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SOME RESULTS ON GRAPHS WITH AT MOST

TWO POSITIVE EIGENVALUES

Miroslav Petrovi�c

Abstract. We determine all graphs G such that G and its complementary graph �G have
exactly one (or, respectively, exactly two) positive eigenvalues.

1. Introduction

We consider only �nite, undirected graphs without loops or multiple edges.
The spectrum of a graph is the spectrum of its 0-1 adjacency matrix. Relation
H � G will always mean that H is an induced subgraph of a graph G.

Generally speaking, for every graph theoretical property a problem can be
posed of �nding all graphs G such that both G and �G possess it. This topics was
treated by several authors in the past ten years. The problem we consider is to
�nd all graphs which together with their complementary graphs have exactly one
(respectively, exactly two) positive eigenvalues.

We say that a graph G is p-positive (p � 1) if it has exactly p positive
eigenvalues (including multiplicities). A graph G is double p-positive if both G

and �G have exactly p positive eigenvalues. In this paper we determine all double
p-positive graphs for p = 1 and p = 2.

It is well known that complete multipartite graphs are the only connected
1-positive graphs [5]. A similar characterization of connected p-positive graphs
(p � 2) is still an unsolved problem.

In the sequel we give some basic de�nitions and lemmas.

Lemma 1 [5]. A graph without isolated vertices is not a complete multipartite

graph if and only if it contains any graph from Fig. 1 as an induced subgraph.�

Next, let X and Y be two disjoint subsets of the vertex set V (G) of a graphG.
We say that subsets X and Y are completely adjacent in G if each vertex from X is
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Fig. 1

adjacent to each vertex from Y . Similarly, we say that these subsets are completely
nonadjacent if no vertex from X is adjacent to any vertex from Y .

Now, we de�ne two binary relations �1 and �2 on the vertex set V (G) of a
graph G in the following way:

1Æ the vertices x and y are in the relation �1 if they have the same neighbours
in V (G);

2Æ the vertices x and y are in the relation �2 if they are adjacent and have
the same neighbours in the set V (G) n fx; yg.

The relation �1 is obviously an equivalence relation on the vertex set V (G).
Let fN1; . . . ; Nkg be the corresponding quotient set and let jNij = ni (i = 1; . . . ; k).
The subsets N1; . . . ; Nk (characteristic subsets of G) have the following property:
any two vertices from the same subset are not adjacent and any two subsets are
completely adjacent or completely nonadjacent in G. The corresponding quotient
graph of G is called the canonical graph of G and is denoted by g and obviously
g � G. For instance, if G is a complete s-partite graph, then its canonical graph is
the complete graph Ks. Of course, the canonical graph of the complete graph Kn

is Kn itself.

Next, let n+(G) and n�(G) be the numbers of positive and negative eigen-
values of G, respectively.

The following lemma is an easy consequence of the Interlacing theorem [1,
p. 19] and the fact that adding a vertex related to one already present increases
the nullity by 1.

Lemma 2 [2]. Let g be the canonical graph of a graph G. Then n+(G) =
n+(g), n�(G) = n�(g).�

The relation �2 is symmetric and transitive. By this relation the vertex set
V (G) can be divided into certain disjoint subsets C1; . . . ; Cp such that, for each
i = 1; . . . ; p, the graph induced by the set Ci is a complete graph. Two subsets Ci

and Cj (i 6= j) are always completely adjacent or completely nonadjacent in G.

For the subset Ni (1 � i � k), relation x �1 Ni will mean that x �1 y holds
for each vertex y 2 Ni. Similarly, for the subset Cj (1 � j � p), relation x �2 Cj

will mean that x �2 y holds for each vertex y 2 Cj (x 6= y). If jNij > 1 and jCj j > 1
then obviously Ni \ Cj = ?.
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Next, denote by a white circle # any graph without edges, and by a black
circle  any complete graph. The line between two circles will mean that all
possible edges between the corresponding graphs are present.

