < 400
such that L(M,g) > 0.

Proof. Since the function g is nondecreasing, it follows from (10) that
lim, o g(z) = +oo. In the contrary case, if g(n) < K, n = 1,2,... we have
1/(ng(n)) > 1/(Kn) and so > >, 1/(ng(n)) = +oo by the comparison test, a
contradiction to (10).

Define {m,} n=1,2,... as follows:

my =1, mo = 2,
My, =N, ifn>2and g(n—1) <2
my = [(n —1)g(n —1)], ifn>2andg(n—1)>2.
If i is the first integer > 2 for which g(i — 1) > 2, we have
mi =[(i—1)gi -] > (i-1)g(i—1) -1
>26i—1)—1=2-3>i—1=m,.
Therefore m; > m;_;. Furthermore, for j > 1,
mip; =i+ -1gl+j-1D]>@+j—-1gli+j—-1) -1
>(i+j-Dgli+j—-2)—1>(+j—-2)9(+j—2)
> Miqj1,
therefore m;y; > miyj_1,j > 1, andsom; <mag <mg <...<m, <....

Since lim, o0 g(n — 1) = 400, we have mp,+1 = [ng(n)], n > T for some
TeN.

Since lim, o (ng(n))/[ng(n)] = 1, we have Y- ., m, ' < +00 by the limit
comparison test. Therefore 2 m;' < 4+oco. As Y >, n~' = +oo, and from
Theorem A, lim,_, o M(n)/n = lim, o nm, ! = 0, so that m,, > n for n > J for
some positive integer J.

Thus for max{J,T} < n, we have n < m,,, and hence m,, < z < m,,4; implies

that
M(z)g(x) S ng(m.,)
€z Mp41

>1>0,

[
since g(x) is nondecreasing, and thus g(z) > g(m g(n) for £ > m,, > n. Thus
M(z)g(x)/z > 1 for x > mj,mg. Therefore L(M, g) >1>0. QE.D.

Ezample 3(a). The function g, g(z) = max{1,(logz)*} (a > 1) or more
generally g(z) = max{1,logzlog, ... (log, )*} (o > 1) satisfies Theorem 6, i.e.
g is nondecreasing and Y -~ 1/(ng(n)) < 4oco. Hence there exists a set M =
{mi<my<...<my,<...} CN with }>° m,! < 400 such that L(M,g) >0
(compare this fact with Theorems 4, 5).

Ezample 3(b). The function g, g(z) = max{l,z*} (z > 0) also satisfies
Theorem 6 — g is nondecreasing and Y >~ 1/(ng(n)) < +oco. Hence there exists



Convergence of subseries of the harmonic series ... 67

again a set M = {m1 <ms <...<m, < ...} CN with > >° m,* < 400 such
that L(M,g) > 0.

The foregoing Theorem 6 can suggest the conjecture that in general if
>oo2 1 1/(ng(n)) < 400, then thereisaset M = {m; <my <...<m, <...} CN
with Y7 m; ' < +oo such that L(M,g) > 0. The following example shows that
such conjecture is false.

Ezample 4. Let f : (0,400) — (0,+00) where >, 1/(ng(n)) < 400 and
lim, o f(z) = +00. Choose the function g : (0, +00) — (0, +00) in the following
way: Put g(j2) = logj% (j = 2,3,...) and g(z) = f(zx) for each z € (0, +0c0),
x # 32 (j=2,3,...). Then evidently

=1 =1 = 1
2 g < 2 i & g <

We shall show that for each set M = {m; < my < ...} C N with
>oor,myt < +oo we have L(M,g) = 0. Let M be such a set. Then accord-
ing to Theorem 3 we have

liminf M (z)logz/x = 0.

T—r00
Hence there exists a sequence 1 < 73 < ... < o, < ..., I, — +o0o of real numbers
such that
(11) liminf M (zy)logzy, /2y = 0.
k—o00

For each xj, € R there exists a j = j(xy) € N such that j2 <z < (j + 1)%.
But then by a simple estimation we get
M(j?)log j* _ M(wy)log s
G+1)? = xy, '

(12)

According to (11) for each € > 0 there exists a ko such that for each k& > ko
we have

(13) M () log xp /xy < €.
But then for j = j(x) we get from (12) and (13)
M -2 -2
U7)logs™
(G +1)?

For such j we have

3 M(j?)log j?
(J+1)? J?
Since lim,, oo n2/(n+1)% = 1, it is evident from (14) that for each sufficiently large
k (say for k > ki > ko) we have (for j = j(z))

(15) M(j%)logj?/j* <e.

(14) <e
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Hence for an infinite number of j’s we have (15). From this the equality L(M, g) =0
follows at once.

In this example f(z) = z® would suffice to disprove the conjecture.

