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DYHEDRAL HYPERHOMOLOGY OF A CHAIN ALGEBRA
WITH INVOLUTION

A. Vu&ié and R. Zivaljevié

Abstract. It is shown that Goodwillie’s results from [G] (see also Rinehart [R]), on
homotopy invariance of certain groups associated with HC.(A), with respect to the action of a
(graded) derivation D : A — A of a (graded) k-algebra A can be extended to the case of dihedral
{hyper)homology HD.(A) of a (graded) algebra A with involution. These results provide a tool
for computations of the Hermitian algebraic K-theory of A in terms of dihedral homology.

0. Introduction.

Goodwillie showed in [G] that the homotopy invariance of the de Rham coho-
mology can be meaningfully extended to the case of the cyclic homology HC.(A) of
a (graded) k-algebra A. In this generalization, the homotopy invariance of the de
Rham cohomology is replaced by the invariance of certain groups, which are directly
tied to HC, (A4), with respect to the action of a (graded) derivation D : A — A of
s (graded) k-algebra A. Let us note that an early result of this type (and the one
that plays a key role in [G] and our paper, see Proposition 1.7) has been proved by
Rinehart long before the cyclic homology was defined (see [R]). One of the groups
which is left invariant under the action of a derivation is the so called periodic
cyclic homology HCE®(A) of an algebra A. As a direct consequence Goodwillie
obtains a useful result which states that under some not too restrictive conditions
(one-connectedeness) a homomorphism f : A — B of (chain) algebras induces an
isomorphism f, : HCP®"(4) — HCY®"(B). This result plays one of the key roles in
his computation of the relative rational algebraic K-theory K.(f) ® @ in terms of
the cyclic homology for one-connected map of simplicial rings.

The objective of this note is to extend Goodwillie’s results to the case of
dihedral (hyper) homology HD,(A) of a (graded) algebra A with involution. Qur
intentlon is to use these results in computations of the Hermitian algebraic K-theory
of A in terms of dihedral homology.
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1. Periodic Dihedral Homology and Derivations

The reader is refered to [KLS], [Lod], and [Ts] for the foundations of dihedral
homology. For convenience we give a brief overview. Z denotes the small category
(see [KLS]) which produces dihedral objects as contravariant functors from Z into
an appropriate category. The category Z is briefly described as the usual small
category A, used in the definition of simplicial objects, enriched by the dihedral
group of automorphisms of [n] € Ob(A). This group is generated by 7, (cyclic
permutation) and p, (reflection) and the interaction of these new morphisms with
the usual face and degeneracy operations is given by the following list:

Tna:; = a:._l'rn—la 1<i<n, pna:; = 61?_ipn—‘1) 0<iLn,
Tﬂ"’{l = 0.,,11—17."+1’ 1 SJ S n, PnU{; = G'?,_jpn+1, 0 S .7 S n,
Tr?+1 = 1), przz = 1), TnPn = Pn'rn_l

If D:Z° — T is a dihedral object in category 7, we put t, := D(7,) and
rn := D(pn). In analogy with the bicomplex which is used to define the cyclic
homology, one defines, (see [KLS)), for every dihedral k-module U : Z°P — Mody,
or more generally for every dihedral object in an abelian category, a tricomplex
D = (D97, 61,682,683 | p,q,r, > 0), where DP%7 := D([q]).
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The differentials of this tricomplex, é;, 62,83, are defined as follows. The
horizontal differentials, é; and é, are the differentials used in the usual definition
of the cyclic homology. The veritical differential §3 : DP¢"+1 — DPOT i defined
so that the bicomplex which arises in the z, z plane of the tricomplex above defines
a free biresolution for the dihedral group (compare [Lodd, Lemma 1.3.1]). The
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explicit definition of these differentials is given by the following formulas [KLS).
(=11 +(-1y"*'R;), p=0 (mod4)
(=D (1+(-1)"R,T), p=1 (mod 4)
(=111 + (~1)*'R,), p=2 (mod 4)
(-1 (14 (=1)"R,T;), p=3 (mod 4),

where Ty := (~1)?t, and Ry := (—1)9(0+1)/2p
By definition, the dihedral homology HD.(D) of the dihedral obJect D is the
homology of the total complex of D.