Let Gi (i = 1; . . . ; s) be a sequence of disjoint graphs, i.e. such that
V (Gi) \ V (Gj) = ? (i 6= j). Denote by P (G1; . . . ; Gn) the graph obtained
from the direct sum G1 u � � � u Gn by joining every vertex of Gi with ev-
ery vertex of Gi+1 (i = 1; . . . ; s � 1). Next, denote by Q(G1; G2; G3; G4; G5)
the graph obtained from P (G1; G2; G3; G4) and G5 by joining every vertex
of G5 with every vertex of G2 and G3. The graphs P (Km;Kn;Kp;Kq),

P ( �Km; �Kn; �Kp; �Kq)u �Kr, P (K1;Km; �Kn;Kp;K1), P (K1;Km; �Kn;Kp;K1)u �Kq

and Q( �Km;Kn;Kp; �Kq;K1), depicted in Figure 2, will be essential for our pur-
poses.

Fig. 2

First, we give some necessary and suÆcient conditions under which any of

the graphs P (Km;Kn;Kp;Kq), P ( �Km; �Kn; �Kp; �Kq)u �Kr is a 2-positive graph.

Lemma 3. The graph P (Km;Kn;Kp;Kq) i a 2-positive graph if and only if

the relation

mnpq +m+ n+ p+ q � mnp+ npq +mp+mq + nq + 1 (1)

holds.

Proof . Positive eigenvalues of the graph P (Km;Kn;Kp;Kq) are determined
by the equation

D(�) = (�+ 1)4 � (m+ n+ p+ q)(�+ 1)3 + (mp+mq + nq)(�+ 1)2

+ (mnp+ npq)(�+ 1)�mnpq = 0:

It is a matter of routine to see that this equation has exactly two positive roots if
and only if D(0) � 0, i.e. if and only if the relation (1) holds.�

Lemma 4. The graph P ( �Km; �Kn; �Kp; �Kq)u �Kr is a 2-positive graph if and

only if the relation

mnpqr+mnpq+m+n+p+q+r� mnq+mnr+mpq+npr+pqr+mn+np+pq+1 (2)
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holds.

Proof . Positive eigenvalues of the graph P ( �Km; �Kn; �Kp; �Kq)u �Kr are deter-
mined by the equation

D(�) = (�+ 1)5 � (m+ n+ p+ q + r)(� + 1)4 + (mn+ np+ pq)(�+ 1)3

+ (mnq +mnr +mpq + npr + pqr)(� + 1)2 �mnpq(�+ 1)�mnpqr = 0:

Similarly as in Lemma 3, the above equation will have two positive roots if and
only if D(0) � 0, i.e. if and only if the relation (2) holds.

Lemma 5. For all values of the parameters m;n; p; q 2 N the graphs

P (K1;Km;K1;Kp;K1), P (K1;K1; �Kn;K1;K1)u �Kq, and Q(K1;Kn;Kp;K1;K1)
are 2-positive graphs.

Proof . Positive eigenvalues of the three graphs P (K1;Km;K1;Kp;K1),

P (K1;K1; �Kn;K1;K1)u �Kq, and Q(K1;Kn;Kp;K1;K1) are determined, respec-
tively, by the following equations:

�4 � (m+ p+ 2)�3 + (mp� 3m� 3p+ 1)�2 + (4mp� 2m� 2p)�+ 3mp = 0;

�3 � (n+ q + 1)�2 � 2(q + 1)�+ 2n(q + 1) = 0;

�4 � (n+ p� 2)�3 � (3n+ 3p� 1)�2 + 2(np� n� p)�+ 3np = 0:

Since each of the equations above has exactly two positive roots, the statement is
proved.�

2. Main results

Theorem 1. Graph G is double 1-positive if and only if G or �G is the graph

P ( �Km;Kn) (m � 2; n � 1).

