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A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

H. R. Abdel-Gawad and D. K. Thomas

Abstract. Let f be analytic and normalised in the unit disc D and satisfy
Re(zf'(z)/#(z)) > O for z € D where ¢ is a normalised convex function. Such functions form a
subset of the close-to-convex functions. Various extremal problems are considered.

Introduction. Denote by S the class of functions f which are analytic and
univalent in D = {z : |z| < 1} and normalised so that f(0) = 0 and f'(0) = 1.
Thus for f € S we may write

fz)=2+ Z anz". | (1)
n=2

Let C, S* and K be those subsets of S which are convex, starlike and close-to-
convex respectively. Then f € K if, and only if, there exists ¢ € S* such that for
z€D

()
R o) > 0. (2)

Since C is a subclass of $*, we can define a subclas J of K such that g € C in (2).
Thus we have

Definition. Let f be analytic in D and be given by (1). Then f € J, if, and
only if, there exists ¢ € C such that for z € D,
2f'(z)
¢(2)

Re > 0. (3)

Results. We first give some distortion theorems.

THEOREM 1. Let f € J, then for z =re'? € D,
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1 , 1+r

2r 2r
—log(1+7)+ Tor <If(2)} < log(l -r)+ 1

Each inequality is sharp for F defined by
F(z) = Zlog(l — zz) + 1_Ez;;' with |z| = 1. (4)

Proof. 1t follows from (3) that we can write zf'(z) = ¢(2)p(2), for p € P, the
class of analytic functions satisfying Re p(z) > 0 in D and p(0) = 1. The inequalitis
for | f'(z)| in Theorem 1 follow at once from the well-known distortion theorems for
C and P. Integrating along a straight line segment from z = 0 to z = re*® gives
the upper bound for |f(z)|. For the lower bound let z; be such that |z;] = r and
satisfies [f(21)] < | f(2)] for all z with |z| = r. Writing w = f(2) it follows that the
line segment A from w = 0 to w = f(2) lies entirely in the image of f. Let A be
the pre-image of A. Then

I 2 )l = | ldul = l lldb
r I—t— 2r
Z/(; (1+t)2 log(1+r)+1+
142z

Equality is attained on choosing ¢(z) =

—z . and p(z) = ~ for |z =1 1in
the representation z f/(z) = ¢(z)p(z).

CoROLLARY. Let f € J and f(z) # w for z € D, then |w| > 1 - log2.

The proof follows using a standard argument (see e.g. [2])

THEOREM 2. Let f € J, then for z = re'® € D,

|arg f'(2)| < arcsin i 2r 5 + arcsinr.

The result is sharp.

Proof. From (3) write

z2f'(z) _ 1+w(z)
8(z)  1-w(z)’
so that w is analytic in D with w(0) = 0 and |w(z)| < 1. Since the image of the

disc {z : |z| < r} by the transformation ] + : ) is contained in closed disc centre
1472 20
1=.2 i-:z , radius 1—-;3, 1t follows that

() 1402 2

#(z) 1—7r2| = 1—7p2
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Thus

z2f'(2) 2r
1e) < arcsin ——— e —

and since ¢ € C, it follows that |arg(¢(z)/z)| < arcsinr, see for example [6], and
so the result is proved.

arg

To show that the inequality is sharp, choose 6, and 82 so that

zf'(z) 1+6:2
é(2) T 1—b,z

and

where 8y = ir/z and 03 = (r/z)(—r + iV/1 — r2) at any point z such that |z| = r.
We next give some coefficient results.

THEOREM 3. Let f € J and be given by (1). Then [an| <2—1/n forn > 2,
with equality for F defined in (4). Also

5/3-9u/d, ifp<2/9
las — pad| <  2/3+1/(9n), #2/9< 4 <23
5/6, if2/3<p<l.

For each p, there is a function in J such that equalily holds.

Proof. The first inequality follows at once on equating coefficients in the
representation zf’(z) = ¢(z)p(z) and using the well-known coeficient estimates for
C and P.

