SHARP ESTIMATES FOR SOME INTEGRAL OPERATORS OF CONVEX FUNCTIONS OF ORDER ALPHA

G. A. Halim and D. K. Thomas

Abstract. For $0 \le \alpha < 1$, let $C(\alpha)$ be the class of normalised analytic univalent functions, convex of order α . Sharp lower bounds are obtained for certain integral operators in $C(\alpha)$.

Introduction

For $0 \le \alpha < 1$, denote by $C(\alpha)$ the class of normalised univalent convex functions f of order α , defined in the open unit disc $D = \{z : |z| < 1\}$. Thus $f \in C(\alpha)$, if and only if, f(0) = 0, f'(0) = 1 and

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\alpha$$

for $z \in D$. The class $C(\alpha)$ has been extensively studied. In [1] Bernardi gave a series of non-sharp lower bounds for the real part of certain weighted integral operators of $f \in C(0)$. The object of this paper is to give sharp versions of some of Bernardi's results for $f \in C(\alpha)$. We also extend a classical result of Strohhäcker [3] to obtain sharp estimates for the real part of some iterated integral operators in $C(\alpha)$. Our methods are quite elementary.

Results

THEOREM 1. Let $f \in C(\alpha)$ and $z = re^{i\theta} \in D$. For $n \geq 2$, set $n!A_n(\alpha) = \prod_{k=1}^{\infty} (k-2\alpha)$ and $A_1(\alpha) = 1$. Then

(i) For a real and $a \neq -1, -2, \ldots$,

$$\operatorname{Re}\left(z^{-(1+a)}\int_{0}^{z}t^{a-1}f(t)dt\right)\geq \sum_{n=1}^{\infty}\frac{(-r)^{n-1}A_{n}(\alpha)}{(n+a)},$$

(ii) For $c_1, c_2 \neq -1, -2, \ldots$ and $c_2 > c_1$,

$$\operatorname{Re}\left(z^{-2} \int_{0}^{z} f(t) \left[(t/z)^{c_{1}-1} - (t/z)^{c_{2}-1} \right] dt \right) \ge$$

$$(c_{2} - c_{1}) \sum_{r=1}^{\infty} \frac{(-r)^{n-1} A_{n}(\alpha)}{(n+c_{1})(n+c_{2})},$$

(iii) For a, c real and $a \neq 0, -1, -2, ..., c \neq -1, -2, ...,$

$$\operatorname{Re}\left(z^{-(1+c)}\int_0^z f(t)t^{c-1}\left(\log(z/t)\right)^{a-1}dt\right) \geq \Gamma(a)\sum_{n=1}^\infty \frac{(-r)^{n-1}A_n(\alpha)}{(n+c)^a},$$

where Γ is the Gamma function.

(iv) For c real and $c \neq 0, -1, -2, \ldots$

$$\operatorname{Re}\left(z^{-(1+c)}\int_0^z f(t)(z-t)^{c-1}dt\right) \ge \sum_{n=1}^{\infty} (-r)^{n-1}B(c,n+1)A_n(\alpha),$$

where B is the Beta function.

In all cases, equality occurs for the function $f_0 \in C(\alpha)$, where

$$f_0(z) = \sum_{n=1}^{\infty} (-1)^{n-1} A_n(\alpha) z^n = \begin{cases} \frac{1 - (1+z)^{2\alpha - 1}}{(1 - 2\alpha)}, & \text{for } \alpha \neq 1/2\\ \log(1+z), & \text{for } \alpha = 1/2. \end{cases}$$

THEOREM 2. Let $f \in C(\alpha)$ and $z = re^{i\theta} \in D$. For n = 1, 2, ..., define

$$I_n(z) = \frac{1}{z} \int_0^z I_{n-1}(t) dt,$$

where $I_0(z) = f(z)/z$. Then for $n \ge 0$,

$$\operatorname{Re} I_n(z) \geq \gamma_n(r),$$

where

$$\frac{1}{2} \le \gamma_n(\dot{r}) = \sum_{k=1}^{\infty} \frac{(-r)^{k-1} A_k(\alpha)}{k^n} < 1.$$

The result is sharp for f_0 as given in Theorem 1.

We note that when n = 0, we obtain the following result of Brickman et al. [2] which we shall use in the proofs of Theorem 1 and 2.

LEMMA. Let $f \in C(\alpha)$ and $z = re^{i\theta}$. Then for $0 \le \alpha < 1$,

$$\operatorname{Re}\left(\frac{f(z)}{z}\right) \geq \begin{cases} \frac{1-(1+r)^{2\alpha-1}}{(1-2\alpha)r}, & \text{for } \alpha \neq 1/2\\ \frac{\log(1+r)}{r}, & \text{for } \alpha = 1/2. \end{cases}$$

The results are sharp for the function fo given above.

Proof of Theorem 1. In each case, we will give the proof when $\alpha \neq 1/2$. When $\alpha = 1/2$, the proofs are similar. Write $t = \rho e^{i\theta}$, then applying the Lemma in each of the following, we have

(i)
$$\operatorname{Re}\left(\frac{1}{z^{1+a}}\int_{0}^{z}f(t)t^{a-1}dt\right) = r^{-(1+a)}\int_{0}^{r}\rho^{a}\operatorname{Re}\left(f(\rho e^{i\theta})/\rho e^{i\theta}\right)d\rho$$

$$\geq \frac{r^{-(1+a)}}{(1-2\alpha)}\int_{0}^{r}\rho^{a-1}\left(1-(1+\rho)^{2\alpha-1}\right)d\rho$$

$$= r^{-(1+a)}\sum_{n=1}^{\infty}(-1)^{n-1}A_{n}(\alpha)\int_{0}^{r}\rho^{n+a-1}d\rho,$$

The result now follows at once.

