CONVERGENCE OF SUBSERIES OF THE HARMONIC SERIES AND ASYMPTOTIC DENSITIES OF SETS OF POSITIVE INTEGERS

Barry J. Powell and Tibor Šalát

Abstract

We investigate the relation between the convergence of subseries $\sum_{n=1}^{\infty} m_{n}^{-1}$ of the harmonic series $\sum_{n=1}^{\infty} n^{-1}$ and the asymptotic densities $d(M)$ of sets $M=\left\{m_{1}<m_{2}<\ldots<\right.$ $\left.m_{n}<\ldots\right\}$ of positive integers. Here, $d(M)=\lim _{x \rightarrow \infty} M(x) / x$, where $M(x)=\sum_{a \in M, a \leq x} 1$.

It is known that if $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$, then $d(M)=0$. We show that this relation cannot be substantially improved. In particular, we give two counterexamples to the previous assertion (contained in Theorem 3 of [3]) that if $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$, then $\lim _{x \rightarrow \infty} M(x) \log x / x=0$.

Furthermore, we proceed to prove, more generally, in Theorems 1 and 2 herein that if $\limsup _{x \rightarrow \infty} g(x)=+\infty$, where $g:(0,+\infty) \rightarrow(0,+\infty)$, then there exists an infinite set $M \subset N$ such that $\sum_{m \in M} m_{n}^{-1}<+\infty$ and simultaneously $\limsup _{x \rightarrow \infty} M(x) g(x) / x=+\infty$.

Whereas, in Theorems 3, 4, and 5 we prove that if $\sum_{m \in M} m_{n}^{-1}<+\infty$, then $L(M, g)=$ $\liminf _{x \rightarrow \infty} M(x) g(x) / x=0$ for certain functions $g(x)$, in particular, $g(x)=\log x \cdot \log \log x$.

In Theorem 7 we generalize Theorems 3,4 , and 5 by proving that if $\lim _{x \rightarrow \infty} g(x)=+\infty$ and $\sum_{n=1}^{\infty} 1 /(n g(n))=+\infty$, then $L(M, g)=0$ for the sets M referred to above.

In Theorem 6, in contrast to Theorem 7, we prove that if $g(x)$ is a nondecreasing function on $(0,+\infty)$, and $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$, then there exists a set M (as defined above) such that $L(M, g)>0$.

In Theorem 8 we give a new proof of the known result that $\sum_{m \in M} m^{-1}<+\infty$ if and only if $\sum_{n=1}^{\infty} M(n) / n^{2}<+\infty$.

We thus give new formulations of well-known principles of analytic number theory. Numerous remarks and examples are provided throughout the paper in supplement to and clarification of the main Theorems.

There exists a relation between the convergence of subseries

$$
\begin{equation*}
\sum_{n=1}^{\infty} k_{n}^{-1} \quad\left(k_{1}<k_{2}<\ldots<k_{n}<\ldots\right) \tag{1}
\end{equation*}
$$

of the harmonic series $\sum_{n=1}^{\infty} n^{-1}$ and the asymptotic densities of sets

$$
K=\left\{k_{1}<k_{2}<\ldots<k_{n}<\ldots\right\}
$$

(see Theorem A). We shall show that this relation cannot be substantially improved.
If $M \subset N=\{1,2, \ldots, n, \ldots\}$, then $d(M)$ denotes the asymptotic density the set M, i.e. $d(M)=\lim _{x \rightarrow \infty} M(x) / x$ if the limit on the right-hand side exists, here

$$
M(x)=\sum_{a \in M, a \leq x} 1
$$

(cf. [1, p. xix]).
The following theorem expresses the mentioned relation between the convergence of subseries (1) and the asymptotic densities of sets (1^{\prime}).

Theorem A. If $\sum_{n=1}^{\infty} k_{n}^{-1}<+\infty$, then $d(K)=0$.
For the proof of Theorem A see e.g. [5, Theorem 1]. Theorem A can be easily deduced also from the following result:

Let $\sum_{n=1}^{\infty} a_{n}$ be a series with real terms, let $a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq \ldots, a_{n} \rightarrow 0$, $\sum_{n=1}^{\infty} a_{n}<+\infty$. Denote by $N(x)$ the number of n 's for which an $a_{n} \geq x>0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0+} x N(x)=0 \tag{2}
\end{equation*}
$$

(cf. [4], [8]).
If we put $a_{n}=k_{n}^{-1}(n=1,2, \ldots)$, then we have for $x>0$:

$$
N(x)=\#\left\{n: a_{n} \geq x\right\}=\#\left\{n: k_{n} \leq 1 / x\right\}=K(1 / x)
$$

Hence according to (2) we get

$$
0=\lim _{x \rightarrow 0+} x N(x)=\lim _{x \rightarrow 0+} \frac{K(1 / x)}{1 / x}=\lim _{y \rightarrow \infty} \frac{K(y)}{y}=d(K), \quad d(K)=0
$$

In [3] the following theorem is introduced (see Theorem 3 in [3]).
Theorem B. If $M \subset N$ and $\sum_{m \in M} m^{-1}<+\infty$, and if $c_{M}=$ $\lim _{x \rightarrow \infty} M(x) \log x / x$ exists, then $c_{M}=0^{*}$.