Remark 4. Let g : (0,+00) — (0,+00) and let liminf, ,. g(z) < 4+o00. If
M={mi <my<...} CNand) - m," <+4oo, then according to Theorem A
we have

liminf M(x)g(z)/x =0

r—>00
holds. This shows that by investigation of the behavior of L(M, g) we can restrict
ourselves to the case if lim,_,» g(x) = +00. The following theorem is a generaliza-
tion of Theorems 4, 5.

THEOREM 7. Let g : (0,400) — (0,+00) with lim, o g(z) =
o2 1/(ng(n)) = 4+o0o0. Then for each set M = {m; < my < ...}
S0 myt < 400 we have L(M,g) = 0.

+00. Let
C N with

Proof. Suppose that L(M,g) > 0. Then there exists a 6 > 0 and ng € N
such that
M(n)g(n)/n > 6 >0
for each n > ngy. From this we get
) < M(n)
ng(n) = n?

(16) (n > ngp).

Let io be the first positive integer with ng < m;,. Then the set of all positive
integers n > m;, can be partitioned into the intervals (m,,m,y1], (r = do,i0 + 1,

Let m, <n < mpyr1. Then M(n) <r+1and so M(n)/n? < (r +1)/n% By
a simple estimation we get

Y ]\/2(2”)3(7%-1)- Y %

(17) my<n<mri1 mp<n<Mmet1

Mrtl dt 1 1
<(7'+].)/ t_2:(r+1)<m__m+1>
My r T

We shall show that

(18) i M(n) < 400

n2

n=1
For this it suffices to show by Cauchy’s condition for convergence of series that for
each € > 0 there is a jo > ip such that for any two numbers j > jo and k € N we
have

(19) i’“ M(n) <e

n2

n=mjt1
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Using (17) we get

).

n—my 1 LUZES
. 1 1 . 1 1
| ot AR | Crivedatrived
my o Myt Mjt+1  MMj42
. 1 1 . 1 1
+---+(]+k—1)< - >+(]+k)< - >
Mjtk—2  Mjt+k-1 Mjtk—1 Mtk
j+1 1 1 |+ k
S +- -~
m; mjt+1 Mjtk—1 Mj+k
j+1 1 1
< + + -+ .
m]- ij m]'+k,1

Hence we get
& M) j+1 1 1
Y —< + +ot :
n mj o M1 Mjt+k-1

(20)

n=m;ji1
Choose a jo such that for each j > jo we have
(21) (G+1)/m; <e/2
(see Theorem A) and

> 1 €

22 — < =

22) Z My, < 2
n=j+1

Then (19) follows from (20) because of (21), (22). Hence (18) holds and from (16)
we get 7 1/(ng(n)) < +o0o — a contradiction. Q.E.D.

THEOREM 8. Let M = {my <ms < ...} C N. Then ).~ m,* < +oo If
and only if 7 | M(n)/n* < +o0.

Proof. (1) Let > ° m,' < +4oco. The convergence of the series

>0, M(n)/n? is already proved in the proof of Theorem 7.
(2) Let 7, M(n)/n* < +o0o. We shall prove that > > m,! < 4o0.

Put Cr = X <n<mun M(n)/n* (k = 1,2,...). Then C = > 77 M(n)/n* =
220:1 Cy. By a simple estimation we get

et g 1 1
Cr=k- nfzzk/ —Zk‘(—— )
Z mi 2 my

m
mEp<n<mp41 k+1

But then we have for each n =1,2,...

n
1 1 1 1 1 1
CZZCkZI - )42 —=—-— )+ — =
k=1 mym2 maz M3 My Mptt
1 1 1 n
=— 4+ —4+ 4+ — = R
my m2 Lz Mnp41
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hence

(23) i}Lgc+

1 myg Myp+1

k=
since n/mu4+1 < 1. As (23) holds for each n = 1,2,..., we get by n — oo

<C+1

o0
Zm;1§0+1<+oo. O
k=1
Another proof of Theorem 8 is given by Krzy$ [2] and is also noted by Sa-
14t [7].
Remark 5. (to Theorem B and previous theorems) For each set M = {m; <
ma < ...my < ...} C N satisfying M(z) = O(z/(logz)' %), 3,,cprm™" < +o0,
then epr = 0, where ¢y = limg—, 00 M (2) log z/x.

Proof. We have

M(z)logx Kz logz K
x = (logz)+s =z (logz)®
for some constants K,c > 0. Hence
K M(x)l1
lim —5 0 andthus lim 21@10BT _
z—oo (log z)® z—00 z
Thus Theorem B with stronger hypothesis is true.
Example 5. Let M = {1%2,2%,3% ... ,n?,...}. Then
1
M(z) = vz = O(z/(logz)' 9), ey = lim yrlogr 0.

T—00 T
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