Defintlion 1.2. An algebra with involution (4, * ) is a k-algebra supplied
with an anti-automorphism of period two, i.e. * : A — A, a — a*, is an algebra
automorphism satisfying the conditions (a) (a*)* = a and (b) (ab)* = b*a*. A
derivation D of the algebra A is said to be compatible with * if D(a*) = (D( a))*
In that case D will be called a derivation of the algebra with mvolutlon (A, *).

Each algebra with involution produces naturally a dihedral module (see
[KLS]) which we denote by D(A), so D(A) is a contravariant functor from ‘the
category E into modules defined by D(A)([n]) := A®("+1) hence the corresponding
tricomplex D(A) is described by D(4)P4" = A®(9*’1) Dihedral homology of this
object is denoted by HD.(A).

Our next objective is to define periodic dihedral homology. For this purpose,
we extend the tricomplex D periodically in the negative direction of the z axes.
Actually, D can be extended in the direction of any vector —e € Z3 if e represents
a translation of the tricomplex into itself which preserves the differentials. The
semnigroup of these translations is generated by the three minimal translations ¢; =
(4,0,0), c2 = (2,0,1) and ¢z = (0,0,2). Let us denote by s; the map of the
tricomplex (1) described as the composition of the translation in the direction of
—c; and restriction to the first quadrant. These maps sy, s; and s3 induce chain
maps on the total complex Tot,(D) := ®ptgtrzs DPO7 of (1) of degrees i — 5,
¢ = 1,2,3. We will denote both these chain maps and the induced homomorphisms
of d!hedral groups HD.(D) by the same letters s;, i = 1,2, 3.

Definition 1.3. Let us define ;DY := = lim{Tot,(D), s;} where s; : Tot,(D) —

Toty_4,(D) is the eplmorplnsm defined above, i = 1,2,3 and di = 5—1. The
homology of ;DE*" is denoted by ; HDP®".

The following isomorphism is immediate

(1.4) §; =3 HDEer(D) —_— HDSird‘,(D).
One has the following short exact sequence:
(1.5) 0 — lim* HDuyg;n41 — ; HDP®" —s lix_nHD*.‘.d'.n — 0

which is analogous to the sequence given in [G, 11.3.2]. Also note that a short exact
sequence of dibedral objects induces a long exact sequence in ; HDP®".
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Let us equip the total complex Tot.(D) with the filtration F, =
Fr(Tot, (D)) := ®{D?" | p,q,> 0,0 < r < m}. One observes that F,/Fp_; is
the double complex which produces the cyclic homology HC.(A) so the El-term
of the corresponding first quadrant spectral sequence converging to HDp,y, (A) is
given by E}, , = HC,(A). From here we obtain a first quadrant spectral sequence:

(1.6) {E;,=HC,(D),§} = HD.(D)

where 6 is induced by &3.

Let D be a derivation of an algebra with involution (4, * ). One defines,
following Goodwillie, a map Lp : D(A) — D(A) of the associated dihedral objects
by the formula

n

Lp(ao,...,an) = Z(ao,... ,Daj, ... a,), (ag,...,an) € A®( 1),
i=0

Lp induces a homomorphism of dihedral homology groups which will be denoted
by the same letter. The key observation is the following result which is directly
motivated by Corollary I1.4.6 in [G]. Actually, this corollary was already proved by
G.S. Rinehart, which was kindly pointed to us by the referee, in [R].

ProposiTioN 1.7. Lp o s; := HD,(A) — HD._4,(A), 1 € {1,2}, is a zero

homomorphism.

Proof. We will reduce this result to Corollary 11.4.6 mentioned above which
claims that Lp o s = 0 : HC,(A4) — HC,_2(A). Let us note that the map s; :
Tot,(A) — Tot,(A) is compatible with the filtration F,, defined in (1.6) above and
that the induced map on Fy,/Fn-1 is s> %, i =1,2. So Lp o s; induces a map of
spectral sequences (1.6) which is Lp o s~* = 0 on E'-terms by the coroilary above.
Hence, by passing to the limit one obtains Lp o s; = 0.0

The following proposition shows that in the case 1/2 € k neither s» nor s3
give an interesting periodic homology.

ProposiTION 1.8. If1/2 € k then
(a) si =0:HD.(A) —» HD._g4,(A), fori=2,3 and
(b) ;HDE"(A) =0, fori=2,3.