The following two examples show that Theorem B is not valid if the existence of the limit c_{M} is not assumed. (cf. [6]).

Example 1. Put $M=\bigcup_{n=2}^{\infty} M_{n}$, where $M_{n}=\left\{n^{n^{2}}+1, n^{n^{2}}+2, \ldots, n^{n^{2}}+\right.$ $\left.n^{n^{2}-2}\right\}(n=2,3, \ldots)$. Then it can be easily shown (cf. [6]) that $\sum_{m \in M} m^{-1}<+\infty$ and $\limsup \operatorname{sum}_{x \rightarrow \infty} M(x) / x=+\infty$.

Example 2. Let $\left\{p_{n}\right\}_{n=1}^{\infty}$ be the increasing sequence of all prime numbers. We shall write $p(k)$ instead of $p_{k}(k=1,2, \ldots)$. Put $Q=\bigcup_{n=1}^{\infty} Q_{n}$, where

$$
\begin{aligned}
Q_{n} & =\left\{p\left(n^{n^{2}}+1\right), p\left(n^{n^{2}}+2\right), \ldots, p\left(n^{n^{2}}+t_{n}\right)\right\} \\
t_{n} & =\left[n^{-2} \cdot p\left(n^{n^{2}}\right)\right], \quad(n=1,2, \ldots)
\end{aligned}
$$

[^0]A detailed computation shows (cf. [6]) that $\sum_{q \in Q} q^{-1}<+\infty$ and

$$
\limsup _{x \rightarrow \infty} \frac{Q(x) \log x}{x} \geq \frac{a}{2 b^{2}}>0
$$

where a, b are positive constants occurring in the Tchebysheff's inequalities

$$
\text { an } \log n<p_{n}<b n \log n \quad(n=2,3, \ldots)
$$

(cf. [6]). For example, if $Q(x)$ represents the number of twin primes $\leq x$, the result $\lim _{x \rightarrow \infty}(Q(x) / \Pi(x))=0$ established in [3] does not follow from the fact that the sum of the reciprocals of the twin primes converges.

Remark 1. In [5] the following result is proved (see Theorem 2 in [5]).
Let

$$
d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq \ldots, \quad \sum_{n=1}^{\infty} d_{n}=+\infty
$$

and let $\sum_{k=1}^{\infty} \varepsilon_{k}(x) d_{k}<+\infty$, where $\varepsilon_{k}(x)(k=1,2, \ldots)$ are dyadic digits of the number $x \in(0,1]$ (i.e. $x=\sum_{k=1}^{\infty} \varepsilon_{k}(x) 2^{-k}$ is the nonterminating dyadic expansion of x). Then we have $p_{1}=\liminf _{n \rightarrow \infty} p(n, x) / n=0$, where $p(n, x)=\sum_{k=1}^{n} \varepsilon_{k}(x)$ $(n=1,2, \ldots)$.

If we apply this result to the subseries of the series $\sum_{n=1}^{\infty} n^{-1}$ we see that the convergence of such subseries implies that "the lower density" of this subseries in $\sum_{n=1}^{\infty} n^{-1}$ is zero. An analogous consideration can be made also for subseries of the series $\sum_{n=1}^{\infty} p_{n}^{-1}$.

The foregoing examples 1,2 suggest the formulation and the proof of the following theorem which shows that the result obtained in Theorem A cannot be substantially improved. In what follows we shall give the proof of Theorem 1 published in [6] without the proof.

Theorem 1. Let $g:(0,+\infty) \rightarrow(0,+\infty)$ and $\lim _{x \rightarrow \infty} g(x)=+\infty$ (arbitrarily slowly). Then there exists an infinite set $M \subset N$ such that $\sum_{m \in M} m^{-1}<+\infty$ and simultaneously

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} M(x) g(x) / x=+\infty \tag{3}
\end{equation*}
$$

Proof. We can assume without loss of generality that $g(t) \geq 1$ for each $t \geq 1$.
We can construct (by induction) two sequences $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{t_{n}\right\}_{n=1}^{\infty}$, of positive integers with the following properties:
(a) $x_{n} \geq n^{3} \quad(n=1,2, \ldots)$,
(c) $t_{n}=\left[n^{-2} x_{n}\right] \quad(n=1,2, \ldots)$,
(b) $\forall_{t \geq x_{n}} g(t) \geq n^{3} \quad(n=1,2, \ldots)$,
(d) $x_{n}>x_{n-1}+t_{n-1} \quad(n=2,3, \ldots)$.