Proof . As it is known, at least one of the graphs G and �G must be connected.
Without loss of generality, we can assume that G is a connected graph, since in the
opposite case the proof is quite similar. Also it is known that complete multipartite
graphs Kn1;... ;ns are the only connected 1-positive graphs ([5]). The proof is now
an easy consequence of the relation �Kn1;... ;ns = Kn1 u � � �uKns and the fact that
Kn1 u � � � uKns is a 1-positive graph if and only if exactly one of the parameters
n1; . . . ; ns is greater than 1.�

Theorem 2. Graph G is double 2-positive if and only if G or �G is one of

the following 18 (families of ) graphs :

1Æ Q(Km;Kn;Kp;Kq ;K1) (m;n; p; q � 1);

2Æ P (K1;Km;Kn;Kp;K1)uKq (m;n; p � 1; q � 0);

3Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0);

4Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0);

5Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0);
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6Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; mnpq +m+ n+ p+ q

� mnp+ npq +mp+mq + nq + 1)

7Æ P (KmKn; Kp;Kq)uKr (m;n; p; q � 1; r � 0; mpq +m+ p

� 2mp+mq + pq);

8Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; mqr � mq +mr + qr);

9Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; nqr + 1

� 2nr + qr + n+ q);

10Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; mnqr +m+ r

� mnr +mn+mq + nr + qr);

11Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; npqr + npq + p+ q + r

� npr + pqr + np+ nq + nr + 2pq);

12Æ P (Km;Kn;Kp;Kq)uKr (m;n; p; q � 1; r � 0; mnpqr +mnpq +m+ n

+ p+ q + r � mnq +mnr +mpq

+ npr + pqr +mn+ np+ pq + 1);

13Æ P (Km;Kn;Kp)uKq (m;n; q � 1; p � 2);

14Æ P (Km;Kn;Kp)uKq (m;n; q � 1; p � 2);

15Æ P (Km;Kn;Kp)uKq (m;n; q � 1; p � 2);

16Æ P (Km;Kn;Kp)uKq (m;n; q � 1; p � 2);

17Æ P (Km;Kn)uKpuKq (m; p � 2; n � 1; q � 0);

18Æ P (Km;Kn)uKpuKq (m; p � 2; n � 1; q � 0):

Proof . Let G or G be one of the graphs 1Æ{12Æ with corresponding values of
the respective parameters. Then, with regard to Lemmas 2, 3, 4 and 5, we have
n+(G) = n+(G) = 2. For instance, if G = Q(Km;Kn;Kp;Kq;K1) (m;n; p; q � 1),

then G = Q(Kp;Km;Kq;Kn;K1) and n+(G) = n+(Q(K1;K1;Kn;Kp;K1)) = 2,

n+(G) = n+(Q(K1;K1;Km;Kq ;K1)) = 2.

Now, let G or G be one of the graphs 13Æ{16Æ. Canonical graphs of these
graphs are of the type P (Km;Kn;Kp)uK1 and canonical graphs of their comple-
mentary graphs are of the type P (Km;Kn;Kp) (p � 2). Since, P (Km;Kn;Kp) �
P (Km;Kn;Kp)uK1 � P (Km;Kn;Kp;K1)uK1 and n

+(P (Km;Kn;Kp;K1)) = 2,

we have by Lemma 2 that n+(G) = n+(G) = 2.

Next, let G or G be one of the graphs 17Æ{18Æ. Canonical graphs of these
graphs are of the type Kn u Kp u K1 (n; p � 2) and canonical graphs of their
complementary graphs are of the type P (Km;Kn;Kp) (m � 2). Since n+(Kn u

KpuK1) = 2 and n+(P (Km;Kn;Kp)) = 2, we conclude by Lemma 2 that n+(G) =

n+(G) = 2.

This completes one part of the proof.

Now, assume that G is a double 2-positive graph. As it is known, at least
one of the graphs G and G must be connected. Without loss of generality, we can
assume that G is a connected graph, since the proof is quite similar otherwise.

