A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

H. R. Abdel-Gawad and D. K. Thomas

Abstract. Let f be analytic and normalised in the unit disc D and satisfy $\text{Re}(zf'(z)/\phi(z)) > 0$ for $z \in D$ where ϕ is a normalised convex function. Such functions form a subset of the close-to-convex functions. Various extremal problems are considered.

Introduction. Denote by S the class of functions f which are analytic and univalent in $D = \{z : |z| < 1\}$ and normalised so that f(0) = 0 and f'(0) = 1. Thus for $f \in S$ we may write

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \tag{1}$$

Let C, S^* and K be those subsets of S which are convex, starlike and close-to-convex respectively. Then $f \in K$ if, and only if, there exists $g \in S^*$ such that for $z \in D$

$$\operatorname{Re}\frac{zf'(z)}{g(z)} > 0. \tag{2}$$

Since C is a subclass of S^* , we can define a subclas J of K such that $g \in C$ in (2). Thus we have

Definition. Let f be analytic in D and be given by (1). Then $f \in J$, if, and only if, there exists $\phi \in C$ such that for $z \in D$,

$$\operatorname{Re}\frac{zf'(z)}{\phi(z)} > 0. \tag{3}$$

Results. We first give some distortion theorems.

Theorem 1. Let $f \in J$, then for $z = re^{i\theta} \in D$,

AMS Subject Classification (1980): Primary 30 C 45

$$\frac{1-r}{(1+r)^2} \le |f'(z)| \le \frac{1+r}{(1-r)^2},$$
$$-\log(1+r) + \frac{2r}{1+r} \le |f(z)| \le \log(1-r) + \frac{2r}{1-r}.$$

Each inequality is sharp for F defined by

$$F(z) = \bar{x}\log(1-xz) + \frac{2z}{1-xz}, \quad \text{with } |x| = 1.$$
 (4)

Proof. It follows from (3) that we can write $zf'(z) = \phi(z)p(z)$, for $p \in P$, the class of analytic functions satisfying $\operatorname{Re} p(z) > 0$ in D and p(0) = 1. The inequalitis for |f'(z)| in Theorem 1 follow at once from the well-known distortion theorems for C and P. Integrating along a straight line segment from z = 0 to $z = re^{i\theta}$ gives the upper bound for |f(z)|. For the lower bound let z_1 be such that $|z_1| = r$ and satisfies $|f(z_1)| \leq |f(z)|$ for all z with |z| = r. Writing w = f(z) it follows that the line segment λ from w = 0 to w = f(z) lies entirely in the image of f. Let Λ be the pre-image of λ . Then

$$|f(z)| \ge |f(z_1)| = \int_{\lambda} |dw| = \int_{\lambda} \left| \frac{dw}{dz} \right| |dz|$$

$$\ge \int_{0}^{r} \frac{1-t}{(1+t)^2} dt = -\log(1+r) + \frac{2r}{1+r}.$$

Equality is attained on choosing $\phi(z) = \frac{z}{1-xz}$ and $p(z) = \frac{1+xz}{1-xz}$ for |x| = 1 in the representation $zf'(z) = \phi(z)p(z)$.

COROLLARY. Let $f \in J$ and $f(z) \neq w$ for $z \in D$, then $|w| > 1 - \log 2$.

The proof follows using a standard argument (see e.g. [2])

THEOREM 2. Let $f \in J$, then for $z = re^{i\theta} \in D$,

$$|\arg f'(z)| \le \arcsin \frac{2r}{1+r^2} + \arcsin r.$$

The result is sharp.

