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AN IDENTITY FOR THE INDEPENDENCE

POLYNOMIALS OF TREES

Ivan Gutman

Abstract. The independence polynomial !(G) of a graph G is a polynomial whose k-th
coeÆcient is the number of selections of k independent vertices in G. The main result of the paper
is the identity:

!(T � u)!(T � v) � !(T )!(T � u� v) = �(�x)d(u;v)!(T � P )!(T � [P ])

where u and v are distinct vertices of a tree T , d(u; v) is the distance between them and P is the
path connecting them; the subgraphs T � P and T � [P ] are obtained by deleting from T the
vertices of P and the vertices of P together with their �rst neighbors. A conjecture of Merri�eld
and Simmons is proved with the help of this identity, which is also compared to some previously
known analogous results.

The independence polynomial of a graph G is de�ned by:

!(G) = !(G; x) =

jGjX
k=0

n(G; k)xk (1)

where n(G; 0) = 1, n(G; 1) = jGj is the number of vertices of G, whereas, for
k � 2, n(G; k) is equal to the number of ways in which k independent vertices
can be selected in G. The basic properties of the independence polynomial were
determined in [3]. Here we need the following two properties:

1Æ If v is a vertex of G, then

!(G) = !(G� v) + x!(G� [v]) (2)

where G� v is the subgraph obtained by deleting v from G, whereas G� [v] is the
subgraph obtained by deleting from G both v and the vertices adjacent to it.

2Æ If G1 [G2 denotes a graph composed of disjoint graphs G1 and G2, then

!(G1 [G2) = !(G1)!(G2): (3)
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Let G �H and G � [H ] be the graphs obtained from G by deleting respec-
tively the vertices of a subgraph H and the vertices of H together with their �rst
neighbors.

The main result of this paper is the following theorem:

Theorem 1. Let T be a tree and u and v distinct vertices of it. Let P be the

(unique ) path connecting u and v. Then the following identity holds :

!(T � u)!(T � v)� !(T )!(T � u� v) = �(�x)d(u;v)!(T � P )!(T � [P ]) (4)

where d(u; v) is the distance between u and v.

Instead of Theorem 1, we prove a somewhat more general theorem; namely,
Theorem 2. To do this, we need some preparations.

An auxiliary class of graphs

Denote by Pn the path with n vertices, n � 2. Label the vertices of Pn by
v1; v2; . . . ; vn so that vi and vi+1 are adjacent, i = 1; . . . ; n�1. Let R1; R2; . . . ; Rn

be n distinct rooted graphs with mutually disjoint vertex sets. Then the compound
graph Pn(1; n) is obtained by identifying the root ri of Ri with the vertex vi of Pn;
we do this simultaneously for i = 1; 2; . . . ; n (see Fig. 1).

Fig. 1

The vertices v1 and vn of Pn(1; n) are connected by a unique path, namely,
Pn. As a matter of fact, every tree with a diameter not smaller than n� 1 can be
viewed as a special case of the graph Pn(1; n). Then any two vertices of a tree, whose
distance is n � 1, can be considered as the vertices v1 and vn of an appropriately
chosen graph Pn(1; n). Bearing this in mind, it is evident that Theorem 1 is a
special case of the following theorem:

Theorem 2. It n � 2, then:

!(Pn(1; n)� v1)!(Pn(1; n)� vn)� !(Pn(1; n))!(Pn(1; n)� v1 � vn)

= (�x)n
nY
i=1

!(Ri � ri)!(Ri � [ri]): (5)
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Note that because of (3)

nY
i=1

!(Ri � ri) = !(Pn(1; n)� Pn);

nY
i=1

!(Ri � [ri]) = !(Pn(1; n)� [Pn]):

In accordance with the notation just introduced, we have:

Pn(1; n)� v1 = Pn�1(2; n) [ R1 � r1 (6)

Pn(1; n)� vn = Pn�1(1; n� 1) [ Rn � rn (7)

Pn(1; n)� v1 � vn = Pn�2(2; n� 1) [ R1 � r1 [ Rn � rn: (8)

Before proceeding with the proof of formula (5), we consider the special case
when all the rooted graphs Ri, i = 1; 2; . . . ; n, are mutually isomorphic. Then, by
applying (2) to the vertex vn of Pn(1; n), one arrives at the recurrence relation:

!(Pn(1; n)) = !(R�r)!(Pn�1(1; n�1))+x!(R�r)!(R�[r])!(Pn�2(1; n�2)): (9)

The solution of (9) reads:

!(Pn(1; n); x) = (2B)�1[(A+B)n+1 � (A�B)n+1]

+ x!(R � [r])(2B)�1[(A+B)n � (A�B)n] (10)

where

A =
1

2
!(R� r); B =

�
x!(R � r)!(R � [r]) +

1

4
!(R� [r])2

�1=2
:

A special case of formula (10) for x = 1 and R = P2 was reported previously
in [5].