Next, note that there is exactly one graph with 5 vertices and exactly 56
graphs with 6 vertices such that they or their complementary graphs are 3-positive



44 Petrovi�c

graphs. 27 such graphs with at most 7 edges are depicted in Fig. 3. The mentioned
27 graphs suÆce for our purposes. By the Interlacing theorem, any of the graphs
G and G does not contain any of the above 57 graphs as an induced subgraph.

Since G is connected and is not a complete multipartite graph, by Lemma 1
it contains one of the graphs H1, H2 from Fig. 1 as an induced subgraph. We
distinguish the following two cases:

(A) G contains the graph H1 as an induced subgraph;

(B) G contains the graphH2 and does not contain the graphH1 as an induced
subgraph.

Note that both graphsH1 and H2 are labelled, and the vertex set is f1; 2; 3; 4g
in both cases.

Fig. 3

Case A. Denote by Ti1...ik (1 � i1 < . . . < ik � 4; 1 � k � 4) the set of all
vertices in V (G) n V (H1) which are adjacent exactly to the vertices i1; . . . ; ik of
the graph H1. Next, let T0 be the set of all vertices in V (G) n V (H1) which are
nonadjacent to any vertex of the graph H1.
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The set T14 is empty (in the opposite case, we would have the contradiction
G1 � G1). The set T0 is also empty (G7 � G or G8 � G or G14 � G or G16 � G

or G17 � G or G23 � G or G26 � G or G19 � G).

Table 1

The adjacency relations between the sets T1, T2, T3, T4, T12, T13, T23, T24,
T34, T123, T124, T134, T234 and T1234 in G are obtained by direct checking. They
are presented in Table 1. The fact that corresponding sets are completely adjacent,
completely nonadjacent or noncoexistent is denoted by the symbols 1, 0 and ?,
respectively. For example, we have that the sets T1 and T12 are completely adjacent
(G14 � G), while the sets T1 and T4 are noncoexistent, i.e. they cannot be nonempty
at same time in the graph G (G8 � G or G12 � G).

In the same table adjacency relations in each of the mentioned sets are pre-
sented. So, we have that the graphs induced by the sets T1, T2, T3, T4, T13, T23,
T24, T124 and T134 have no edges whereas the graphs induced by the sets T12, T34,
T123, T234 and T1234 are complete. Besides, each of the sets T1, T4, T23, T124 and
T134 has at most one vertex, which is indicated by the symbol 01.

From Table 1 we conclude that the sets T2 and T12 are noncoexistent, and
that 1 �1 T2 and 1 �2 T12. Also, the sets T3 and T34, T13 and T123, T24 and T234

1We shall often simply say \G1 � G".
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are noncoexistent, and we have 4 �1 T3, 4 �2 T34, 2 �1 T13, 2 �2 T123, 3 �1 T24 and
3 �2 T234.

Now, taking into account symmetry and excluding isomorphic graphs, we
distinguish the following subcases:

(A.1) T1 6= ?;

(A.2) T23 6= ?;

(A.3) T124 6= ?;

(A.4) T1 = T4 = T23 = T124 = T134 = ?.

Ad (A.1). In this case the set of vertices V (G) is a subset of the set V (H1)[
T1 [ T12 [ T13 [ T234. Hence, the graph G is of the type P (K1;Km;Kn;Kp;K1),

and the graph G is of the type P (K1;Km;Kn;Kp;K1).

The canonical graph of the graph G is of the type P (K1;Km;K1;Kp;K1),

while the canonical graph of the graph G is of the type P (K1;K1;Kn;K1;K1). By
Lemmas 2 and 5 we conclude that n+(G) = n+(G) = 2. Thus, the graph G is of
the type 2Æ (with q = 0).

Ad (A.2). In this case the set of vertices V (G) is a subset of the set
V (H1)[T2[T3[T23[T123[T234, so that G is of the type Q(Km;Kn;Kp;Kq ;K1).

Consequently, the graph G is of the type Q(Kn;Kq;Km;Kp;K1).

The canonical graphs of the graphs G and G are respectively of types
Q(K1;Kn;Kp;K1;K1) and Q(K1;Kq;Km;K1;K1). By Lemmas 2 and 5 we get

n+(G) = n+(G) = 2, which means that G is of the type 1Æ.