Proof. From (3) write

$$\frac{zf'(z)}{\phi(z)} = \frac{1+\omega(z)}{1-\omega(z)},$$

so that ω is analytic in D with $\omega(0)=0$ and $|\omega(z)|\leq 1$. Since the image of the disc $\{z:|z|\leq r\}$ by the transformation $\frac{1+\omega(z)}{1-\omega(z)}$ is contained in closed disc centre $\frac{1+r^2}{1-r^2}$, radius $\frac{2r}{1-r^2}$, it follows that

$$\left| \frac{zf'(z)}{\phi(z)} - \frac{1+r^2}{1-r^2} \right| \le \frac{2r}{1-r^2}.$$

Thus

$$\left|\arg \frac{zf'(z)}{\phi(z)}\right| \leq \arcsin \frac{2r}{1+r^2},$$

and since $\phi \in C$, it follows that $|\arg(\phi(z)/z)| \leq \arcsin r$, see for example [6], and so the result is proved.

To show that the inequality is sharp, choose θ_1 and θ_2 so that

$$\frac{zf'(z)}{\phi(z)} = \frac{1+\theta_1 z}{1-\theta_1 z}$$

and

$$\phi(z) = \frac{z}{1 + \theta_2 z},$$

where $\theta_1 = ir/z$ and $\theta_2 = (r/z)(-r + i\sqrt{1-r^2})$ at any point z such that |z| = r. We next give some coefficient results.

THEOREM 3. Let $f \in J$ and be given by (1). Then $|a_n| \le 2 - 1/n$ for $n \ge 2$, with equality for F defined in (4). Also

$$|a_3 - \mu a_2^2| \le \begin{cases} 5/3 - 9\mu/4, & \text{if } \mu \le 2/9 \\ 2/3 + 1/(9\mu), & \text{if } 2/9 \le \mu \le 2/3 \\ 5/6, & \text{if } 2/3 \le \mu \le 1. \end{cases}$$

For each μ , there is a function in J such that equality holds.

Proof. The first inequality follows at once on equating coefficients in the representation $zf'(z) = \phi(z)p(z)$ and using the well-known coefficient estimates for C and P.

Next write

$$\omega(z) = \frac{p(z)-1}{p(z)+1} = \sum_{n=2}^{\infty} \alpha_n z^n,$$

and

$$_{\bullet}\phi(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$
 (5)

so that $\omega(0) = 0$ and $|\omega(z)| \le 1$ for $z \in D$. Then equating coefficients, we have

$$2a_2 = b_2 + 2\alpha_1$$

and

$$3a_3 = b_3 + 2\alpha_2 + 2\alpha_1^2 + 2\alpha_1b_2.$$

Thus

$$a_3 - \mu a_2^2 = \frac{1}{3} \left(b_3 - \frac{3}{4} \mu b_2^2 \right) + \frac{2}{3} \left(\alpha_2 + \left(1 - \frac{3}{2} \mu \right) \alpha_1^2 \right) + \left(\frac{2}{3} - \mu \right) \alpha_1 b_2. \tag{6}$$

We first consider the case $2/9 \le \mu \le 2/3$. It follows from (6) that

$$|a_3 - \mu a_2^2| \le \frac{1}{3} \left| b_3 - \frac{3}{4} \mu b_2^2 \right| + \frac{2}{3} \left| \alpha_2 - \frac{1}{2} (3\mu - 2) \alpha_1^2 \right| + \frac{2 - 3\mu}{3} |\alpha_1 b_2|$$

$$\le \frac{4 - 3\mu}{12} + \frac{2}{3} - \mu |\alpha_1^2| + \frac{2 - 3\mu}{3} |\alpha_1|$$

$$= \Phi(t), \quad \text{say, with } t = |\alpha_1|,$$

where we have used the fact that $|b_2| \leq 1$ and the inequalities

$$|\alpha_2 - s\alpha_1^2| \le 1 + (|s| - 1)|\alpha_1|^2 \tag{7}$$

and

$$|b_3 - sb_2^2| \le \max\{1/3, |s - 1|\},\tag{8}$$

for any complex number s, see e.g. [1]. Since the function Φ attains its maximum at $t_0 = (2-3\mu)/(6\mu)$, it follows that the second inequality in Theorem 3 is established, if $\mu \leq 2/3$. Choosing $b_1 = b_2 = 1$, $\alpha_1 = (2-3\mu)/(6\mu)$ and $\alpha_2 = 1 - \alpha_1^2$ in (6), shows that the result is sharp if $\mu \geq 2/9$, since $|\alpha_1| \leq 1$.

