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A PROPERTY OF CANONICAL GRAPHS

Aleksandar Torga�sev

Abstract. A �nite connected graph is called canonical if no two of its vertices have the
same neighbours. In this paper we prove that in all but a sequence of exceptional cases, deleting
of a suitable chosen vertex in a canonical graph also gives a connected canonical graph. This
property can have applications in various hereditary problems in the spectral Theory of Graphs.

In this paper we consider only �nite connected graphs without loops or mul-
tiple edges. The vertex set of a graph G is denoted by V (G), and the number of its
vertices by jGj. Relation H � G will always mean that H is an induced subgraph
of a graph G. For any two vertices u, v of G, uv = 1 will mean that u is adjacent
to v, while uv = 0 will mean that u is nonadjacent to v.

The graph obtained by deleting a vertex x 2 V (G) from G is denoted by
G�x. It can be connected or disconnected. But, as is well known, there is at least
one vertex x 2 V (G) such that the corresponding graph G� x is also connected.

Next, we say that two vertices u; v 2 V (G) are equivalent in G and we denote
it by u � v if we have

(1) uv = 0 and ru = rv

for any vertex r 2 V (G)nfu; vg, thus if and only if u and v have the same neighbours
in G. Relation � is obviously an equivalence relation on the vertex set V (G). The
corresponding quotient graph is denoted by g and called the canonical graph of G.
This graph is also connected.

For instance, if G = Km1...mp
(p � 2) is a complete p-partite graph, then its

canonical graph is the complete graph Kp. The canonical graph of the complete
graph Kn is the same graph Kn.

We say that a graph G is canonical if jGj = jgj, i.e. if G has no two equivalent
vertices.
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If g is the canonical graph of G, jgj = k and N1; . . . ; Nk are the corresponding
sets of equivalent vertices in G, we denote

G = g(N1; . . . ; Nk):

We call N1; . . . ; Nk the characteristic sets of G. Obviously, each set Ni � V (G)
(i = 1; . . . ; k) consists only of isolated vertices, and if at least one edge between
the sets Ni and Nj (i 6= j) is present, then all possible edges between these sets are
also present. Therefore, it is very convenient to display the sets Ni (i = 1; . . . ; k)
by white (that is, empty) circles, and all possible edges between the sets Ni and Nj

(i 6= j) by only one edge between the corresponding circles. If, for example, G is
the complete bipartite graph with characteristic sets N1, N2, we can simply draw

G =
 


N1 N2

We note that many hereditary problems in the Spectral Theory of Graphs can be
reduced to �nding �rstly the corresponding sets of canonical graphs. Compare for
instance the papers [3], [4], [5], [6], [7], [8], [9], [10], [11], or the monograph [2],
where many results from these papers are presented. Therefore, the importance of
the following hereditary property of canonical graphs is clear.

Theorem. In all but a sequence of exceptional cases, each canonical graph G

with n vertices (n � 2) contains, as an induced subgraph, a connected and canonical

subgraph H on n� 1 vertices. The exceptional graphs are

where ajbi = 1 (i � j ; i; j = 1; . . . ;m ). We obviously have that T0 � T1
� T2 � . . . .

Proof . First, it is trivial to check that all graphs Tm (m � 0) are exceptional
graphs. Graphs G � a0 and G � b0 are disconnected, while for any m � 1 and
i = 0; . . . ;m� 1 we have

a0 � b1 (in G� a); b0 � am (in G� b),

a � a1 (in G� b1); b � bm (in G� am),

ai � ai+1 (in G� bi+1); bi � bi+1 (in G� ai).

Next, we consider any connected canonical graph G 6= Tm (m = 0; 1; 2; . . . ),
which is \bad" in the sense that deleting of any its vertex gives a disconnected or a
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noncanonical graph. We shall prove that this assumption in all possible cases gives
a contradiction, thus that such graphs really do not exist.

Firstly choose any vertex x of G such that the subgraph G� x is connected.
Then G � x is a noncanonical graph. Let G � x = f(M1; . . . ;Mk) (k � 1), where
M1; . . . ;Mk are the characteristic sets of G � x, f is the corresponding canonical
graph of G � x (also connected), and at least one of the sets M1; . . . ;Mk is not
a singleton. Obviously k � 2. Rearranging the vertices of f , we can assume that
jM1j � 2.

If jMij � 2 for some i 2 f1; . . . ; kg and if u; v 2 Mi (u 6= v), the fact that G
is a canonical graph implies that exactly one of u, v is adjacent to x. Therefore,
we immediately get

(2) jMij � 2 (i = 1; . . . ; k);

and consequently jM1j = 2. We assume that M1 = fy; zg, where xy = 1 and
xz = 0.

Now assume that some jMj j = 2 (j > 1), for instance that M2 = fc; dg,
where xc = 1 and xd = 0. Deleting then the vertex d from G we obviously get a
connected graph. It is also easily seen that G � d is a canonical graph, what is a
contradiction. Hence we must have

(3) jMj j = 1 (j = 2; . . . ; k):

Thus, except y and z, there is no other equivalent pair of vertices in G� x.

Denoting P = V (G) n fx; y; zg, we obviously have that P 6= ?.

Deleting the vertex z from G we evidently get a connected subgraph. Since
G is bad, we see that G � z is a noncanonical graph. Since for any two vertices
r; s 2 P we also have

r 6� s; r 6� y (in G� z);

we conclude that there is a vertex t 2 P such that

(4) x � t (in G� z).

Hence xt = 0, and we easily conclude that yt = zt = 1. Moreover, rx = rt and
ry = rz for any other vertex r 2 P n ftg.