Proof. (a) Let us give the proof for the case i = 2; the proof for the other case
is similar. Recall (see [KLS]) that HD.(A) comes with its companion homology
~HD.(A4) which is coming from the tricomplex obtained by deleting the first hor-
izontal stratum of the original tricomplex. By Theorem 3.3 in [KLS], if 1/2 € k,
then one has a natural isomorphism HC, (4) = HD.(A4) ® "HD.(A). This isomor-
phism is obtained from the long exact sequence associated with the short sequence
of chain complexes 0 — Tot, C(A) — Tot, D(4) — Tot, D(A)[-1] — 0.
Here, C(A) is the bicomplex producing cyclic homology while ~D(A) is the tricom-
plex which produces the companion dihedral homology. One observes that s, is
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well defined as a map of this short sequence into itself which induces a zero homo-
morphism s2 = 0 : HC,(A4) — HC._3(A). Hence, by the splitting above, the same
holds for the dihedral homology.

(b) This equality follows from (a) and the short exact sequence (1.5).

Proposition 1.7 above is all we need to establish, by mimicking closely the
argument given in [G], the following theorem.

THEOREM 1.9. Let k be a field of characteristic zero, A a k-algebra with invo-
lution * and I C A a nilpotent ideal invariant with respect to , i.e. (I} C I. Then
the natural map A — A/I induces an isomorphism HDP'(A) — HDP*(A/I), for
ie{1,2}.

Proof. We refer the reader to the proof of T.I1.5.1 in [G]. Let us mention
only that our Proposition 1.7 plays the role of Corollary 11.4.6 which provides a key
step in the proof of T.I1.5.1 in [G].(3

2. Dihedral Hyperhomology

Chain Algebras with Involution. Since we are mainly interested in the
case of chain algebras, our next objective is to extend the technique of the preceding
paragraph to this case. The following is an extension of the definition 1.2 to the
cazc of differential graded algebras or chain algebras as they are called in [G].

Definition 2.1. A chain algebra with involution (CAI) (A, D, ) over k is a
nonnegatively graded associative k-algebra A with identity together with k-linear
maps d: A — A of degree —1 and *: A — A of degree 0 satisfying

d(ab) = (da)b+ (—1)%a(db) (a*)' =a
=0 (ab)* = (=1)°tb*a*
d(a") = (da)*.

A map of CAl is a map of algebras which commutes with differential and
involution.

Ezample 2.2. If X is a topological monoid with involution then S(X, k), the
singular chain complex of X, has a structure of CAL

The Dihedral Chain Complex (DCC) Associated to a CAL
Definition 2.3. Let (A, D, *) be a CAI over k which is flat as a k-module. Then
we define a dihedral object D(A,d, *) in the category of CAI {and hence in the
category of chain complexes also) by Dn(A,d, *) = (A, d, )8 +1) where involu-
tion is defired by (aq, ... ,an)* = (=1)¥%%(a},... ,a}) and the sum is taken over
all pairs (7, 7) with 0 < i < j < n. We write ¢; in the exponent instead of ja;{, the
degree of a;. It is easy to check that D, (A, D, *) is a CAL

Face and degeneracy maps as well as the cyclic group action are defined as in
[G]. The involution rn41 : D, — Dy, is given by:

Pas1(@g, ... ,an) = (=1)F%%(af al, ... ay%)
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where the sum is taken over all pairs (,j) with 1 < i< j < n. It is easy to check
that all the necessary equalities hold.

Dihedral Hyperhomology. Definition 3.4. Let (C,d) = (Cs.,d) be a
dihedral chain complex. Then the three-complex D*** in the category of chain
complexes is in fact a 4-complex of k-modules whose homology we call dihedral
hyperhomology of (Cx «,d) and denote by HD,(C. ., d). This definition is parallel
to the definition of cyclic hyperhomology and is equivalent to the- definition of
dihedral hyperhomology given by [Lodd]. This holds because total complexes and
differentials of the 4-complex and the appropriate bicomplex coincide.