Next suppose that $\mu \leq 2/9$. Then

$$|a_3 - \mu a_2^2| \le \frac{9\mu}{2} |a_3 - \frac{2}{9}a_2^2| + \left(1 - \frac{9\mu}{2}\right) |a_3| \le \frac{5}{3} - \frac{9\mu}{4},$$

where we have used the result already proved in the case $\mu = 2/9$, and the inequality $|a_3| \le 5/3$ proved in the first part of the theorem. Equality is attained on choosing $b_2 = b_3 = 1$, $\alpha_1 = 1$, and $\alpha_2 = 0$ in (6).

Suppose next that $2/3 \le \mu \le 1$. Then when $\mu = 1$, (6) gives

$$a_3 - a_2^2 = \frac{1}{3} \left(b_3 - \frac{3}{4} b_2^2 \right) + \frac{2}{3} \left(\alpha_2 - \frac{1}{2} \alpha_1^2 \right) - \frac{\alpha_1 b^2}{3}$$

and so

$$|a_3 - a_2^2| \le \frac{1}{3} \left| b_3 - \frac{3}{4} b_2^2 \right| + \frac{2}{3} \left| \alpha_2 - \frac{1}{2} \alpha_1^2 \right| + \frac{|\alpha_1 b_2|}{3}$$

$$\le \frac{1}{9} (1 - |b_2|^2) + \frac{|b_2|^2}{12} + \frac{2}{3} - \frac{|\alpha_1|^2}{3} + \frac{|\alpha_1 b_2|}{3}$$

$$= \frac{7}{9} + \frac{|b_2|^2}{18} - \frac{1}{3} \left(|\alpha_1| - \frac{|b_2^2|}{2} \right)^2 \le \frac{5}{6},$$

where we have used (7), (8), the inequality $|b_2| \le 1$ and the fact that $|\alpha_2| \le 1 - |\alpha_1|^2$, (see e.g. [5]). Now write,

$$a_3 - \mu a_2^2 = (3\mu - 2)(a_3 - a_2^2) + 3(1 - \mu)(a_3 - (2/3)a_2^2),$$

and the result follows at once on using the theorem already proved for $\mu = 1$ and $\mu = 2/3$. Equality is attained when $b_2 = b_3 = 1$, $\alpha_2 = 1 - \alpha_1^2$ with

$$\alpha_1 = \frac{2-3\mu}{6\mu} \pm i \frac{\sqrt{6\mu-4}}{6\mu}.$$

We now obtain the radius of convexity for J.

THEOREM 4. Let $f \in J$, then f maps $\{z : |z| < 1/3\}$ onto a convex set. The function F given by (4) shows that this result is best possible.

Proof. Differentiating $zf'(z) = \phi(z)p(z)$ logarithmically, we have

$$1 + \frac{zf''(z)}{f'(z)} = \frac{z\phi'(z)}{\phi(z)} + \frac{zp'(z)}{p(z)},$$

from which it follows that

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) \ge \operatorname{Re}\frac{z\phi'(z)}{\phi(z)} - \left|\frac{zp'(z)}{p(z)}\right|. \tag{9}$$

Since $\phi \in C$,

$$\operatorname{Re} \frac{z\phi'(z)}{\phi(z)} \geq \frac{1}{1+r},$$

see e.g. [4]. Also [3],

$$\left|\frac{zp'(z)}{p(z)}\right| \le \frac{2r}{1-r^2}.$$

The result now follows at once from (9).

