AN IDENTITY FOR THE INDEPENDENCE POLYNOMIALS OF TREES

Ivan Gutman

Abstract

The independence polynomial $\omega(G)$ of a graph G is a polynomial whose k-th coefficient is the number of selections of k independent vertices in G. The main result of the paper is the identity: $$
\omega(T-u) \omega(T-v)-\omega(T) \omega(T-u-v)=-(-x)^{d(u, v)} \omega(T-P) \omega(T-[P])
$$ where u and v are distinct vertices of a tree $T, d(u, v)$ is the distance between them and P is the path connecting them; the subgraphs $T-P$ and $T-[P]$ are obtained by deleting from T the vertices of P and the vertices of P together with their first neighbors. A conjecture of Merrifield and Simmons is proved with the help of this identity, which is also compared to some previously known analogous results.

The independence polynomial of a graph G is defined by:

$$
\begin{equation*}
\omega(G)=\omega(G, x)=\sum_{k=0}^{|G|} n(G, k) x^{k} \tag{1}
\end{equation*}
$$

where $n(G, 0)=1, n(G, 1)=|G|$ is the number of vertices of G, whereas, for $k \geq 2, n(G, k)$ is equal to the number of ways in which k independent vertices can be selected in G. The basic properties of the independence polynomial were determined in [3]. Here we need the following two properties:
1° If v is a vertex of G, then

$$
\begin{equation*}
\omega(G)=\omega(G-v)+x \omega(G-[v]) \tag{2}
\end{equation*}
$$

where $G-v$ is the subgraph obtained by deleting v from G, whereas $G-[v]$ is the subgraph obtained by deleting from G both v and the vertices adjacent to it.
2° If $G_{1} \cup G_{2}$ denotes a graph composed of disjoint graphs G_{1} and G_{2}, then

$$
\begin{equation*}
\omega\left(G_{1} \cup G_{2}\right)=\omega\left(G_{1}\right) \omega\left(G_{2}\right) \tag{3}
\end{equation*}
$$

Let $G-H$ and $G-[H]$ be the graphs obtained from G by deleting respectively the vertices of a subgraph H and the vertices of H together with their first neighbors.

The main result of this paper is the following theorem:
Theorem 1. Let T be a tree and u and v distinct vertices of it. Let P be the (unique) path connecting u and v. Then the following identity holds:

$$
\begin{equation*}
\omega(T-u) \omega(T-v)-\omega(T) \omega(T-u-v)=-(-x)^{d(u, v)} \omega(T-P) \omega(T-[P]) \tag{4}
\end{equation*}
$$

where $d(u, v)$ is the distance between u and v.
Instead of Theorem 1, we prove a somewhat more general theorem; namely, Theorem 2. To do this, we need some preparations.

An auxiliary class of graphs

Denote by P_{n} the path with n vertices, $n \geq 2$. Label the vertices of P_{n} by $v_{1}, v_{2}, \ldots, v_{n}$ so that v_{i} and v_{i+1} are adjacent, $i=1, \ldots, n-1$. Let $R_{1}, R_{2}, \ldots, R_{n}$ be n distinct rooted graphs with mutually disjoint vertex sets. Then the compound graph $P_{n}(1, n)$ is obtained by identifying the root r_{i} of R_{i} with the vertex v_{i} of P_{n}; we do this simultaneously for $i=1,2, \ldots, n$ (see Fig. 1).

Fig. 1

The vertices v_{1} and v_{n} of $P_{n}(1, n)$ are connected by a unique path, namely, P_{n}. As a matter of fact, every tree with a diameter not smaller than $n-1$ can be viewed as a special case of the graph $P_{n}(1, n)$. Then any two vertices of a tree, whose distance is $n-1$, can be considered as the vertices v_{1} and v_{n} of an appropriately chosen graph $P_{n}(1, n)$. Bearing this in mind, it is evident that Theorem 1 is a special case of the following theorem:

Theorem 2. It $n \geq 2$, then:

$$
\begin{align*}
& \omega\left(P_{n}(1, n)-v_{1}\right) \omega\left(P_{n}(1, n)-v_{n}\right)-\omega\left(P_{n}(1, n)\right) \omega\left(P_{n}(1, n)-v_{1}-v_{n}\right) \\
& =(-x)^{n} \prod_{i=1}^{n} \omega\left(R_{i}-r_{i}\right) \omega\left(R_{i}-\left[r_{i}\right]\right) \tag{5}
\end{align*}
$$