Homomorphisms 3;,3;,83. The 4-complex D = {D**** 6;,6q,63,64}
associated to a dihedral chain complex (C,d) is the following (Here (C), 4,d) is a
chain complex for each n > 0): Dr™h* = Cmky, MMy Lk > 0 and the differentials
are

61 . Dn,m,l,k Dn—l,m,l,k

(52 . Dn,m,l’,k — Dnim—l’l'k same as in (1-1)
(2‘5) 63 . -Dn,m,l,k —_— anmyl_llk
64 :Dn,m,l,k —_ Dn,m,l,k—l’ b4 = d.

As in §1 there are three periodic maps 5; : D — D of degrees (—4,0,0,0),
(-=2,0,~1,0) and (0,0, —2, 0) respectively. They induce three surjective chain maps
s; : Tot, D — Tot,_gq, D, where d; =5 —1, 7 = 1,2,3 and the maps in HD, as well.

Long Exact Sequence. Let D be a 4-complex obtained by cutting off the
level | = 0 from D. Define [KLS]

(2.6) “HD.(C, d) = H.(Tot.("D)).
As in [KLS] we obtain the following results.

LEMMA 2.7. There is a long ezact sequence

-+ — “HD,(C,d) — HC,(C,d) — HD,(C,d) — "HD._1(C,d) — - --

Proof. We have a short exact sequence of 4-complexes
0—C-5D2 D0

where C is a cyclic 3-complex viewed as a 4-complex which is zero if 1 # 0, and
p is a projection of degree (0,0,—1,0). It induces a short exact sequence of total
complexes which completes the proof.

THEOREM 2.8. If1/2 € k, then, there is a splitting, HC,(C, d) = HD..(C, d)®
~HD.(C, d).
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Proof. First note that py : HD.(C,d) — “HD._1(C,d) is the zero homo-
morphism if 1/2 € k. Hence the long exact sequence (2.7) splits into short exact
sequences '

0 — ~HD,(C, d) -1+ HC,(C, d) = HD.(C, d) — 0.

We also have the other short excat sequence with HD and “HD intercahanged and
joi=1implies the splitting.(]

COROLLARY 2.9. If1/2 € k, then:

(a) si = 0 : HD.(C,d) — HD._4,(C, d), fori=2,3.

(b) i HDE**(C,d) =0, fori=2,3.

Proof. Note that s; : D — D is a zero map when restricted to cyclic sub-
complex C. Hence induced map on HC, is zero. Now use Theorem 2.8. Part (b)
follows directly from (a).0

Spectral sequences. If we filter D by
pn.mlE 1< q'

Fn,m,l,k -
1 0, otherwise

and take homology of the total complexes we get a naturz] spectral sequence

El :{ HCP(C:d)» P:QZO
p!q

2.10)
(2.10) 0, otherwise

} = HD.(C,d)

with differential d! : E} , — E} ,_, induced by 6.

We miay filter D in 82-direction by taking two new levels at a time. Note that
3-complex D™*** is acyclic for n odd, while for n even the homology of its total
complex is Hy(Z2, C}(C, d)), (the hyperhomology of Z, with coefficients C*(C, d),
the Hochschild bicomplex of chain algebra (C,d)), for n even. We get a spectral
sequence

H, o(Z2,CH}C,d)), forg>p>0
0, otherwise

(2.11) E,,= { } = HD.(C, d)

with differential d : £} , — E}_; ; induced by §;.
Let us list, for the record, a few standard observations.
LEMMA 2.12. A short czacl sequence
0—(C',d) — (C,d) — (C",d) — 0

of DCC tnduces a long ezacl seguence

c+s = HDp1(C", d) —s HD,(C’,d) — HD(C,d) — HD,(C",d) — - - - .
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Proof. A short exact sequence of DCC induces a short exact sequence of
4-complexes and hence of their total complexes and finally we get a long exact
sequence involving dihedral hyperhomology.

Note that a short exact sequence of CAI induces a short exact sequence of
appropriate DCC and hence a long exact sequence in HD.

Definition 2.13. A map (X,d) — (Y, d) of dihedral chain complexes is and
equivalence if for each n > 0 the chain map (Xp,d) — (Ya,d)isa quasi-isomorphism
i.e. induces isomorphisms in homology.

PROPOSITION 2.14. An equivalence induces an isomorphisms of HD,.

Proof. Note that an equivalence between DCC is also an equivalence between
cyclic chain complexes and hence it induces an isomorphisms of HC., [G, Prop.
I11.2.7]. Now use the spectral sequence (2.10).

