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THE NEG.-PROPOSITIONAL CALCULUS

Milan Tasi�c

Abstract. Consistency and completeness are proved for an axiomatic system intended

to be a formalization of propositional contradictions.

By changing in the truth tables the values of the logical operations of con-
junction, disjunction and implication (but not of negation �), so as to obtain new
functions designated by ", �, and !, respectively:

" > ?

> ? >

? > >

� > ?

> ? ?

? ? >

! > ?

> ? >

? ? ?

and by taking an interest in formulas with the truth value ?, we may construct
an algebra of contradictions (identically false formulas) A = fh>;?i; "; �;!;�g,
which could serve as the principal model of a propositional calculus called neg.-

propositional calculus .

This formal system may be axiomatized with the following axiom-schemata:

1: (A! B)! A

2: ((A! B)! ((A! C)! B))! (C ! B)

3: A! �(A " A)

4: ((A " B)! �B)! �A

5a: �A! A " B

5b: �B ! A " B

6: ((�C ! A � B)! (B ! C))! (A! C)

7a: A � B ! �A

7b: A � B ! �B
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8: (�B ! (A! B))! (�A! B)

and the rule of inference

hIi
A! B; B

A

We use A;B;C; . . . ; A1; . . . , as schematic letters for formulas, and �;�1, as letters
for lists of formulas.

We can easily prove the following:

Lemma 1. (i) A ` A; (ii) if � ` A, then B;� ` A; (iii) if C;C;� ` A, then

C;� ` A; (iv) if �1; C;D;�2 ` A, then �1; D;C;�2 ` A; (v) if � ` A1, . . . , � ` An
and A1; . . . ; An ` B, then � ` B, or in particular : if ` A1, . . . , ` An, and

A1; . . . ; An ` B, then ` B.

Theorem 1. If B2; . . . ; Bm ` A! B1, then B1; B2; . . . ; Bm ` A.

Proof . By adding, according to Lemma 1, the formula B1 to the sequence
B2; . . . ; Bm, by the rule of inference hIi we obtain A.

Corollary 1. If ` A! B, then B ` A.

Corollary 2. If ` (. . . (A! B1)! . . . )! Bm, then B1; . . . ; Bm ` A.

Theorem 2 (Deduction theorem). If �; B ` A, then � ` A! B.

Proof . By induction on the length k of the given deduction.

1Æ When k = 1, the formula A is either an axiom or one of formulas � or B.
In the �rst case, such a deduction is

1: A axiom-hypothesis

2: (A! B)! A axiom-schema 1

3: A! B hIi 1; 2

and analogously in the remaining two cases.

2Æ Assume the theorem holds for all lengths � k, and let the length of the
given deduction be k + 1.

Besides the three cases already discussed, an additional case arises here: A

is an immediate consequence, by the rule hIi, of two preceding formulas of the
sequence.

Let it be the formulas P (at the r-th, r � k), and A! P (at the s-th, s � k)
step. In both cases, by the hypothesis, it is possible to construct two deductions
of P ! B and (A ! P ) ! B. Let us add to them the following instance of
axiom-schema 2:

((A! B)! ((A! P )! B))! (P ! B)
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Then a double application of the rule of inference yields A! B.

Corollary 1. If B ` A, then ` A! B.

Corollary 2. If B1; . . . ; Bm�1; Bm ` A, then ` (. . . (A ! B1) ! . . . !
Bm�1)! Bm.

We derive the introduction and the elimination rules for connectives in the
theorem after the following lemma:

Lemma 1. (a) If B ` A and B ` �A, then ` �B; (b) if B ` A, then

�A ` �B; (c1) ��A ` A; (c2) A ` ��A.

Theorem 3.

Introduction Elimination

! If �; B ` A, A! B; B ` A

then � ` A! B

" �A; �B ` A " B A " B ` �A

A " B ` �B

� �A ` A � B If �; C ` A and �; C ` B,

�B ` A � B then �; A � B ` �C

� If �; B ` A and �; B ! �A, ��A ` A

then � ` �B

Proof . The rule of ! -introduction is just the deduction theorem, and
! -elimination is our rule of inference hIi. For the remaining rules we use the
axiom-schema 4 for " introduction, 5a and 5b for "-elimination, 7a and 7b for
�-introduction, 6 for �-elimination, Lemma 2 (a) for �-introduction, and �nally
Lemma 2 (c1) for �-elimination.

Can this formal system describe an intuitive domain of bivalent propositions?
To answer this question, we de�ne as follows the consistency and completeness of
a formal system:

De�nition 1. (i) The neg.-propositional calculus is semantically consistent if
every provable formula, interpreted on the model of the calculus | the algebra A
| is a contradiction.

(ii) The neg.-propositional calculus is simply consistent if there is an A such
that ` A and ` �A.

(iii) The neg.-propositional calculus is syntactically consistent if a formula is
unprovable in it.

Theorem 4. The neg.-propositional calculus is (semantically, simple, syn-

tactically ) consistent.
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Proof . On the indicated model, the truth value of all axioms is ? and the rule
of inference keeps this property (semantical consistency). The value ? can not at
the same time belong to a formula and to its negation (simple consistency), and, so,
as an example of an unprovable formula we have A " �A (syntactical consistency).