Note that because of (3)

$$
\prod_{i=1}^{n} \omega\left(R_{i}-r_{i}\right)=\omega\left(P_{n}(1, n)-P_{n}\right), \quad \prod_{i=1}^{n} \omega\left(R_{i}-\left[r_{i}\right]\right)=\omega\left(P_{n}(1, n)-\left[P_{n}\right]\right)
$$

In accordance with the notation just introduced, we have:

$$
\begin{align*}
P_{n}(1, n)-v_{1} & =P_{n-1}(2, n) \cup R_{1}-r_{1} \tag{6}\\
P_{n}(1, n)-v_{n} & =P_{n-1}(1, n-1) \cup R_{n}-r_{n} \tag{7}\\
P_{n}(1, n)-v_{1}-v_{n} & =P_{n-2}(2, n-1) \cup R_{1}-r_{1} \cup R_{n}-r_{n} . \tag{8}
\end{align*}
$$

Before proceeding with the proof of formula (5), we consider the special case when all the rooted graphs $R_{i}, i=1,2, \ldots, n$, are mutually isomorphic. Then, by applying (2) to the vertex v_{n} of $P_{n}(1, n)$, one arrives at the recurrence relation:

$$
\begin{equation*}
\omega\left(P_{n}(1, n)\right)=\omega(R-r) \omega\left(P_{n-1}(1, n-1)\right)+x \omega(R-r) \omega(R-[r]) \omega\left(P_{n-2}(1, n-2)\right) \tag{9}
\end{equation*}
$$

The solution of (9) reads:

$$
\begin{align*}
& \omega\left(P_{n}(1, n), x\right)=(2 B)^{-1}\left[(A+B)^{n+1}-(A-B)^{n+1}\right] \\
& \quad+x \omega(R-[r])(2 B)^{-1}\left[(A+B)^{n}-(A-B)^{n}\right] \tag{10}
\end{align*}
$$

where

$$
A=\frac{1}{2} \omega(R-r), \quad B=\left[x \omega(R-r) \omega(R-[r])+\frac{1}{4} \omega(R-[r])^{2}\right]^{1 / 2}
$$

A special case of formula (10) for $x=1$ and $R=P_{2}$ was reported previously in [5].

Proof of Theorem 2

We prove Theorem 2 by induction on the number of vertices of the path P_{n}.
For $n=2$ the validity of formula (5) is checked by direct application of the relations (2) and (3) to the vertices v_{1} and v_{2} of $P_{2}(1,2), P_{2}(1,2)-v_{1}$ and $P_{2}(1,2)-v_{2}$ and by noting that $P_{2}(1,2)-v_{1}-v_{2}=R_{1}-r_{1} \cup R_{2}-r_{2}$.

Suppose now that the identity (5) holds for $n=m$. By using this assumption, we have to deduce that formula (5) is satisfied also for $n=m+1$. Applying (2) and (3) to the vertex v_{m+1}, and having (6)-(8) in mind, we obtain:

$$
\begin{aligned}
& \omega\left(P_{m+1}(1, m+1)\right)=\omega\left(R_{m+1}-r_{m+1}\right) \omega\left(P_{m}(1, m)\right) \\
& \quad+x \omega\left(R_{m}-r_{m}\right) \omega\left(R_{m+1}-\left[r_{m+1}\right]\right) \omega\left(P_{m-1}(1, m-1)\right) \\
& \omega\left(P_{m+1}(1, m+1)-v_{1}\right)=\omega\left(R_{m+1}-r_{m+1}\right) \omega\left(P_{m}(1, m)-v_{1}\right) \\
& \quad+x \omega\left(R_{m}-r_{m}\right) \omega\left(R_{m+1}-\left[r_{m+1}\right]\right) \omega\left(P_{m-1}(1, m-1)-v_{1}\right)
\end{aligned}
$$

which together with:

$$
\begin{aligned}
\omega\left(P_{m+1}(1, m+1)-v_{m+1}\right) & =\omega\left(R_{m+1}-r_{m+1}\right) \omega\left(P_{m}(1, m)\right) \\
\omega\left(P_{m+1}(1, m+1)-v_{1}-v_{m+1}\right) & =\omega\left(R_{m+1}-r_{m+1}\right) \omega\left(P_{m}(1, m)-v_{1}\right)
\end{aligned}
$$

yields:

$$
\begin{align*}
& \omega\left(P_{m+1}(1, m+1)-v_{1}\right) \omega\left(P_{m+1}(1, m+1)-v_{m+1}\right) \\
& -\omega\left(P_{m+1}(1, m+1)\right) \omega\left(P_{m+1}(1, m+1)-v_{1}-v_{m+1}\right) \tag{11}\\
& =-x \omega\left(R_{m}-r_{m}\right) \omega\left(R_{m+1}-r_{m+1}\right) \omega\left(R_{m+1}-\left[r_{m+1}\right]\right) \times \\
& \left\{\omega\left(P_{m}(1, m)-v_{1}\right) \omega\left(P_{m-1}(1, m-1)\right)-\omega\left(P_{m}(1, m)\right) \omega\left(P_{m-1}(1, m-1)-v_{1}\right)\right\} .
\end{align*}
$$

Because of (6)-(8), the right-hand side of (11) is equal to:

$$
\begin{aligned}
& -x \omega\left(R_{m+1}-r_{m+1}\right) \omega\left(R_{m+1}-\left[r_{m+1}\right]\right) \times \\
& \left\{\omega\left(P_{m}(1, m)-v_{1}\right) \omega\left(P_{m}(1, m)-v_{m}\right)-\omega\left(P_{m}(1, m)\right) \omega\left(P_{m}(1, m)-v_{1}-v_{m}\right)\right\}
\end{aligned}
$$

which by the induction hypothesis becomes:

$$
-x \omega\left(R_{m+1}-r_{m+1}\right) \omega\left(R_{m+1}-\left[r_{m+1}\right]\right)\left[(-x)^{m} \prod_{i=1}^{m} \omega\left(R_{i}-r_{i}\right) \omega\left(R_{i}-\left[r_{i}\right]\right)\right]
$$

Thence, (11) is transformed into the form:

$$
\begin{aligned}
& \omega\left(P_{m+1}(1, m+1)-v_{1}\right) \omega\left(P_{m+1}(1, m+1)-v_{m+1}\right) \\
& -\omega\left(P_{m+1}(1, m+1)\right) \omega\left(P_{m+1}(1, m+1)-v_{1}-v_{m+1}\right) \\
& =(-x)^{m+1} \prod_{i=1}^{m+1} \omega\left(R_{i}-r_{i}\right) \omega\left(R_{i}-\left[r_{i}\right]\right)
\end{aligned}
$$

which is sufficient for the proof of Theorem 2.

Discussion

Identities having forms similar to (4) are known for some other graph polynomials ([1], [2]). It is especially worth mentioning the following two from [1]:

$$
\begin{aligned}
& \phi(G-u) \phi(G-v)-\phi(G) \phi(G-u-v)=\left[\sum_{P} \phi(G-P)\right]^{2} \\
& \alpha(G-u) \alpha(G-v)-\alpha(G) \alpha(G-u-v)=\sum_{P}[\alpha(G-P)]^{2}
\end{aligned}
$$

where ϕ and α stand respectively for the characteristic and the matching polynomial. In the expressions above, G denotes an arbitrary graph and the summations go over all paths P connecting the vertices u and v. These formulas lead to an obvious generalization of (4), namely:

$$
\begin{equation*}
\omega(G-u) \omega(G-v)-\omega(G) \omega(G-u-v)=\sum_{P}(-x)^{|P|} \omega(G-P) \omega(G-[P]) \tag{12}
\end{equation*}
$$

Unfortunately, (12) turns out to be false already for unicyclic graphs. At this time, we are unable to propose an extension of identity (4) for cyclic graphs, even as a conjecture. So, we leave this problem for the future.

For $x=1$, the independence polynomial (1) becomes equal to the number of independent-vertex sets of G. This quantity, denoted by $\sigma(G)$, was extensively studied in connection with certain topological problems of chemistry [4]. On page 144 of [4], a property of $\sigma(G)$ is stated without proof, which for nonadjacent vertices u and v can be formulated as follows:

$$
\sigma(G-u) \sigma(G-v)-\sigma(G) \sigma(G-u-v) \begin{cases}>0, & \text { if } d(u, v) \text { is odd } \\ <0, & \text { if } d(u, v) \text { is even. }\end{cases}
$$

Our Theorem 1 shows that this assertion is true at least for all trees.

REFERENCES

[1] D. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.
[2] I. Gutman, Some relations for the graphic polynomials, Publ. Inst. Math. (Beograd) 39 (1986), 55-62.
[3] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Math. 24 (1983), 97-106.
[4] R. E. Merrifield, H. E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[5] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982), 16-21.