Definition 2.15. A map (A, d, *) — (B,d, *) of CAl is an equivalence if it is

an equivalence as a chain map.

PROPOSITION 2.16. Any equivalence f : (A,d, *) — (B,d, ) of flat CAI
induces isomorphisms of HD,.

The proof is similar to the one of Proposition 2.14. Here we use [G, Prop.
111.2.9].

Relative HD.. As in the cyclic case we may define relative dihedral hyper-
homology of a map f : (X,d) — (Y, d) between DDC’s by HD.(f) = HD. (M),
where M7 is a DCC with MJ = algebraic mapping cone of the chain map
fn 1 (Xn,d) — (Yn,d). The short exact sequence

0 — (X,d) — (Y',d) — (M!,d) — 0
of DCC’s induces a long exact sequence in HD,
(2.17) -++ — HDn(X,d) — HD,(Y,d) — HD,(f) — HDp_1(X,d) — --- .

Periodic HD. As in Definition 1.3 we have three periodic dihedral hyperho-
mologies. To be more precise define

',Dfer(X, d) = E_I_H{T0t~+kd;(v,5i)} = H prmlk _ Tot,(,-’P)
k n4mldk=»

where the 4-complex ;P is obtained by extending the 4-complex D along the dif-
ferential &, for i = 1; along the differentials 6! and 62, for i = 2; and along 63, for
i=3.

Define the i-th periodic dihedral hyperhomology of DCC(X, d) by

(2.18) HDP*f(X,d) = H.(;DP*"(X,d),6), i=1,2,3.
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Here 6 is the induced differential from the appropriate 4-complex. Obviously they
are periodic with periods 4, 3 and 2 respectively. If (A4,d, ) is a CAI e write
;HDE" (A, d, *) for ; HD2*"(D(A, d, *)).

LEMMA 2.19. We have an exact sequence
0 — lim * HD. r4k41(X, d) — 1 HDE*'(X, d) — imHD\ 442 (X, d) — 0
k E

where limits are taken wilh respect o s;.

There are similar exact sequences for s; and ss.

Proof. There is a short exact sequence of chain complexes

0 — Tot.(P) — [[ Totx(@)=% J[ Tota(D)—0.
k=+ (mod 4) k=» (mod 4)

Note that the homology of the first complex is  HDY*" (X, d) while the homology
of the other two complexes is the product of HDx (X, d), k£ = * (mod 4). Hence we
have a short exact sequence

0 — cokerp41(1 — s1) — 1 HDE* (X, d) — ker,(1 — 51) — 0
which proves the lemma.[d

Note also that a short exact sequence of DCC induces long exact sequences

involving  HDE®".

Derivation and HD,. Definition 2.20. A derivation of CAI is a map of CAI
D:(A,d, x) — (A,d, =) of degree 0 such that D(ab) = D(a)b+ aD(}).

If D is a derivation of (A,d, ) define Lp : D(A,d,*) — D(A,d, *)
by Lp(ag,...,an) = ~o(d0,...,Da;,...,an). One checks that Lp
Dn(A,d, ) — Du(A,d, *) is a map of CAI of degree 0 a.nd that it is a map
of DCC D(A,d, #) to itself.

LEMMA 2.21. With the selting as above we have

Lp os; =0:HD.(X,d) = HD._4(X, d), and
Lp osy =0:HD.(X,d) — HD._3(X, d).

Proof. Lp and s induce maps from the 4-complex D(A4,d, *) to itself of
degrees (0,0,0,0) and (—4, 0, 0,0) respectively. They induce maps from the spectral
sequence (2.10) to itself of degrees (0,0) and (—4, 0) respectively. Now note that

si=s" 1 E) = HC(X,d) = E,_, , = HC,_4(X, d)

and use a result from {G, Corollary I111.4.4] to get that Lp o s; is the zero map
on the level of spectral sequences and therefore it is t he zero map of dihedral
hyperhomology.
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For s the proof is similar. One has to note that
s9=28: E';’q = HC,(X,d) — ;_2,‘1_1 =HGC,_o(X,d). O

Observe that Lemma 2.21 is not valid for ss3.

Now we have the following result. Since we made all the necessary prepara-
tions the proof of [G, Theorem II1.5.1] works here as well.