De�nition 2. (i) The neg.-propositional calculus is semantically complete if
every contradiction is provable in it.

(ii) The neg.-propositional calculus is simply complete if for every A either
` A or ` �A.

(iii) The neg.-propositional calculus is syntactically complete if it has the
following property: if one adds to the axioms an unprovable formula, one can prove
every formula.

Completeness in the �rst sense implies completeness in other two senses. Then
we prove the following:

Theorem 5. The neg.-propositional calculus is semantically complete.

Let us assign some n-tuple of values >, ?, to the propositional letters
A1; . . . ; An that occur in the formula F . Then by B1; . . . ; Bn we denote a cor-
rected n-tuple, where Bi (1 � i � n) is Ai or �Ai, according as the assigned value
is ? or >.

Lemma 3. B1; . . . ; Bn ` F if �(F ) = ? and B1; . . . ; Bn ` �F if �(F ) = >.

Proof . Let us denote by d the degree of the formula F , i.e. the number of
connectives in F .

Basis (d = 0). Since F is a propositional letter Ai, for i 2 f1; . . . ; ng, we
have Ai ` Ai if �(Ai) = ?, or �Ai ` �Ai if �(Ai) = >.

Induction step. If the degree of F is k + 1, then F has one of the forms:
(a) �A, (b) A! B, (c) A � B or (d) A " B with A, B of degree � n.

(a) We must show: (a1) B1; . . . ; Bn ` �F if B1; . . . ; Bn ` A and
(a2) B1; . . . ; Bn ` F if B1; . . . ; Bn ` �A, or (a1) A ` ��A and (a2) �A ` �A.
The proof is carried out by Lemma 1.

(b) If F has the form A! B, four subcases arise:

(b1) If B1; . . . ; Bn ` �A and B1; . . . ; Bn ` �B, then B1; . . . ; Bn ` A ! B

(and by Lemma 1, it is suÆcient to prove �A;�B ` A! B).

(b2) If B1; . . . ; Bn ` �A and B1; . . . ; Bn ` B, then B1; . . . ; Bn ` �(A! B)
(�A;B ` �(A! B)).

(b3) If B1; . . . ; Bn ` A and B1; . . . ; Bn ` �B, then B1; . . . ; Bn ` A ! B

(A;�B ` A! B);

(b4) If B1; . . . ; Bn ` A and B1; . . . ; Bn ` B, then B1; . . . ; Bn ` A ! B

(A;B ` A! B);

Sublemma 1. A;�A ` B.
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(b1) 1: B;�B ` A Sublemma 1

2: �B ` A! B ! -in. 1

3: �A;�B ` A! B Lemma 1, 2

(b2) 1: A! B; B ` A ! -el.

2: A! B; B ` B Lemma 1

3: A � B; B ` �(A! B) � -el. 1, 2

4: �A ` A � B � -in.

5: �A;B ` A � B Lemma 1, 4

6: �A;B ` B Lemma 1

7: �A;B ` �(A! B) Lemma 1, 3, 5, 6

For (b3) and (b4) we proceed similarly.

For (c1), (c2), (c3) we use �-in.

(c4) 1: A! B; B ` A ! -el.

2: A! B; B ` B Lemma 1

3: B;A � B ` �(A � B) � -el. 1; 2

4: B;A! B ` �(A � B) Lemma 2, 3

5: A;B ` B Lemma 1

6: A;B ` A! B (b4)

7: A;B ` �(A � B) Lemma 1, 5, 6, 3

For (d1) we use " -in.

Sublemma 2. �A � �B ` �(A " B).

(In the proof we use " -el. and � -el.)

(d2) 1: �B ` A � B � -in.

2: B ` �A � �B A ` A; B ` B; 1

3: �A � �B ` �(A " B) Sublemma 2

4: B ` �(A " B) Lemma 1, 2, 3

5: �A;B ` �(A " B) Lemma 1, 4

Case (d3) is similar to (d2). For (d4) we use (d3).

Lemma 4. If for any of 2n possible sequences of values we always have

B1; . . . ; Bn ` F , then

A1 � �A1; . . . ; An � �An ` F:



6 Tasi�c

Proof . Let us take n = 2. By hypothesis, �A1;�A2 ` F ; �A1; A2 ` F ;
A1;�A2 ` F and A1; A2 ` F . So, by a triple application of � -elimination (using
Lemma 2), we obtain:

1: �A1;�A2 ` F hyp.

2: �A1; A2 ` F hyp.

3: �A1;�F ` ��A1 ` A1 Lemma 2, 1

4: �A1;�F ` �A2 Lemma 2, 2

5: �A1; A2 � �A2 ` F � -el. 3, 4

6: A1;�A2 ` F hyp.

7: A1; A2 ` F hyp.

8: A1;�F ` A2 Lemma 2, 6

9: A1;�F ` �A2 Lemma 2, 7

10: A1; A2 � �A2 ` F � -el. 8, 9

11: A1 � �A1; A2 � �A2 ` F � -el. 5, 10

Proof of Theorem 5. Let F be a contradiction and A1; . . . ; An all of its letters.
By the last lemma:

A1 � �A1; . . . ; An � �An ` F

and, since we have ` A � �A by Lemma 1, we should �nally have ` F .

This proof follows the method exposed in [1].
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