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DEFINABLE ULTRAPOWERS

AND THE OMITTING TYPES THEOREM

�Zarko Mijajlovi�c

Abstract. A proof on the existence of elementary end extensions of certain countable
linearly ordered models using de�nable ultrapowers is given. In the same style the proof of
Keisler's two cardinal theorem is presented.

1. Introduction. One of the principal tools in constructing models with
speci�c properties in model theory is the omitting types theorem. The aim of this
paper is to show that in particular cases the use of this theorem can be avoided,
or as one said \it is possible to omit the use of the omitting types theorem". The
theorems in question mainly say something about the existence of elementary end
extensions of some types of countable models. This will include also applications to
other branches of model theory, as in the proof of Keisler's two cardinal theorem.
The technique we shall use are Skolem functions and de�nable ultrapowers.

We shall assume the usual terminology and notation in model theory, as in
[1] for example. We shall work with a countable �rst-order predicate logic L with
identity. Models will be denoted by A, B, C, . . . and their domains by A;B;C; . . .
respectively. The symbols A � B, A � B mean that A is elementary equivalent to
B, and A is an elementary submodel of B. Now we shall review some properties of
de�nable subsets of a model.

Let A be a model of a �rst order language L, D the set of all de�nable subsets
of A with parameters in A, F the set of all de�nable functions of A in one variable
with parameters in A. Then

(1) D is a Boolean algebra under the usual set theoretical operations.

(2) The identity function of A belongs to F .

(3) F is closed under the substitution, i.e. if f : An ! A is de�nable in A, and
g1; . . . ; gn 2 F , then h de�ned by h(i) = h(g1(i); . . . ; gn(i)) belongs to F .
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(4) D is closed under the substitution i.e. if '(y1; . . . ; yn) is a formula of L and
f1; . . . ; fn 2 F , then X = fi 2 Aj A j= '(f1(i); . . . ; fn(i))g belongs to F .

(5) F is a domain of a submodel of the power AA.

For example, in order to prove (4), let �i de�ne fi in A. Then

i 2 X i� A j= 9y1 . . . yn('(~y) ^ �1(i; y1) ^ . . . ^ �n(i; yn)):

Thus X 2 D. Statement (5) is an immediate consequence of (4), while the other
properties are proved in a similar way. These properties of de�nable subsets we
will use in the following often and without explicit mention.

2. De�nable ultrapowers. In this part we shall review Skolem ultrapower
construction with de�nable functions over a countable model, and we shall see that
in certain circumstances  Lo�s theorem holds. An appropriate choice of an ultra�lter
will enable us to omit a particular type, too. In the following we shall use the usual
notions connected with the ultrapower construction. For example, if F is a set of
functions with a domain M, and U is an ultra�lter of a Boolean algebra of subsets
of M, then we can introduce an equivalence relation on F de�ned by f � g i� f = g
mod U i.e. fi 2 M j f(i) = g(i)g 2 U . In this case, if f 2 F then fU denotes the
class of equivalence of f , while F=U is the set of all equivalence classes. If M is
a domain of a model M of a language L and if F is a domain of the submodel of
the power MM , then the same letter shall denote this model. In this case F=U
is a domain of a model de�ned in the usual way, and this model we shall denote
also by F=U . Finally, it is said that a model M has built in Skolem functions if its
complete theory has built in Skolem functions.

Theorem 2.1. Let A be a model of a language L with built in Skolem func-
tions, D the Boolean algebra of de�nable subsets of A with parameters, F the set of
all de�nable functions of A with parameters in A, and U an ultra�lter of D. Then
F=U is a model of L and it satis�es  Lo�s theorem i.e.

For all formulas  of L and ~f 2 F

F=U j= '[f1U ; . . . ; fnU ] i� fi 2 Aj A j= '[f1(i); . . . ; fn(i)]g 2 X

Proof . The proof is by induction on the complexity of formulas as in the
original form of  Lo�s theorem. We present here only the main step: the case of the
existential quanti�er. So let ' = 9x .