Proof of Theorem 2

We prove Theorem 2 by induction on the number of vertices of the path Pn.

For n = 2 the validity of formula (5) is checked by direct application of
the relations (2) and (3) to the vertices v1 and v2 of P2(1; 2), P2(1; 2) � v1 and
P2(1; 2)� v2 and by noting that P2(1; 2)� v1 � v2 = R1 � r1 [ R2 � r2.

Suppose now that the identity (5) holds for n = m. By using this assumption,
we have to deduce that formula (5) is satis�ed also for n = m + 1. Applying (2)
and (3) to the vertex vm+1, and having (6){(8) in mind, we obtain:

!(Pm+1(1;m+ 1)) = !(Rm+1 � rm+1)!(Pm(1;m))

+ x!(Rm � rm)!(Rm+1 � [rm+1])!(Pm�1(1;m� 1));

!(Pm+1(1;m+ 1)� v1) = !(Rm+1 � rm+1)!(Pm(1;m)� v1)

+ x!(Rm � rm)!(Rm+1 � [rm+1])!(Pm�1(1;m� 1)� v1)
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which together with:

!(Pm+1(1;m+ 1)� vm+1) = !(Rm+1 � rm+1)!(Pm(1;m));

!(Pm+1(1;m+ 1)� v1 � vm+1) = !(Rm+1 � rm+1)!(Pm(1;m)� v1)

yields:

!(Pm+1(1;m+ 1)� v1)!(Pm+1(1;m+ 1)� vm+1)

� !(Pm+1(1;m+ 1))!(Pm+1(1;m+ 1)� v1 � vm+1) (11)

= �x!(Rm � rm)!(Rm+1 � rm+1)!(Rm+1 � [rm+1])��
!(Pm(1;m)� v1)!(Pm�1(1;m� 1))� !(Pm(1;m))!(Pm�1(1;m� 1)� v1)

	
:

Because of (6){(8), the right-hand side of (11) is equal to:

� x!(Rm+1 � rm+1)!(Rm+1 � [rm+1])��
!(Pm(1;m)� v1)!(Pm(1;m)� vm)� !(Pm(1;m))!(Pm(1;m)� v1 � vm)

	
which by the induction hypothesis becomes:

�x!(Rm+1 � rm+1)!(Rm+1 � [rm+1])

�
(�x)m

mY
i=1

!(Ri � ri)!(Ri � [ri])

�
:

Thence, (11) is transformed into the form:

!(Pm+1(1;m+ 1)� v1)!(Pm+1(1;m+ 1)� vm+1)

� !(Pm+1(1;m+ 1))!(Pm+1(1;m+ 1)� v1 � vm+1)

= (�x)m+1
m+1Y
i=1

!(Ri � ri)!(Ri � [ri])

which is suÆcient for the proof of Theorem 2.�

Discussion

Identities having forms similar to (4) are known for some other graph poly-
nomials ([1], [2]). It is especially worth mentioning the following two from [1]:

�(G� u)�(G � v)� �(G)�(G � u� v) =

�X
P

�(G � P )

�2

�(G� u)�(G� v)� �(G)�(G � u� v) =
X
P

�
�(G� P )

�2

where � and � stand respectively for the characteristic and the matching polyno-
mial. In the expressions above, G denotes an arbitrary graph and the summations
go over all paths P connecting the vertices u and v. These formulas lead to an
obvious generalization of (4), namely:

!(G� u)!(G� v)� !(G)!(G� u� v) =
X
P

(�x)jP j!(G� P )!(G� [P ]): (12)
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Unfortunately, (12) turns out to be false already for unicyclic graphs. At this time,
we are unable to propose an extension of identity (4) for cyclic graphs, even as a
conjecture. So, we leave this problem for the future.

For x = 1, the independence polynomial (1) becomes equal to the number
of independent-vertex sets of G. This quantity, denoted by �(G), was extensively
studied in connection with certain topological problems of chemistry [4]. On page
144 of [4], a property of �(G) is stated without proof, which for nonadjacent vertices
u and v can be formulated as follows:

�(G � u)�(G� v)� �(G)�(G � u� v)

�
> 0; if d(u; v) is odd,

< 0; if d(u; v) is even.

Our Theorem 1 shows that this assertion is true at least for all trees.
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