Ad (A.3). In this case the set of vertices V (G) is a subset of the
set V (H1) [ T3 [ T12 [ T24 [ T124 [ T1234. Consequently, the graph G is

of the type P (K1;Km;Kn;Kp;K1)uKq and the graph G is of the type

P (K1;Km;Kn;Kp;K1)uKq .

The canonical graphs of the graphs G and G are respectively of the types

P (K1;K1;Kn;K1;K1)uKq and P (K1;Km;K1;Kp;K1)uK1. By Lemmas 2 and

5 we have that n+(G) = n+(G) = 2, which means that G is of the type 2Æ.

Ad (A.4). In this case, by Table 1, we have that the set of vertices V (G) is
a subset of one of the following 10 sets: V (H1) [ T2 [ [T3 [ T13 [ T234 [ T1234,
V (H1)[T2[T24[T34[T123[T1234, V (H1)[T12[T13[T24[T34[T1234, V (H1)[
T2[T3[T13[T24[T1234, V (H1)[T2[T13[T24[T34[T1234, V (H1)[T2[T3[T123[
T234[T1234, V (H1)[T2[T13[T34[T234[T1234, V (H1)[T2[T34[T123[T234[T1234,
V (H1) [ T12 [ T13 [ T34 [ T234 [ T1234 and V (H1) [ T12 [ T34 [ T123 [ T234 [ T1234.

If V (G) is a subset of the set V (H1) [ T2 [ T3 [ T13 [ T234 [ T1234 then

the graph G is of the type P (Km;Kn;Kp;Kq)uKr and the graph G is of the

type P (Km;Kn;Kp;Kq) uKr. The canonical graphs of the graphs G and G are

respectively of types P (K1;K1;K1;Kq)uKr and P (Km;Kn;Kp;K1) u K1. By

Lemmas 2, 3 and 4, we conclude that n+(G) = n+(G) = 2, for all values of
parameters m;n; p; q � 1, r � 0. Hence, the graph G is of the type 3Æ.
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Similarly, we can show that in the remaining cases, the graph G is of the
type 4Æ{12Æ, where the parameters m;n; p; q � 1, r � 0, satisfy the corresponding
necessary conditions from Lemmas 3 and 4.

Case B. We distinguish the following three subcases:

(B.1) The graph G contains graph H4 from Fig. 4 as an induced subgraph;

(B.2) The graph G contains graph H5 and does not contain graph H4 from
Fig. 4 as an induced subgraph;

(B.3) The graph G does not contain graphs H4 and H5 from Fig. 4 as induced
subgraphs.

Fig. 4

Let us pay attention to the labelling of graphs H4, H5 from Fig. 4.

Ad (B.1). Let Ti1...ik and T0 have the same meanings as in case (A), but with
respect to the graph H4 from Fig. 4.

In this case we have T1 = T2 = T4 = T5 = T12 = T14 = T15 = T23 = T24 =
T25 = T35 = T45 = T124 = T125 = T134 = T145 = T234 = T245 = T345 = T1234 =
T1345 = T2345 = ? (H1 � G), T123 = T135 = ? (G11 � G), T1245 = ? (G5 � G)
and T0 = ? (G11 � G).

Adjacency relations between vertices of the sets T3, T13, T34, T235, T1235 and
T12345 in G are presented in Table 2. In the same table, adjacency relations in all of
the mentioned sets are also indicated. Graphs induced by the sets T3, T13 and T235
have no edges, while graphs induced by the sets T34, T1235 and T12345 are complete
graphs.

From this table we conclude that the sets T3 and T34 are noncoexistent, and
we have 4 �1 T3 and 4 �2 T34. The sets T235 and T1235 are also noncoexistent,
and we have 1 �1 T235 and 1 �2 T1235. Besides, we have 2 �1 T13, 5 �1 T13 and
3 �2 T12345.