We finally consider a problem concerning the partial sums of functions in J. We prove the following:

THEOREM 5. Let $f \in J$ and be given by (1). For $n \geq 2$, define f_n

$$f_n(z) = z + \sum_{k=2}^n a_k z^k.$$

Then for n=2 and $n\geq 4$,

$$\operatorname{Re}\frac{zf_n'(z)}{\phi_n(z)} > 0 \tag{10}$$

for $z \in \{z : |z| < 1/3\}$, where $\phi_n(z) = z + \sum_{k=2}^n b_k z^k$ and where b_k is given by (5) for $2 \le k \le n$. The result is sharp.

We are unable to prove the result in the case n=3.

Proof. For $n \ge 2$, write $f(z) = f_n(z) + r_n(z)$ and $\phi(z) = \phi_n(z) + s_n(z)$. Then since $|a_n| \le 2 - 1/n$ and $|b_n| \le 1$, it follows that

$$|zr'_n(z)| \le \frac{r^{n+1}}{(1-r)^2} [2n(1-r) + (1+r)$$
 (11)

and

$$|s_n(z)| \le \frac{r^{n+1}}{1-r}.\tag{12}$$

Thus for |z| = r = 1/3

$$\operatorname{Re} \frac{zf'_{n}(z)}{\phi_{n}(z)} = \operatorname{Re} \frac{zf'(z)}{\phi(z)} + \operatorname{Re} \left(\frac{[zf'(z)/\phi(z)]s_{n}(z) - zr'_{n}(z)}{\phi(z) - s_{n}(z)} \right)$$

$$\geq \operatorname{Re} \frac{zf'(z)}{\phi(z)} - \frac{|zf'(z)/\phi(z)| |s_{n}(z)| + |zr'_{n}(z)|}{||\phi(z)| - s_{n}(z)|}$$

$$\geq \frac{1-r}{1+r} - \left(\frac{1+r}{1-r} \frac{r^{n+1}}{1-r} + \frac{r^{n+1}}{(1-r)^{2}} [2n(1-r) + (1+r)] \right) \left(\frac{r}{1+r} - \frac{r^{n+1}}{1-r} \right)^{-1}$$

$$= \frac{1}{2} - \frac{4(2+n)}{3^{n}-2} > 0,$$

when r=1/3, where we have use (11) and (12) and distortion theorems for the classes C and P. Thus (10) is proved when $n \geq 4$ and when |z|=1/3. Since $\text{Re}(zf'_n(z)/\phi_n(z))$ is harmonic, it follows from the minimum principle that (10) is valid in $\{z:|z|\leq 1/3\}$ and $n\geq 4$.

When n=2 we note that

$$\operatorname{Re} \frac{zf_2'(z)}{\phi_2(z)} = \operatorname{Re} \frac{1 + 2a_2z}{1 + b_2z} = 1 + \operatorname{Re} \frac{(2a_2 - b_2)z}{1 + b_2z} \ge 1 - \frac{|2a_2 - b_2||z|}{1 + |b_2z|} > 0$$

for $|z| \le 1/3$, where we have used the fact that $|2a_2 - b_2| \le 2$, which follows easily on equating coefficients in the representation $zf'(z) = \phi(z)p(z)$ and the inequality $|b_2| \le 1$. We note that when n = 2 and F is given by (4),

$$\frac{zF_2'(z)}{\phi_2(z)} = \frac{1+3z}{1+b_2z} = 0$$

when z = -1/3 and so the result is best possible.

REFERENCES

- [1] F.R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
- [2] W.K. Hayman, Multivalent Functions, Cambridge University Press, 1959.
- [3] T. H. Macgregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514-520.
- [4] A. Marx, Untersuchungen über schlicht Abbildungen, Math. Ann. 107 (1932), 40-67.
- [5] Z. Nehari, Conformal Mapping, McGraw-Hill, 1952.
- [6] M.I.S. Robertson, On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.

Department of Mathematics and Computer Science University of Wales Swansea SA2 8PP, Great Britain

(Received 20 12 1989)