()) This part is obvious as the sets fi 2 Aj A j=  [g(i); f1(i); . . . ; fn(i)]g

and fi 2 Aj A j= '[f1(i); . . . ; fn(i)]g belong to D for de�nable g; ~f .

(() Let X = fi 2 Aj A j= '[f1(i); . . . ; fn(i)]g, and �i be formulas of L
which de�ne fi in A. By assumption, X 2 U , so let �X(y) be a formula which
de�nes X in A. Further

A j= 8y1 . . . yn8i(�X(i) ^ �1(i; y1) ^ . . . ^ �n(i; yn) ! 9x'(x; ~y)):
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Therefore, there is a Skolem function h(x; ~y) such that

A j= 8y1 . . . yn8i(�X(i) ^ �1(i; y1) ^ . . . ^ �n(i; yn) ! '(h(x; ~y); ~y)):

Taking g(i) = h(i; f1(i); . . . ; fn(i)) we have:

i 2 X implies A j=  [g(i); f1(i); . . . ; fn(i)]

and therefore, by the induction hypothesis, F=U j=  [g1U ; f1U ; . . . ; fnU ], hence
F=U j= '[f1U ; . . . ; fnU ]: }

3. De�nable ultrapowers of ordered structures. Now we shall consider
de�nable ultrapowers of a countable ordered model. It will appear that under some
assumptions on the model and the proper choice of an ultra�lter, the ultrapower is
an end extension of the model.

Lemma 3.1. Let M = (M;�; . . . ) be a linearly ordered model without the
greatest element, D the Boolean algebra of all de�nable subsets ofM with parameters
in M , and S = fg0; g1; . . . g a countable family of bounded de�nable functions in M
with parameters in M . If for all formulas of L

(R) M j= 8x � z9y'! 9u8x � z9y � u'

then there is an ultra�lter U of D such that

| For all g 2 S, g = const mod U .

| For all a 2M , (a;1) 2 U , where (a;1) = fx 2M j a < xg.

First we prove the following

Claim 3.2. If X 2 D is unbounded and f : M !M is de�nable and bounded,
then there is an unbounded Y � X, Y 2 D such that f jY = const.

Proof of Claim. There are two possibilities:

Case 1. There is an a 2M such that f�1[a]\X is unbounded. Then we can
take Y = f�1[a] \X .

Case 2. For all a 2M , f�1[a]\X is bounded. Thus, asX and f are de�nable,
we can write informally

M j= 8x � m9yf�1[x] \X � fv 2M j v � yg

where m 2 M is a bound of f . Since M satis�es the scheme (R) there is a u 2 M
such that

M j= 8x � m9y � uf�1[x] \X � fv 2M j v � yg:

Since X =
S
x�m(f�1[x] \ X) �

S
x�ufx 2 M j x � yg � fx 2 M j x � ug it

follows that X � fv 2 M j v � ug, and this contradicts the assumption that X is
unbounded. Thus, Case 2 is impossible, i.e. Claim holds.

Proof of Lemma. By the above claim we can construct a sequence of un-
bounded de�nable subsets of A such that

X0 � X1 � X2 � . . . and gijXi = const:
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Since Xi is unbounded, (a;1) \ Xi 6= ;. Therefore, the family fXij i 2 !g [
f(a;1)j a 2 Mg has the �nite intersection property, hence there is an ultra�lter
U of D containing all sets Xi and (a;1). }

Let M;D, and U be as in the previous lemma, and let F be the set of all
functions de�nable in M with parameters in M . Observe that the identity function
i : M ! M and â = haj i 2 Mi belong to F . Further, F=U is a model of the
language L, and it has the following additional properties:

(1) By  Lo�s theorem (Theorem 2.1), the mapping � : a 7! âU , a 2 M , is an
elementary embedding of M into F=U .

(2) For every a 2 M , â � i mod U since (a;1) 2 U . Thus iU 2 F=UnM , i.e.
F=U is a proper extension of M.