Put

$$
M_{n}=\left\{x_{n}+1, x_{n}+2, \ldots, x_{n}+t_{n}\right\}, \quad(n=1,2, \ldots,) ; \quad M=\bigcup_{n=1}^{\infty} M_{n}
$$

According to (d) the sets $M_{n},(n=1,2, \ldots)$ are mutually disjoint. A simple estimation gives

$$
\sum_{m \in M_{n}} m^{-1} \leq t_{n} x_{n}^{-1} \leq n^{-2} \quad(n=1,2, \ldots)
$$

hence $\sum_{m \in M} m^{-1}<+\infty$.
Putting $y_{n}=x_{n}+t_{n}(n=1,2, \ldots)$ we have

$$
M\left(y_{n}\right) \geq t_{n}>n^{-2} x_{n}-1, \quad y_{n} \leq\left(1+n^{-2}\right) x_{n} \quad(n=1,2, \ldots)
$$

Using (a), (b) we get
$\frac{M\left(y_{n}\right) g\left(y_{n}\right)}{y_{n}} \geq n^{3} \frac{n^{-2} x_{n}-1}{\left(1+n^{-2}\right) x_{n}} \geq \frac{1}{2} n^{3}\left(\frac{1}{n^{2}}-\frac{1}{x_{n}}\right) \geq \frac{1}{2}(n-1) \rightarrow+\infty \quad($ as $n \rightarrow \infty)$.
Hence (3) holds and the proof is finished.
A little modification of the construction of the set M in the proof of Theorem 1 leads to the following more general result.

Theorem 2. Let $g:(0,+\infty) \rightarrow(0,+\infty)$, and

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} g(x)=+\infty \tag{4}
\end{equation*}
$$

Then there exists an infinite set $M \subset N$ such that $\sum_{m \in M} m^{-1}<+\infty$ and simultaneously we have $\limsup _{x \rightarrow \infty} M(x) g(x) / x=+\infty$.

Remark 2. Condition (4) cannot be omitted. If $\limsup _{x \rightarrow \infty} g(x)<+\infty$ holds, then it follows from Theorem A that $\lim _{x \rightarrow \infty} M(x) g(x) / x=0$ for each set $M \subset N$ with $\sum_{m \in M} m^{-1}<+\infty$.

Proof of Theorem 2. Construct by induction a sequence

$$
\left\{x_{n}\right\}_{n=1}^{\infty}, \quad 2 \leq x_{1}<x_{2}<\ldots<x_{n}<\ldots
$$

of real numbers such that (a) $x_{n} \geq n^{3}(n=1,2, \ldots)$, (b) $x_{n}>\left(x_{n-1}+1\right)\left(1-n^{-2}\right)^{-1}$ $(n=2,3, \ldots)$, (c) $g\left(x_{n}\right) \geq n^{3}(n=1,2, \ldots)$.

This is possible since (4) holds. Let us remark that from (b) we have

$$
\begin{array}{cl}
x_{n-1}+1<x_{n}\left(1-n^{-2}\right) & (n \geq 2) \\
x_{n-1}+x_{n} n^{-2}<x_{n}-1 & (n \geq 2) \\
x_{n-1}+\left[n^{-2} x_{n}\right]<x_{n}-1\left(<\left[x_{n}\right]\right) & (n \geq 2)
\end{array}
$$

Hence

$$
\begin{equation*}
x_{n-1}+\left[n^{-2} x_{n}\right]<\left[x_{n}\right] \quad(n \geq 2) \tag{5}
\end{equation*}
$$

Put $M=\bigcup_{n=2}^{\infty} M_{n}$, where

$$
\begin{aligned}
M_{n} & =\left\{\left[x_{n}\right]-t_{n},\left[x_{n}\right]-t_{n}+1, \ldots,\left[x_{n}\right]-1\right\} \\
t_{n} & =\left[n^{-2} x_{n}\right] \quad(n=2,3, \ldots)
\end{aligned}
$$

Let us remark that according to (5) the sets $M_{n}(n=2,3, \ldots)$ are mutually disjoint. By a simple estimation we get

$$
\sum_{m \in M_{n}} m^{-1} \leq \frac{1}{\left[x_{n}\right]-t_{n}} \quad(n=2,3, \ldots)
$$