Next write
[o0]

w(z) = p(z; T i Z apz”

and -
S =2+ baz", (5)
n=2
so that w(0) = 0 and |w(z)] < 1 for z € D. Then equating coefficents, we have
2a3 = by + 2ay,

and

3a3 = b3 + 203 + 207 + 201 ba.
Thus

s 1 3 2 3 2
az — pa; = §(b3 - Zub%) + 5(&2 + <1 - —Q—p)af) + (§ - p)albz. (6)
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We first consider the case 2/9 < p £ 2/3. 1t follows from (6) that
2—3u

1
agz — 5(3;1 - 2)all +

4-3 2, 2-3u

= @(1), say, with t = |ay],

9 1 3 2
las — pa3] < i Zﬂbg +3 32N

s

where we have used the fact that |5y < 1 and the inequalities

loz = sad] S 1+ (Isl = Dleu) (7
and

lbs — sb3] < max{1/3,|s - 1]}, (8)

for any complex number s, see e.g. [1]. Since the function ® attains its maximum at
to = (2—-3u)/(6p), it follows that the second inequality in Theorem 3 is established,
if 4 < 2/3. Choosing by = by = 1, a; = (2 — 3p)/(6p) and @2 = 1 — a} in (6),
shows that the result is sharp if p > 2/9, since ja;] < 1.

Next suppose that u < 2/9. Then )
9 5 9
+(1- 2Ll <2 -2

where we have used the result already proved in the case y = 2/9, and the inequality
las} < 5/3 proved in the first part of the theorem. Equality is attained on choosing
b2 =b3=1, 0y =1, and a2 = 0 in (6).

Suppose next that 2/3 < u < 1. Then when u = 1, (6) gives

1 3 9 2 1 ab2
o -af =5 (b= §08) 4 3 (on - got) -

9
las — pa3] < 7/1

asz — gag

and so

1 3 2 1 arh

o = 651 < glba = 83|+ gloa — gt + 22
1 o 1022 2 Jaa]? | aibs]
Spl-l+ T+ -+
7 |2 1 bi\* 5
—_— —_— _ 2 < -
57 15 “3\lal-5) <5

where we have used (7), (8), the inequality [bs] < 1 and the fact that |as} < 1—|ey |2,
(see e.g. [5]). Now write,

a3 — paj = (3 — 2)(as — af) + 3(1 — p)(as — (2/3)ad),
and the result follows at once on using the the theorem already proved for y = 1
and g = 2/3. Equality is attained when by = b3 =1, ap = 1 — a? with
= 2= 34 AL

* 6u 7]
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We now obtain the radius of convexity for J.

THEOREM 4. Let f € J, then f maps {z:|z| < 1/3} onto a convez set. The
function F given by (4) shows that this result is best possible.

Proof. Differentiating zf'(z) = ¢(2)p(z) logarithmically, we have

2f"(z) _ 24'(x)  z¢(2)

T M P R P

from which it follows that

zf"(z) z¢'(z) _|zp'(2)
re(1+ ) 2R - [T ©)
Since ¢ € C,
Re 2z (z) 1
#(z) ~ 1 +r’
see e.g. [4]. Also [3],
zp'(z) 2r
pz) | = 1-r%

The result now follows at once from (9).

We finally consider a problem concerning the partial sums of functions in J.
We prove the following:

THEOREM 5. Let f € J and be given by (1). For n > 2, define f,
fa(2)=2z+ Zakz".
k=2

Then forn =2 and n > 4,

2f1(2) ‘
Re 25 >0 (10)

for z € {z: |z| < 1/3}, where ¢o(2) = z+ Y 5=, biz* and where by is given by (5)
Jor 2 <k < n. The result is sharp.

We are unable to prove the result in the case n = 3.

Proof. For n > 2, write f(z) = fa(2)+7n(2) and ¢(2) = ¢n(2) +5n(2). Then
since |a,| < 2—1/n and |b,| < 1, it follows that

pntl
lzrn(2)] < (T_—r);[zﬂ(l -+ + ") (11)
and
rn+1
fsn(2)] < T (12)
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Thus for |z|=r =1/3
e ) e L) (LYl )

¢a(z) T 8(2) $(2) — sa(2)
s LB
2 i e (if: ;Tj + (1ri+:)2[2"(1 —n+a +’)]) .(1 e 11’;1)—1

when r = 1/3, where we have use (11) and (12) and distortion theorems for the
classes C' and P. Thus (10) is proved when n > 4 and when |z| = 1/3. Since
Re(zf4(2)/¢n(2)) is harmonic, it follows from the minimum principle that (10) is
valid in {z:|z] < 1/3} and n > 4.

When n = 2 we note that

zfé(z) 14 2a52 (202 - bz)z ]2a2 - bzl |z[ V
= = >1-
Re ¢3(2’) Re 1+ baz 1+Re 14+boz ~— 1+ ibgzl

for |z| < 1/3, where we have used the fact that |2ap — b,| < 2, which follows easily
on equating coefiicients in the representation zf'(z) = ¢(z)p(z) and the incquality
[b2] < 1. We note that when n = 2 and F is given by (4),

2Fy(2) 143z _

¢2(Z) - 1 bzz -

when z = —1/3 and so the result is best possible.
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