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THE NEG.-PROPOSITIONAL CALCULUS

Milan Tasié

Abstract. Consistency and completeness are proved for an axiomatic system intended

to be a formalization of propositional contradictions.

By changing in the truth tables the values of the logical operations of con-
junction, disjunction and implication (but not of negation ~), so as to obtain new
functions designated by e, v, and —, respectively:

€ T 1 v T 1 — T 1
T 1T T 1 1 T 1T
4 T T L 1 T L 1 1

and by taking an interest in formulas with the truth value 1, we may construct
an algebra of contradictions (identically false formulas) 2 = {(T, L);e,v, —=,~},
which could serve as the principal model of a propositional calculus called neg.-
propositional calculus.

This formal system may be axiomatized with the following axziom-schemata:

1 (A-B)—> A

2. (A-»B)=»((A—=C)—>B))—= (C—> B)
3. A->~(Acd)

4. ((AeB)—>~B)—>~A

5a. ~A— AeB

5b. ~B > AeB

6. (~C—->AvB)—=(B—=>0C)—(A->0)
Ta. AvB— ~A

7. AvB— ~B
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8 (~B—=(A—B))—>(~A— B)

and the rule of inference

A— B, B
A

We use A, B,C, ..., Ay,..., as schematic letters for formulas, and I',T'y, as letters
for lists of formulas.

We can easily prove the following:

LemMA 1. (i) AF A; (i) of T F A, then B,T + A; (iii) if C,C,T + A, then
C,T'FA; (iv)ifI,C,D,To - A, then'y,D,C,ToF A; (v) if TF Ay, ..., TF A,
and Ay,... , A, F B, then I' b B, or in particular: if F Ay, ..., b A,, and
Ay,... , A, F B, then + B.

THEOREM 1. If By, ... B, - A — By, then By, Bs, ... ,By, F A.

Proof. By adding, according to Lemma 1, the formula B; to the sequence
Bs, ... ,Bp, by the rule of inference (I) we obtain A.

COROLLARY 1. If F A — B, then B+ A.
CoRrROLLARY 2. If F(...(A— By) = ...) = By, then By,... ,B,, - A.
THEOREM 2 (Deduction theorem). IfT')B+ A, thenT F A — B.

Proof . By induction on the length k of the given deduction.

1° When k£ = 1, the formula A is either an axiom or one of formulas T" or B.
In the first case, such a deduction is

1. A axiom-hypothesis
2. A-B)—-4A axiom-schema 1
3. A—>B (I) 1,2

and analogously in the remaining two cases.

2° Assume the theorem holds for all lengths < k, and let the length of the
given deduction be k + 1.

Besides the three cases already discussed, an additional case arises here: A
is an immediate consequence, by the rule (I), of two preceding formulas of the
sequence.

Let it be the formulas P (at the r-th, r < k), and A — P (at the s-th, s < k)
step. In both cases, by the hypothesis, it is possible to construct two deductions
of P - B and (A - P) —» B. Let us add to them the following instance of
axiom-schema 2:

(A—-B)—» ((A—>P)—>B)) > (P— B)
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Then a double application of the rule of inference yields A — B.
COROLLARY 1. If B+ A, then - A — B.

COROLLARY 2. If By,... ,By—1,Bn b A, then F (...(A = By) —» ... =
Bm—l) — B,

We derive the introduction and the elimination rules for connectives in the
theorem after the following lemma:

LemMA 1. (a) If BF A and B - ~A, then - ~B; (b) if B+ A, then
~AF ~B; (cl) ~~AF A4; (c2) AF ~~A.

THEOREM 3.
Introduction Elimination
— If T,BF A, A— B, BFA
thenTHA — B
€ ~A, ~B+-AeB Ae BF~A
Ae B+ ~B
v ~AFAvB IfT,CFAand T',CF+ B,
~BFAvB thenT,Av B+ ~C
~ If T, BFAand T',B — ~A, ~~AF A
then I' - ~B

Proof. The rule of — -introduction is just the deduction theorem, and
— -elimination is our rule of inference (I). For the remaining rules we use the
axiom-schema 4 for e introduction, 5a and 5b for e-elimination, 7a and 7b for
v-introduction, 6 for v-elimination, Lemma 2 (a) for ~-introduction, and finally
Lemma 2 (cl) for ~-elimination.

Can this formal system describe an intuitive domain of bivalent propositions?
To answer this question, we define as follows the consistency and completeness of
a formal system:

Definition 1. (i) The neg.-propositional calculus is semantically consistent if
every provable formula, interpreted on the model of the calculus — the algebra 2
— is a contradiction.

(ii) The neg.-propositional calculus is simply consistent if there is an A such
that - A and F ~A.

(iii) The neg.-propositional calculus is syntactically consistent if a formula is
unprovable in it.

THEOREM 4. The neg.-propositional calculus is (semantically, simple, syn-
tactically) consistent.
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Proof . On the indicated model, the truth value of all axioms is L and the rule
of inference keeps this property (semantical consistency). The value L can not at
the same time belong to a formula and to its negation (simple consistency), and, so,
as an example of an unprovable formula we have A € ~A (syntactical consistency).