But we have $\left[x_{n}\right]-t_{n} \geq x_{n}-1-n^{-2} x_{n}=x_{n}\left(1-n^{-2}\right)-1(n \geq 2)$ and therefore

$$
\begin{aligned}
\sum_{m \in M_{n}} m^{-1} & \leq \frac{1}{x_{n}\left(1-n^{-2}\right)-1} n^{-2} x_{n} \\
& \leq n^{-2} \frac{1}{1-n^{-2}-x_{n}^{-1}} \leq n^{-2} \frac{1}{1-4^{-1}-8^{-1}}=\frac{8}{5} \frac{1}{n^{2}}
\end{aligned}
$$

Thus $\sum_{m \in M} m^{-1}<+\infty$.
Put $A_{n}=M\left(x_{n}\right) g\left(x_{n}\right) / x_{n}(n=2,3, \ldots)$. We have

$$
M\left(x_{n}\right) \geq t_{n} \geq n^{-2} x_{n}-1 \quad(n=2,3, \ldots)
$$

Using (a) and (c) we obtain

$$
\begin{aligned}
A_{n} & \geq \frac{\left(n^{-2} x_{n}-1\right) n^{3}}{x_{n}}=\left(n^{-2}-x_{n}^{-1}\right) n^{3} \\
& =n-n^{3} x_{n}^{-1} \geq n-1 \rightarrow+\infty \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $\lim \sup _{x \rightarrow \infty} M(x) g(x) / x=+\infty$. This ends the proof.
Note that the converse of Theorem A is false. For example, if K represents the set of all prime numbers, $d(K)=0$, while $\sum p^{-1}$ diverges.

Professor A. Schinzel remarked** in connection with Theorems A and B that the following result holds.

Theorem 3. Let $M \subset N$ and $\sum_{m \in M} m^{-1}<+\infty$. Then we have $\liminf _{x \rightarrow \infty} M(x) \log x / x=0$. Hence $\liminf _{x \rightarrow \infty} M(x) / \Pi(x)=0$.

Remark 3. If $c_{M}=\lim _{x \rightarrow \infty} M(x) \log x / x$ exists, then $c_{M}=0$.
Proof. We have from Theorem 3 above

$$
c_{M}=\lim _{x \rightarrow \infty} \frac{M(x) \log x}{x}=\liminf _{x \rightarrow \infty} \frac{M(x) \log x}{x}=0 . \quad \text { Q.E.D. }
$$

This is the result actually proved in Theorem 3 of [3].
We shall not give the proof of Theorem 3 because it is an easy consequence of Theorem 4. In what follows, we put for brevity $\log _{k} x=\underbrace{\log \log \ldots \log }_{k \text { times }} x$

Theorem 4. Suppose that the function $g:(0,+\infty) \rightarrow(0,+\infty)$ satisfies the condition

$$
g(x)=O\left(\log x \log _{2} x\right) \quad(x \rightarrow+\infty)
$$

** at Summer School on Number Theory 1985 in High Tatras, Czechoslovakia

If $M \subset N$ and $\sum_{m \in M} m^{-1}<+\infty$, then $\liminf _{x \rightarrow \infty} M(x) g(x) / x=0$.
Proof. Assume that there are $a>0$ and $x_{0}>0$ such that

$$
\begin{equation*}
M(x) g(x) / x \geq a>0 \quad \text { for } x>x_{0} \tag{6}
\end{equation*}
$$

According to the assumption there exists a $K>0$ and $x_{1}>0$ such that

$$
\begin{equation*}
g(x) \leq K \log \log _{2} x \tag{7}
\end{equation*}
$$

for $x>x_{1}$.
Choose an $n_{1} \in N$ such that $m_{n}>\max \left\{x_{0}, x_{1}\right\}$ for $n>n_{1}, M=\left\{m_{1}<\right.$ $\left.m_{2}<\ldots<m_{n}<\ldots\right\}$. Then putting $x=m_{n}$ in (6) we get

$$
\begin{equation*}
n g\left(m_{n}\right) / m_{n} \geq a>0 \quad \text { for } n>n_{1} \tag{8}
\end{equation*}
$$

Using (7), (8) we get for $n>n_{1}$

$$
\begin{equation*}
a / n \leq K \log m_{n} \log _{2} m_{n} / m_{n} \tag{9}
\end{equation*}
$$

But $\log m_{n} \log _{2} m_{n}<\sqrt{m_{n}}$ for each $n>n_{2}>n_{1}$ (n_{2} is a suitable number). Then

$$
\begin{aligned}
a / n & \leq K / \sqrt{m_{n}}, \quad m_{n} \leq(K / a)^{2} n^{2} \\
\log m_{n} & \leq 2 \log n+C_{1}, \quad C_{1}=2 \log (K / a) \\
\log _{2} m_{n} & \leq \log _{2} n+\log 2+\sigma(1) \quad(n \rightarrow \infty)
\end{aligned}
$$