THEOREM 2.22. Let (A,d, *) be a CAI over a field k of characterisiic zero,
and let I C A be a CAI ideal (a graded ideal satisfying dic Iand I* CI)
and assume Iy = 0. Then the quotient map (A,d, *) — (A/l,d, *) induces the
isomorphisms

HDP®'(A,d, ¥) — ;HDE*"(A/1,d, ),  fori=1.2.

The Non-Flat Case. As in [G, IV.1] we may extend the definition of
dihedral for non-flat CAL If (4, d, *) is a CAI then there is a flat CAI (Ra,d, *)
which is naturally equivalent to it. The same construction as in [G, IV.1.1] works
here (the involution on R4 is obvious). Now define HD.(A,d) := HD.(Ra, d).

THEOREM 2.23. Any one-connected map (A,d, *) — (B, d, *) of chain alge-

bras with involution over a field k of characteristic zero induces the isomorphisms
;HDP (A, d, ) — ;HDE*"(D, d, ), fori=1,2.

Proof. We need two lemmas to reduce to the case of the projection map

(A, d, ¥) — (A/1,d, *).

LEMMA 2.24. Any zero-connected map of CAI over a commulative ring k
with Q@ C k can be factored as an equivalence composed by a surjection.

Proof. Let f: (A,d, *) — (B,d, ¥) be a zero-connected chain map. Define
(C,d, *) to be the following chain algebra with involution:
anAn®Bn+1@Bn, Hn>0
Co = {(a,%,y) € Ao ® B1 ® Bo | dy = z — f(a)}
(a,9,2)(d, ¥, ) = (aa, EEEL[ K82y 4 (-1 LR o)
for (a,y,2) € Ci, (d',¢,2") € Cj
d(a,y,z) = (da,(-1)"nf(a) + Fydy+ (-1)* nz,dz)
for (a)y: Z) € Cﬂ
(a,9,2)" = (a",¥",2").
Straightforward calculations show that (C,d, *) is a chain algebra with invo-
lution. ‘
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One easily checks that the following maps are maps between chain algebras
with involution

h:(A,d x)—(C,d, x), h(a)=(a,0,f(a))
g:(C,d, x)— (B,d, *), gla,y,2) =z .
[:(C,d,*)—(A,d, *), l(a,y,2) = a.

It is also easy to see that: f = go h, g is a surjection, h is an equivalence with
homotopy inverse I. For the last assertion note that o h = 1 and that

ha:Cn—Cnyt,  hala,9,2) = (0,0, 53 y)
is a chain homotopy between hol and 1.

We are not able to avoid the condition @ C k although it looks reasonable %o
expect that this assumption is not necessary.

LEMMA 2.25. For any one-connected surjection (A,d, *) — (A/J,d, x) of
chain algebras wiik involution there is a commutative diagram

(T,d, *) —— (4,d,*)

!
! |
(7‘/I)dl *) - (A/Jld *)
of chain algebras with involution such that horizontal maps are equivalences, T is a

tensor algebra, the chain ideal I is generated as an ideal by a subset of tensor basis,
and Iy = 0.

The proof is the same as of [G, Lemma IV.2.3]. The only difference is that
one has to check that the obvious involution on the chain algebras involved gives
the structure of CAI and that all maps are maps of CAIL

Now uﬂing Lemma 2.24 we reduce to the case of a surjection (A,d, *) —
(A/I,d, ) and by Lemma 2.25 we assume that (4,d, *) is free and that Io = 0.
By Theorem 2.22 we are done.

COROLLARY 2.26. Let a be a CAL Then, ; HDE®"(A) = ; HDES"(Ho(A)).

Proof. We see Hy as CAI with Ho(A) on the 0 level and 0 otherwise. 1t is
easy to check that Ho(A) is a CAL

The projection A — HO(A) is a map of CAI which is 1-connected, hence it
induces an isomorphism ; HDE*'(A) = ; HDE*"(HgA), * > 0, i = 1,2, by Theorem
2.23. Finelly, let us note +ha.i: HDper(HoA) =; HDP“(H A).

The same proof as of [G, Theorem IV.2.6] gives the fcllowing
THEOREM 2.26. Lel f : (A, d, *) — (B, d, *) be a one-connected map of chain

k
algebras over a commutative ring k, with @ C k. The map HD.yr4,(f) Z5 HDL()
is zero for * < k and 2.
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