Consequently, the set V (G) is a subset of one of the following 4 sets:
V (H4) [ T3 [ T13 [ T235 [ T12345, V (H4) [ T3 [ T13 [ T1235 [ T12345, V (H4) [
T13 [ T34 [ T235 [ T12345 and V (H4) [ T13 [ T34 [ T1235 [ T12345. It fol-

lows that G is one of the graphs P (Km;Kn;Kp)uKq , P (Km;Kn;Kp)uKq ,

P (Km;Kn;Kp)uKq and P (Km;Kn;Kp)uKq , where p � 2. Thus G is one

of the graphs P (Km;Kn;Kp) uKq , P (Km;Kn;Kp) uKq , P (Km;Kn;Kp) uKq
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Table 2

and P (Km;Kn;Kp) u Kq, respectively. The graphs from these classes have the

property n+(G) = n+(G) = 2 for all values of parameters m;n; q � 1, p � 2.

We conclude that in this case the graph G is one of the graphs 13Æ{16Æ.

Ad (B.2). Let Ti1...ik and T0 have the same meanings as in the case (A), but
with respect to the graph H5 from Fig. 4.

In this case we have T1 = T2 = T3 = T4 = T5 = T12 = T13 = T14 = T15 =
T23 = T24 = T25 = T34 = T45 = T123 = T125 = T134 = T145 = T234 = T245 =
T1345 = T2345 = ? (H1 � G), T135 = T235 = ? (G5 � G), T1234 = T1245 = ?

(G4 � G) and T0 = ? (H1 � G or G11 � G).

The adjacency relations in the sets T35, T124, T345, T1235 and T12345 and
between these sets in the graph G are presented in Table 3. In particular, graphs
induced by the sets T35 and T124 have no edges, while the graphs induced by the
sets T345, T1235 and T12345 are complete.

From this table we conclude that the sets T35 and T345 are noncoexistent, and
we have 4 �1 T35 and 4 �1 T345. We also �nd that 1 �2 T1235, 2 �2 T1235, 3 �1 T124
and 5 �1 T124.

Table 3

Hence, the set of vertices V (G) is a subset of one of the following 2 sets:
V (H5)[T35[T124[T1235[T12345, V (H5)[T124[T345[T1235[T12345. It follows thatG

is one of the graphs P (Km;Kn)uKp uKq and P (Km;Kn)uKp uKq (m; p � 2),
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and the graph G is one of the graphs P (Km;Kn) uKp uKq and P (Km;Kn) u

Kp uKq, respectively. The graphs from these classes have the property n+(G) =

n+(G) = 2 for all values of parameters m; p � 2, n � 1, q � 0.

We conclude that in this case graph G is one of the graphs 17Æ and 18Æ.

Ad (B.3). Let Ti1...ik and T0 have the same meanings as in the case (A), but
with respect to the graph H2 from Fig. 1.

Then we have T1 = T2 = T4 = T12 = T14 = T24 = T134 = T234 = ? (H1 � G),
T13 = T23 = ? (H4 � G), T124 = ? (H5 � G) and T0 = ? (H1 � G or G11 � G).

Adjacency relations in the sets T3, T34, T123 and T1234 of G and between these
sets are presented in Table 4. In particular, the graph induced by the set T3 has
no edges, while graphs induced by the sets T34, T123 and T1234 are complete.

Table 4

From Table 4 we conclude that the sets T3 and T34 are noncoexistent, and
we have 4 �1 T3 and 4 �2 T34. We also have 1 �2 T123, 2 �2 T123 and 3 �2
T1234. Consequently, the set V (G) is a subset of one of the following two sets:
V (H2) [ T3 [ T123 [ T1234 and V (H2) [ T34 [ T123 [ T1234. Hence, the graph G is
one of the types P (Km;Kn)uKp and P (Km;Kn)uKp, and the canonical graph

of G is of the type Kn uK1 (n � 2). Since n+(Kn uK1) = 1, we conclude that in
this case there is no double 2-positive graph.

This completes the proof.�
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