We obtain by (9)

$$
d_{n}=\frac{a}{K} \frac{1}{n\left(2 \log n+C_{1}\right)\left(\log _{2} n+\log 2+\sigma(1)\right)} \leq m_{n}^{-1}
$$

for $n>n_{2}$. Since $\sum_{n>n_{2}} d_{n}=+\infty$, we have $\sum_{n=1}^{\infty} m_{n}^{-1}=+\infty-$ a contradiction.
In an analogous way the following more general result can be proved.
Theorem 5. Suppose that the function $g:(0,+\infty) \rightarrow(0,+\infty)$ satisfies the condition

$$
g(x)=O\left(\log x \log _{2} x \ldots \log _{k} x\right) \quad(x \rightarrow \infty)
$$

If $M \subset N$ and $\sum_{m \in M} m^{-1}<+\infty$, then $\liminf _{x \rightarrow \infty} M(x) g(x) / x=0$.
Observe that the conditions satisfied by g in the Theorems 4 and 5 imply that $\sum_{\text {of }}^{\infty} 1 /(n g(n))=+\infty$. In the following theorem we shall investigate the behavior

$$
L(M, g)=\liminf _{x \rightarrow \infty} \frac{M(x) g(x)}{x}
$$

for sets $M=\left\{m_{1}<m_{2}<\ldots<m_{n}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$. In the first place we shall do it under the assumption that $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$.

Theorem 6. Let $g:(0,+\infty) \rightarrow(0,+\infty)$ be a nondecreasing function. Suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n g(n)}<+\infty \tag{10}
\end{equation*}
$$

Then there exists a set $M=\left\{m_{1}<m_{2}<\ldots m_{n} \ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m^{-1}<+\infty$ such that $L(M, g)>0$.

Proof. Since the function g is nondecreasing, it follows from (10) that $\lim _{x \rightarrow \infty} g(x)=+\infty$. In the contrary case, if $g(n) \leq K, n=1,2, \ldots$ we have $1 /(n g(n)) \geq 1 /(K n)$ and so $\sum_{n=1}^{\infty} 1 /(n g(n))=+\infty$ by the comparison test, a contradiction to (10).

Define $\left\{m_{n}\right\}_{n=1,2, \ldots}$ as follows:

$$
\begin{array}{ll}
m_{1}=1, & m_{2}=2, \\
m_{n}=n, & \text { if } n>2 \text { and } g(n-1) \leq 2 \\
m_{n}=[(n-1) g(n-1)], & \text { if } n>2 \text { and } g(n-1)>2 .
\end{array}
$$

If i is the first integer >2 for which $g(i-1)>2$, we have

$$
\begin{aligned}
m_{i} & =[(i-1) g(i-1)]>(i-1) g(i-1)-1 \\
& >2(i-1)-1=2 i-3>i-1=m_{i-1}
\end{aligned}
$$

Therefore $m_{i}>m_{i-1}$. Furthermore, for $j \geq 1$,

$$
\begin{aligned}
m_{i+j} & =[(i+j-1) g(i+j-1)]>(i+j-1) g(i+j-1)-1 \\
& \geq(i+j-1) g(i+j-2)-1>(i+j-2) g(i+j-2) \\
& \geq m_{i+j-1},
\end{aligned}
$$

therefore $m_{i+j}>m_{i+j-1}, j \geq 1$, and so $m_{1}<m_{2}<m_{3}<\ldots<m_{n}<\ldots$.
Since $\lim _{n \rightarrow \infty} g(n-1)=+\infty$, we have $m_{n+1}=[n g(n)], n>T$ for some $T \in N$.

Since $\lim _{n \rightarrow \infty}(n g(n)) /[n g(n)]=1$, we have $\sum_{n=T+2}^{\infty} m_{n}^{-1}<+\infty$ by the limit comparison test. Therefore $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$. As $\sum_{n=1}^{\infty} n^{-1}=+\infty$, and from Theorem A, $\lim _{n \rightarrow \infty} M(n) / n=\lim _{n \rightarrow \infty} n m_{n}^{-1}=0$, so that $m_{n}>n$ for $n>J$ for some positive integer J.

Thus for $\max \{J, T\}<n$, we have $n<m_{n}$, and hence $m_{n} \leq x<m_{n+1}$ implies that

$$
\frac{M(x) g(x)}{x}>\frac{n g\left(m_{n}\right)}{m_{n+1}} \geq \frac{n g(n)}{[n g(n)]} \geq 1>0
$$

since $g(x)$ is nondecreasing, and thus $g(x) \geq g\left(m_{n}\right) \geq g(n)$ for $x \geq m_{n}>n$. Thus $M(x) g(x) / x>1$ for $x>m_{J}, m_{T}$. Therefore $L(M, g) \geq 1>0$. Q.E.D.

