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SHARP ESTIMATES FOR SOME INTEGRAL OPERATORS
OF CONVEX FUNCTIONS OF ORDER ALPHA

G. A. Halim and D. K. Thomas

Abstract. For 0 < o < 1, let C(e) be the class of normalised analytic univalent functions,
convex of order . Sharp lower bounds are obtained for certain integral operators in C(a).

Introduction

For 0 < o < 1, denote by C(a) the class of normalised univalent convex
functions f of order a, defined in the open unit disc D ="{z : |z] < 1}. Thus
f € C(a), if and only if, f(0) =0, f'(0) =1 and

Re(1+i;;%(§>>a

for z € D. The class C(a) has been extensively studied. In [1] Bernardi gave
a series of non-sharp lower bounds for the real part of certain weighted integral
operators of f € C(0). The object of this paper is to give sharp versions of some
of Bernardi’s results for f € C(a). We also extend a classical result of Strobhacker
[3) to obtain sharp estimates for the real part of some iterated integral operators
in C(). Our methods are quite elementary.

Results

THEOREM 1. Let f € C(e) and z = re!? € D. Forn > 2, set nlAy(a) =
15>, (k — 2a) and Ai(a) = 1. Then

(i) Fora realand a# —-1,-2,...,

Re (z'(”“) /0 "o f(t)dt) > g _(‘_’"g:l:fzr)r(a),
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(if) Forey,eo# —1,-2,... and ¢3 > ¢y,
-2 * z cy—1 _ z c3~1
Re (=72 [" s [/ - @/ ) 2

= (=1)""14n(a)
(c2 - 01);::1 m,

(iii) Fora,c real and a #0,-1,-2,... ,c£-1,-2,...,
Re (z'““’ /0 e (log(a /)" dt) > I(a) g __(—r()::gz(a)

’

where I' is the Gamma function.
(iv) Forc real and ¢ #0,~1,-2,...,

e z—(1+c) : 7 — )1 - —p)n-1 n nlc
R( | 6= dt)z;:jl( 7B + D Aa(e),

where B is the Beta funciion.
In all cases, equality occurs for the function fy € C(a), where

00 1-—- (1 + z)?.or—l
fo(z) = (-1 An(e)2" = { T(iozay o fre#lf2
o= log(1 + 2), fora=1/2.

THEOREM 2. Let f € C(a) and z=re? € D. Forn=1,2,..., define

In(z) = %/031 () dt,
where Iy(z) = f(z)/z. Then forn >0,
Re In(z) Zz 7,.,(1‘),

where - -
1 . — )t Ar(a
§S7n(7')=zu'—k7‘k—('—)<l.
k=1 '

The result is sharp for fo as given in Theorem 1.

We note that when n = 0, we obtain the following result of Brickman et al.
[2] which we shall use in the proofs of Theorem 1 and 2.

LEMMA. Let f € C(a) and z = re?®. Then for0< a < 1,
1—(14r)2e-t
———, fora#1/2
Re (M) > (1- 25’)’ # /
z log(1 +r)
r

, fora=1/2.
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The results are sharp for the function fo given above.

Proof of Theorem 1. In each case, we will glve the proof when a # 1/2. When
a = 1/2, the proofs are similar. Write t = pe'?, then applying the Lemma in each
of the following, we have

(l) 1 ? a-1 _ »—(1+4a) i a i 16
Re (ks [ F0eae) = 7049 [ Re (1(56)/ ) dp
r—(1+°)
2 (1-2a) Jo

had r
= O T 1 A(@) [,
n=1 0

.
PP (- (1+p)* ) dp

The result now follows at once.

@ re( [0l @ «)

= & [ P Loy = o Be (e ) dp

r2

25 / (/) (p/r)°"1]Z( 1) YAn(a)p™dp

e 3i-

(_r)n—lAn(a)A 1:" (xc‘—l _ 202—1) dz

n=1

1

—r)* " An(@)

(62 CI)Z (n+c1)(n+c2)

forecp > ¢y and ¢j,e2 # —1,-2,....

) po (L [ e log(s/)!
Re (e [ 100 Goatery™ )
= || Qoatr/p)" ™ Re (76} pe) dp

> 5 [ I Qo)™ Y (-1 n(e)endp

=) 1 )
S (ry =t ante) [ o o1/

=T(a )Z (= ():+1;4)a(a)’

fora#0,—-1,-2,...,c# ~1,-2,.
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(iv) ée (2—11; /0 " ) - t)“‘dt)

= r—ll;—c /o p(r — p)*~" Re (f(pe'?)/pe’’) dp

1 r =1 & n—1 n
25/ (1-%) E(_l) An(@)p dp'
= = .__1, n-1 ! -z c—lzn T
:2( rine) [(1-2)and

o0
= E(—-r)"'lB(c,n + 1)A,(a), forc#0,-1,-2,...
n=1

This completes the proof of Theorem 1.

Proof of Theorem 2. It follows easily from the Lemma that for 0 < a < 1,

Re In(z) > i(—r)k'lAk(a) = 7o(r).
k=1

Next, writing t = pe'® we have,
1 z
Relu(z) = Re [ Tna(0it
0

>l/' o~ (2P k()

=~ r kn—1
0 k=i

%o k-1
= Z u_k#(_"_) = 7a(r),
k=1

where we have used induction. For n > 0 and 0 < & < 1, 7,(r) is absolutely
convergent for 0 < r < 1 and hence rearranging the terms appropriately shows that
1/2 < y(r) < L.
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