(ii)
$$\operatorname{Re}\left(\frac{1}{z^{2}}\int_{0}^{z}f(t)\left[(t/z)^{c_{1}-1}-(t/z)^{c_{2}-1}\right]dt\right)$$

$$=\frac{1}{r^{2}}\int_{0}^{r}\rho\left[(\rho/r)^{c_{1}-1}-(\rho/r)^{c_{2}-1}\right]\operatorname{Re}\left(f(\rho e^{i\theta})/\rho e^{i\theta}\right)d\rho$$

$$\geq\frac{1}{r^{2}}\int_{0}^{r}\left[(\rho/r)^{c_{1}-1}-(\rho/r)^{c_{2}-1}\right]\sum_{n=1}^{\infty}(-1)^{n-1}A_{n}(\alpha)\rho^{n}d\rho$$

$$=\sum_{n=1}^{\infty}(-r)^{n-1}A_{n}(\alpha)\int_{0}^{1}x^{n}\left(x^{c_{1}-1}-x^{c_{2}-1}\right)dx$$

$$=(c_{2}-c_{1})\sum_{n=1}^{\infty}\frac{(-r)^{n-1}A_{n}(\alpha)}{(n+c_{1})(n+c_{2})},$$

for $c_2 > c_1$ and $c_1, c_2 \neq -1, -2, \ldots$

(iii)
$$\operatorname{Re}\left(\frac{1}{z^{1+c}} \int_{0}^{z} f(t)t^{c-1} \left(\log(z/t)\right)^{a-1} dt\right)$$

$$= \frac{1}{r^{1+c}} \int_{0}^{r} \rho^{c} \left(\log(r/\rho)\right)^{a-1} \operatorname{Re}\left(f(\rho e^{i\theta})/\rho e^{i\theta}\right) d\rho$$

$$\geq \frac{1}{r^{2}} \int_{0}^{r} (\rho/r)^{c-1} \left(\log(r/\rho)\right)^{a-1} \sum_{n=1}^{\infty} (-1)^{n-1} A_{n}(\alpha) \rho^{n} d\rho$$

$$= \sum_{n=1}^{\infty} (-r)^{n-1} A_{n}(\alpha) \int_{0}^{1} x^{n+c-1} \left(\log(1/x)\right)^{a-1} dx$$

$$= \Gamma(a) \sum_{n=1}^{\infty} \frac{(-r)^{n-1} A_{n}(\alpha)}{(n+c)^{a}},$$

for $a \neq 0, -1, -2, \ldots, c \neq -1, -2, \ldots$

(iv)
$$\operatorname{Re}\left(\frac{1}{z^{1+c}} \int_{0}^{z} f(t)(z-t)^{c-1} dt\right)$$

$$= \frac{1}{r^{1+c}} \int_{0}^{r} \rho(r-\rho)^{c-1} \operatorname{Re}\left(f(\rho e^{i\theta})/\rho e^{i\theta}\right) d\rho$$

$$\geq \frac{1}{r^{2}} \int_{0}^{r} \left(1 - \frac{\rho}{r}\right)^{c-1} \sum_{n=1}^{\infty} (-1)^{n-1} A_{n}(\alpha) \rho^{n} d\rho$$

$$= \sum_{n=1}^{\infty} (-r)^{n-1} A_{n}(\alpha) \int_{0}^{1} (1-x)^{c-1} x^{n} dx$$

$$= \sum_{n=1}^{\infty} (-r)^{n-1} B(c, n+1) A_{n}(\alpha), \quad \text{for } c \neq 0, -1, -2, \dots$$

This completes the proof of Theorem 1.

Proof of Theorem 2. It follows easily from the Lemma that for $0 \le \alpha < 1$,

$$\operatorname{Re} I_0(z) \geq \sum_{k=1}^{\infty} (-r)^{k-1} A_k(\alpha) = \gamma_0(r).$$

Next, writing $t = \rho e^{i\theta}$ we have,

$$\operatorname{Re} I_{n}(z) = \operatorname{Re} \frac{1}{z} \int_{0}^{z} I_{n-1}(t) dt$$

$$\geq \frac{1}{r} \int_{0}^{r} \sum_{k=1}^{\infty} \frac{(-\rho)^{k-1} A_{k}(\alpha)}{k^{n-1}} d\rho$$

$$= \sum_{k=1}^{\infty} \frac{(-r)^{k-1} A_{k}(\alpha)}{k^{n}} = \gamma_{n}(r),$$

where we have used induction. For $n \ge 0$ and $0 \le \alpha < 1$, $\gamma_n(r)$ is absolutely convergent for $0 \le r < 1$ and hence rearranging the terms appropriately shows that $1/2 < \gamma_n(r) < 1$.

REFERENCES

- [1] S. D. Bernardi, Convex and starlike functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
- [2] L. Brickman, D. J. Hallenbeck, T. H. Macgregor and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413-428.
- [3] E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.

Department of Mathematics and Computer Science, (Received 16 10 1989)
University of Wales,
Swansea SA2 8PP, Wales