Example 3(a). The function $g, g(x)=\max \left\{1,(\log x)^{\alpha}\right\}(\alpha>1)$ or more generally $g(x)=\max \left\{1, \log x \log _{2} x \ldots\left(\log _{k} x\right)^{\alpha}\right\}(\alpha>1)$ satisfies Theorem 6, i.e. g is nondecreasing and $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$. Hence there exists a set $M=$ $\left\{m_{1}<m_{2}<\ldots<m_{n}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ such that $L(M, g)>0$ (compare this fact with Theorems 4,5).

Example 3(b). The function $g, g(x)=\max \left\{1, x^{x}\right\}(x>0)$ also satisfies Theorem $6-g$ is nondecreasing and $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$. Hence there exists
again a set $M=\left\{m_{1}<m_{2}<\ldots<m_{n}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ such that $L(M, g)>0$.

The foregoing Theorem 6 can suggest the conjecture that in general if $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$, then there is a set $M=\left\{m_{1}<m_{2}<\ldots<m_{n}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ such that $L(M, g)>0$. The following example shows that such conjecture is false.

Example 4. Let $f:(0,+\infty) \rightarrow(0,+\infty)$ where $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty$ and $\lim _{x \rightarrow \infty} f(x)=+\infty$. Choose the function $g:(0,+\infty) \rightarrow(0,+\infty)$ in the following way: Put $g\left(j^{2}\right)=\log j^{2}(j=2,3, \ldots)$ and $g(x)=f(x)$ for each $x \in(0,+\infty)$, $x \neq j^{2}(j=2,3, \ldots)$. Then evidently

$$
\sum_{n=1}^{\infty} \frac{1}{n g(n)} \leq \sum_{n=1}^{\infty} \frac{1}{n f(n)}+\sum_{j=2}^{\infty} \frac{1}{j^{2} \log \left(j^{2}\right)}<+\infty .
$$

We shall show that for each set $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ we have $L(M, g)=0$. Let M be such a set. Then according to Theorem 3 we have

$$
\liminf _{x \rightarrow \infty} M(x) \log x / x=0 .
$$

Hence there exists a sequence $x_{1}<x_{2}<\ldots<x_{n}<\ldots, x_{n} \rightarrow+\infty$ of real numbers such that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} M\left(x_{k}\right) \log x_{k} / x_{k}=0 \tag{11}
\end{equation*}
$$

For each $x_{k} \in R$ there exists a $j=j\left(x_{k}\right) \in N$ such that $j^{2}<x_{k} \leq(j+1)^{2}$. But then by a simple estimation we get

$$
\begin{equation*}
\frac{M\left(j^{2}\right) \log j^{2}}{(j+1)^{2}} \leq \frac{M\left(x_{k}\right) \log x_{k}}{x_{k}} \tag{12}
\end{equation*}
$$

According to (11) for each $\varepsilon>0$ there exists a k_{0} such that for each $k>k_{0}$ we have

$$
\begin{equation*}
M\left(x_{k}\right) \log x_{k} / x_{k}<\varepsilon \tag{13}
\end{equation*}
$$

But then for $j=j\left(x_{k}\right)$ we get from (12) and (13)

$$
\frac{M\left(j^{2}\right) \log j^{2}}{(j+1)^{2}}<\varepsilon
$$

For such j we have

$$
\begin{equation*}
\frac{j^{2}}{(j+1)^{2}} \cdot \frac{M\left(j^{2}\right) \log j^{2}}{j^{2}}<\varepsilon \tag{14}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} n^{2} /(n+1)^{2}=1$, it is evident from (14) that for each sufficiently large k (say for $k>k_{1}>k_{0}$) we have (for $j=j\left(x_{k}\right)$)

$$
\begin{equation*}
M\left(j^{2}\right) \log j^{2} / j^{2}<\varepsilon \tag{15}
\end{equation*}
$$

Hence for an infinite number of j 's we have (15). From this the equality $L(M, g)=0$ follows at once.

In this example $f(x)=x^{x}$ would suffice to disprove the conjecture.
Remark 4. Let $g:(0,+\infty) \rightarrow(0,+\infty)$ and let $\liminf _{x \rightarrow \infty} g(x)<+\infty$. If $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset N$ and $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$, then according to Theorem A we have

$$
\liminf _{x \rightarrow \infty} M(x) g(x) / x=0
$$

holds. This shows that by investigation of the behavior of $L(M, g)$ we can restrict ourselves to the case if $\lim _{x \rightarrow \infty} g(x)=+\infty$. The following theorem is a generalization of Theorems 4, 5 .