(3) If for f 2 F there is a b 2 M such that fU � b̂U , then there is a g 2 F such
that f = g mod U , and g(i) � b for all i � a. Hence g = const mod U .
Thus, there is an a 2M such that fU = â. Therefore, M is an initial segment
of F=U , i.e. F=U is an end extension of M.

The above consideration is summarized in the following

Corollary 3.3. Let M = (M;�; . . . ) be a countable, linearly ordered model
without the greatest element of a countable language L. If M has built in Skolem
functions and M satis�es

8x � z9y'! 9u8x � z9y � u';

where ' is a formula of L and u is a variable not occurring in ', then M has a
proper elementary end extension.

This corollary can be derived under weaker assumptions, i.e. it is not necessary
to assume that the model A has built in Skolem functions. Namely, as it is easily
seen, a linear ordering without the greatest element which satis�es scheme (R) is a
regular relation in the sense of [5], and according to the main theorem of [5] then
A has an elementary end extension. However, the theorem in [6] is proved by use
of a quite di�erent technique, i.e. using the omitting types theorem.

4. Applications. In all of the following examples the notion of k-like model
shall be used. A linearly ordered model A = (A;�; . . . ) is said to be k-like if jAj = k,
and each k 2 A has fewer than k predecessors in respect to �. If M is as in the
last corollary, then applying the corollary !1-times, we obtain an elementary chain
of countable models M0 �M1 � . . . �M� � . . . , � � !1, so that each member of
the chain is an elementary end extension of its predecessors. Then A =

S
�<!1

M�

is an !1-like model which is an end extension of M.

1. Peano arithmetic (PA). This theory has (almost) built-in Skolem functions,
further it satis�es the scheme (R) in respect to the natural ordering of models of
PA, therefore every countable model has a proper elementary end extension as well
as an !1-like end extension. This is a part of McDowell-Specker theorem which
holds without restrictions for arbitrary models of PA.
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2. Keisler's two cardinal theorem. This theorem is stated as follows:

Theorem (J. Keisler) Let A = (A; V; . . . ) be a model of a countable language
L such that @0 � jV j � jAj. Then there are models B = (B;W; . . . ) and C =
(C;W; . . . ) such that B � C and jBj = @0, jCj = @1.

According to the downward L�owenheim-Skolem theorem we may assume in
the proof of Keisler's theorem that jAj = k+ for some cardinal k. Let � be a
linear ordering of A of the order type k+, and let AS be the Skolem expansion of
model (A;�; V; . . . ), where V is an interpretation of the unary predicate symbol
P 2 L. Then AS has built in Skolem functions, and since k+ is a regular cardinal,
AS satis�es (R). By the downward L�owenheim-Skolem theorem there is a countable
B
S � AS . ThenBS has, obviously, built in Skolem functions as well, and it satis�es

(R). Also, W is bounded in BS since A j= 9x8y(P (x) ! y � x). By Corollary
3.3 and the above remark, there is an !1-like elementary end-extension CS of BS .
Then C = CS jL is the required model.

There are several proofs of this theorem in the literature. The proof which
uses the completeness theorem for !-logic [2], the omitting type theorem [1], Robin-
son's forcing [4], end extensions of regular relations [5], and the completeness theo-
rem of logic with the quanti�er \there exists uncountably many" [6]. However, all
these proofs use some form of the omitting types theorem. The proof presented in
this paper does not rely on this theorem, accordingly it may lead possibly to other
applications in model theory.

3. k-like models . A particular case of the following problem raised by
Mostowski and Furhken (see [3]) can be solved too. This problem is stated as:

Which pairs of cardinals k, � have the property that for every k-like model A
there exists a �-like model B which is elementarily equivalent to A?

From the above proof of Keisler's two cardinal theorem, it is obvious the
following: If k is an in�nite regular cardinal, and A is an ordered k-like model then
there is an !1-like model B elementarily equivalent to A.
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