Since G 6= xytz = T0, we have that jP j � 2. If jP j = 2, thus if P = ft; rg,
we necessarily have that rt = rx = ry = rz = 1 since f = try is a canonical
graph, whence we obviously get that G� r is a connected and canonical graph (a
contradiction). Hence, we can assume that jP j � 3. Now delete the vertex y of G.

1Æ Assume �rst that G� y is a disconnected graph.

Since f is a connected graph, it is easy to see that rx = 0 and consequently
rt = 0 for any vertex r 6= x; y; z; t.

Denote next the vertex t by p1 and the vertex z by q1.

Deleting now the vertex p1 from G, we obviously get a connected graphG�p1.
Since G is bad, G � p1 is a noncanonical graph. Discussing all the possible pairs
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of vertices in G � p1 as candidates for equivalent vertices, we conclude there is a
vertex q2 6= x; y; p1; q1 such that

(5) q1 � q2 (in G� p1).

Then q2x = q2y = q2p1 = q2q1 = 0, and rx = rp1 = 0, ry = rq1 = rq2 for any
vertex r 6= x; y; p1; q1; q2. Making use of the last relation, we easily conclude that
G� q2 is a connected, thus a noncanonical graph. Discussing now all the possible
pairs of vertices as candidates for two equivalent vertices in G � q2, we conclude
that there is a new vertex p2 6= x; y; p1; q1; q2 such that

(6) p1 � p2 (in G� q2).

Hence p2x = p2p1 = 0, p2y = p2q1 = p2q2 = 1, and rp2 = 0 for any other vertex
r 6= x; y; p1; q1; p2; q2.

Now, delete the vertex p2 from G. If G�p2 is disconnected, we conclude that
G = xyp1q1p2q2 = T1, which contradicts the assumption G 6= Tm (m = 0; 1; 2; . . . ).
Thus, G � p2 must be a connected (and hence a noncanonical) graph. Therefore,
we conclude that there is a new vertex q3 such that

(7) q2 � q3 (in G� p2).

Then q3x = q3y = q3p1 = q3q1 = q3p2 = q3q2 = 0, and rx = rp1 = rp2 = 0,
ry = rq1 = rq2 = rq3 for any other vertex r 6= x; y; p1; q1; p2; q2; q3. Deleting now
the vertex q3 from G, we conclude that G�q3 is a connected (thus a noncanonical)
graph. Discussing all the possible pairs of vertices in G � q3 as candidates for a
pair of equivalent vertices, we conclude that there is a new vertex p3 such that

(8) p2 � p3 (in G� q3).

Then p3x = p3p1 = p3p2 = 0, p3y = p3q1 = p3q2 = p3q3 = 1 and rp3 = 0 for any
other vertex r 6= x; y; p1; q1; p2; q2; p3; q3. Assuming that G � p3 is a disconnected
graph, we get the contradiction G = xyp1q1p2q2p3q3 = T2. Hence, G � p3 is a
connected (thus a noncanonical) graph. Continuing this procedure, after �nitely
many steps, we conclude that there is a positive integer m such that

G = xyp1q1 . . . pm+1qm+1 = Tm;

which is a contradiction again.

Hence, the case when G� y is a disconnected graph is contradictory.

2Æ Now assume that G� y is a connected (noncanonical) graph.

Since G 6= T0, there is at least one vertex r 6= x; y; z; t and we have rx = rt,
ry = rz for any such a vertex r. Since G � y is a connected noncanonical graph,
we may conclude that there is a new vertex x1 6= x; y; z; t such that

(9) x � x1 (in G� y).

Then x1x = x1y = x1z = x1t = 0 and rx = rt = rx1, ry = rz for any vertex
r 6= x; y; z; t; x1.
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Since G is a connected graph, we see that there is at least one vertex r 6=
x; y; z; t; x1. By rx = rt = rx1 for any such r, we may conclude that G � x1 is a
connected (thus a noncanonical) graph. Hence, one may conclude that there is a
new vertex y1 6= x; y; z; t; x1 such that

(10) y1 � y (in G� x1).

Therefore, we easily get y1x = y1t = y1x1 = 1, y1y = y1z = 0, and rx = rt = rx1,
ry = rz = ry1 for any other vertex r 6= x; y; z; t; x1; y1.

Now we delete the vertex y1 from G. If G � y1 is a disconnected graph, we
can put x1 = x0, y1 = y0, y = z0, x = t0, to get a contradiction, exactly as it
has been done in the case 1Æ. Hence, we can assume that G � y1 is a connected
(thus a noncanonical) graph. Now, one can see that there must exist a new vertex
x2 6= x; y; z; t; x1; y1 of G such that

(11) x2 � x1 (in G� y1).

Then x2x = x2y = x2z = x2t = x2x1 = x2y1 = 0, and rx = rt = rx1 = rx2,
ry = rz = ry1 for any vertex r 6= x; y; z; t; x1; y1; x2. Therefore, we easily conclude
that G � x2 is a connected (hence a noncanonical) graph. Moreover, one can
conclude that, as the only possible case, there is a new vertex y2 6= x; y; z; t; x1; y1; x2
such that

(12) y2 � y1 (in G� x2).

Then y2x = y2t = y2x1 = y2x2 = 1, y2y = y2z = y2y1 = 0, and rx = rt = rx1 =
rx2, ry = rz = ry1 = ry2 for any vertex r 6= x; y; z; t; x1; y1; x2; y2.

Continuing this procedure, we conclude that there is a positive integerm such
that

G = xytzx1y1x2y2 . . .xmym = Tm;

which is again a contradiction.

This proves that case 2Æ is also impossible, hence our theorem is completely
proved.
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