Theorem 7. Let $g:(0,+\infty) \rightarrow(0,+\infty)$ with $\lim _{x \rightarrow \infty} g(x)=+\infty$. Let $\sum_{n=1}^{\infty} 1 /(n g(n))=+\infty$. Then for each set $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset N$ with $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ we have $L(M, g)=0$.

Proof. Suppose that $L(M, g)>0$. Then there exists a $\delta>0$ and $n_{0} \in N$ such that

$$
M(n) g(n) / n \geq \delta>0
$$

for each $n>n_{0}$. From this we get

$$
\begin{equation*}
\frac{\delta}{n g(n)} \leq \frac{M(n)}{n^{2}} \quad\left(n>n_{0}\right) \tag{16}
\end{equation*}
$$

Let i_{0} be the first positive integer with $n_{0}<m_{i_{0}}$. Then the set of all positive integers $n>m_{i_{0}}$ can be partitioned into the intervals $\left(m_{r}, m_{r+1}\right],\left(r=i_{0}, i_{0}+1\right.$, ...).

Let $m_{r}<n \leq m_{r+1}$. Then $M(n) \leq r+1$ and so $M(n) / n^{2} \leq(r+1) / n^{2}$. By a simple estimation we get

$$
\begin{gather*}
\sum_{m_{r}<n \leq m_{r+1}} \frac{M(n)}{n^{2}} \leq(r+1) \cdot \sum_{m_{r}<n \leq m_{r+1}} \frac{1}{n^{2}} \tag{17}\\
<(r+1) \int_{m_{r}}^{m_{r+1}} \frac{d t}{t^{2}}=(r+1)\left(\frac{1}{m_{r}}-\frac{1}{m_{r+1}}\right) .
\end{gather*}
$$

We shall show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{M(n)}{n^{2}}<+\infty \tag{18}
\end{equation*}
$$

For this it suffices to show by Cauchy's condition for convergence of series that for each $\varepsilon>0$ there is a $j_{0} \geq i_{0}$ such that for any two numbers $j \geq j_{0}$ and $k \in N$ we have

$$
\begin{equation*}
\sum_{n=m_{j+1}}^{m_{j+k}} \frac{M(n)}{n^{2}}<\varepsilon . \tag{19}
\end{equation*}
$$

Using (17) we get

$$
\begin{aligned}
& \sum_{n=m_{j+1}}^{m_{j+k}} \frac{M(n)}{n^{2}}<\sum_{r=j}^{j+k-1}(r+1)\left(\frac{1}{m_{r}}-\frac{1}{m_{r+1}}\right) \\
= & (j+1)\left(\frac{1}{m_{j}}-\frac{1}{m_{j+1}}\right)+(j+2)\left(\frac{1}{m_{j+1}}-\frac{1}{m_{j+2}}\right) \\
& +\cdots+(j+k-1)\left(\frac{1}{m_{j+k-2}}-\frac{1}{m_{j+k-1}}\right)+(j+k)\left(\frac{1}{m_{j+k-1}}-\frac{1}{m_{j+k}}\right) \\
= & \frac{j+1}{m_{j}}+\frac{1}{m_{j+1}}+\cdots+\frac{1}{m_{j+k-1}}-\frac{j+k}{m_{j+k}} \\
< & \frac{j+1}{m_{j}}+\frac{1}{m_{j+1}}+\cdots+\frac{1}{m_{j+k-1}} .
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\sum_{n=m_{j+1}}^{m_{j+k}} \frac{M(n)}{n^{2}}<\frac{j+1}{m_{j}}+\frac{1}{m_{j+1}}+\cdots+\frac{1}{m_{j+k-1}} \tag{20}
\end{equation*}
$$

Choose a j_{0} such that for each $j \geq j_{0}$ we have

$$
\begin{equation*}
(j+1) / m_{j}<\varepsilon / 2 \tag{21}
\end{equation*}
$$

(see Theorem A) and

$$
\begin{equation*}
\sum_{n=j+1}^{\infty} \frac{1}{m_{n}}<\frac{\varepsilon}{2} \tag{22}
\end{equation*}
$$

Then (19) follows from (20) because of (21), (22). Hence (18) holds and from (16) we get $\sum_{n=1}^{\infty} 1 /(n g(n))<+\infty-$ a contradiction. Q.E.D.

TheOrem 8. Let $M=\left\{m_{1}<m_{2}<\ldots\right\} \subset N$. Then $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$ If and only if $\sum_{n=1}^{\infty} M(n) / n^{2}<+\infty$.