Definition 2. (i) The neg.-propositional calculus is semantically complete if
every contradiction is provable in it.

(ii) The neg.-propositional calculus is simply complete if for every A either
FAor F~A.

(iii) The neg.-propositional calculus is syntactically complete if it has the
following property: if one adds to the axioms an unprovable formula, one can prove
every formula.

Completeness in the first sense implies completeness in other two senses. Then
we prove the following:

THEOREM 5. The neg.-propositional calculus is semantically complete.

Let us assign some n-tuple of values T, L, to the propositional letters
Ay, ..., A, that occur in the formula F. Then by Bi,...,B, we denote a cor-
rected n-tuple, where B; (1 <i < n) is A; or ~A;, according as the assigned value
is LorT.

LEMMA 3. By,... ,Bpy - Fif7(F) =1 and By,... , By b ~F if 7(F)=TT.

Proof. Let us denote by d the degree of the formula F', i.e. the number of
connectives in F'.

Basis (d = 0). Since F' is a propositional letter A4;, for i € {1,... ,n}, we
have At F Az if T(Al) = J_, or NAZ H NAZ if T(AZ) =T.

Induction step. If the degree of F' is k + 1, then F has one of the forms:
(a) ~A, (b) A= B, (c) Av Bor (d) Ae B with A, B of degree < n.

(a) We must show: (al) By,...,B, F ~F if By,...,B, + A and
(a2) By,...,Bp, - Fif By,... ,B, F ~A, or (al) A+ ~~A and (a2) ~A F ~A.
The proof is carried out by Lemma 1.

(b) If F has the form A — B, four subcases arise:

(bl) If By,...,B, - ~Aand By,... B, - ~B, then By,... ,B, - A — B
(and by Lemma 1, it is sufficient to prove ~A,~B F A — B).

(b2) If By,...,B, - ~Aand By,...,B, F B, then By,...,B, F ~(A— B)
(~A, B+ ~(A — B)).

(b3) If By,...,B, F A and By,...,B, - ~B, then By,... ,B, + A — B
(A,~B+F A — B);

(b4) If By,...,B, F A and By,... ,B, + B, then By,... B, - A - B
(A,B+ A — B);

SUBLEMMA 1. A,~AF B.
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(b1) 1. B,~BFA Sublemma 1
2. ~BHFrA— B —-in. 1
3. ~A~B-FrA—B Lemma 1, 2
(b2) 1. A—-B, B+-A — -el.
2. A»B, BFB Lemma 1
3. AvB, BF~(A—=B)  v-ell,2
4, ~A+AvB v -in.
5. ~ABFAuvB Lemma 1, 4
6. ~A, B+B Lemma 1
7. ~A,BF~(A— B) Lemma 1, 3, 5, 6

For (b3) and (b4) we proceed similarly.
For (c1), (c2), (c3) we use v-in.

(c4) 1. A—-B, B+-A — -el.
2. A—-B, B+B Lemma 1
3. BJAvBF~(AvB) v-el. 1,2
4. B,A— B+ ~(Av B) Lemma 2, 3
5. AJBFB Lemma 1
6. A BFrA—B (bd)
7. A BF~(AvB) Lemma 1, 5, 6, 3

For (d1) we use -in.
SUBLEMMA 2. ~Av ~BF ~(Ae B).

(In the proof we use € -el. and v-el.)

(d2) 1. ~BFAvB v-in.
2. BF~Auv~B AFA BFB,1
3. ~Av~BF ~(AeB) Sublemma 2
4. BF~(AeB) Lemma 1, 2, 3
5. ~A,BF~(Ae B) Lemma 1, 4

Case (d3) is similar to (d2). For (d4) we use (d3).

LEMMA 4. If for any of 2™ possible sequences of values we always have
By,...,B, F F, then

A1UNA1,...,AnUNAn|_F.
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Proof. Let us take n = 2. By hypothesis, ~A;,~Ay F F; ~A;, Ay F F
Ay, ~Ay + F and Ay, Ay F F. So, by a triple application of v -elimination (using

Lemma 2), we obtain:

1. ~A;,~AyFF hyp.

2. ~A,AFF hyp.

3. ~A;,~FF~~A A Lemma 2, 1
4. ~A;,~FF ~As Lemma 2, 2
5. ~Aj,Asv~AyFF v-el. 3,4

6. A, ~AsHF hyp.

7. A, A R F hyp.

8. A,~FF A, Lemma 2, 6
9. A|,~FF~A, Lemma 2, 7
10. Ay, Asv~As B F v-el. 8,9
11. Ajv~A,Abv~AFF v-el. 5, 10

Proof of Theorem 5. Let F be a contradiction and Ay, ..., A, all of its letters.
By the last lemma:
Ajv~A . A u~AL R F

and, since we have - A v ~A by Lemma 1, we should finally have - F'.

This proof follows the method exposed in [1].
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