Proof. (1) Let $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$. The convergence of the series $\sum_{n=1}^{\infty} M(n) / n^{2}$ is already proved in the proof of Theorem 7.
(2) Let $\sum_{n=1}^{\infty} M(n) / n^{2}<+\infty$. We shall prove that $\sum_{n=1}^{\infty} m_{n}^{-1}<+\infty$. Put $C_{k}=\sum_{m_{k} \leq n<m_{k+1}} M(n) / n^{2}(k=1,2, \ldots)$. Then $C=\sum_{n=1}^{\infty} M(n) / n^{2}=$ $\sum_{k=1}^{\infty} C_{k}$. By a simple estimation we get

$$
C_{k}=k \cdot \sum_{m_{k} \leq n<m_{k+1}} n^{-2} \geq k \int_{m_{k}}^{m_{k+1}} \frac{d t}{t^{2}}=k\left(\frac{1}{m_{k}}-\frac{1}{m_{k+1}}\right)
$$

But then we have for each $n=1,2, \ldots$

$$
\begin{aligned}
C & \geq \sum_{k=1}^{n} C_{k} \geq 1\left(\frac{1}{m_{1}}-\frac{1}{m_{2}}\right)+2\left(\frac{1}{m_{2}}-\frac{1}{m_{3}}\right)+\cdots+n\left(\frac{1}{m_{n}}-\frac{1}{m_{n+1}}\right) \\
& =\frac{1}{m_{1}}+\frac{1}{m_{2}}+\cdots+\frac{1}{m_{n}}-\frac{n}{m_{n+1}}
\end{aligned}
$$

hence

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{m_{k}} \leq C+\frac{n}{m_{n+1}} \leq C+1 \tag{23}
\end{equation*}
$$

since $n / m_{n+1} \leq 1$. As (23) holds for each $n=1,2, \ldots$, we get by $n \rightarrow \infty$

$$
\sum_{k=1}^{\infty} m_{k}^{-1} \leq C+1<+\infty
$$

Another proof of Theorem 8 is given by Krzyśs [2] and is also noted by Šalát [7].

Remark 5. (to Theorem B and previous theorems) For each set $M=\left\{m_{1}<\right.$ $\left.m_{2}<\ldots m_{n}<\ldots\right\} \subset N$ satisfying $M(x)=O\left(x /(\log x)^{1+\varepsilon}\right), \sum_{m \in M} m^{-1}<+\infty$, then $c_{M}=0$, where $c_{M}=\lim _{x \rightarrow \infty} M(x) \log x / x$.

Proof. We have

$$
\frac{M(x) \log x}{x} \leq \frac{K x}{(\log x)^{1+\varepsilon}} \cdot \frac{\log x}{x}=\frac{K}{(\log x)^{\varepsilon}}
$$

for some constants $K, \varepsilon>0$. Hence

$$
\lim _{x \rightarrow \infty} \frac{K}{(\log x)^{\varepsilon}}=0 \quad \text { and thus } \quad \lim _{x \rightarrow \infty} \frac{M(x) \log x}{x}=0 .
$$

Thus Theorem B with stronger hypothesis is true.
Example 5 . Let $M=\left\{1^{2}, 2^{2}, 3^{2}, \ldots, n^{2}, \ldots\right\}$. Then

$$
M(x)=\sqrt{x}=O\left(x /(\log x)^{1+\varepsilon}\right), \quad c_{M}=\lim _{x \rightarrow \infty} \frac{\sqrt{x} \log x}{x}=0 .
$$

REFERENCES

[1] H. Halberstam and K. F. Roth, Sequences I, Oxford, 1966.
[2] J. Krzyś, Oliver's theorem and its generalizations, Prace Mat. 2 (1956), 159-164.
[3] B. J. Powell, Primitive densities of certain sets of primes, J. Number Theory 12 (1980), 210-217.
[4] Problem E 1552 [1962-1008], Proposed by D. Rearick, Solution by R. Greenberg in Amer. Math. Monthly 70 (1963), 894.
[5] T. S̆alát, On subseries, Math. Zeitschr. 85 (1964), 209-225.
[6] T. Šalát, Convergence of subseries of the harmonic series and asymptotic densities of sets of integers, Acta Math. Univ. Comm. (to appear).
[7] T. Šalát, Infinite Series, Academia, Prague 1974, p. 101.
[8] J.P. Tull and D. Rearick, A convergence criterion for positive series, Amer. Math. Monthly 71 (1965), 294-295.

Barry J. Powell
(Received 0210 1990)
230 Market Street
Kirkland, Washington 98033, U.S.A.
Tibor Šalát
Univerzita Komenskeho
Matematicke-fyzikalna fakulta
Katedra algebry a téorie čísiel
Bratislava-Mlynská dolina 842 15, Czechoslovakia

[^0]: * In [3] the notation $v_{M}(x)$ is used instead of $M(x)$.

