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TIIDEMAN’S ITERATIVE ALGORITHM

A. H. Osbaldestin and P. Shiu

Abstract. R. Tijdeman introduced the following algorithm: Let § > 2, and define (a,)
inductively by ao = 1, @nt1 = {faa]+1, (n > 0). Then the sequence (a,/6™) converges to a limit
r which has special properties relevant to “Mahler’s ?__—-problem" . Here we study z as a function
of § in the interval (1,00). We give some basic results concerning its behaviour at rational points,
and we prove that it is discontinuous in a set of rationals which is dense in (2,00). We also give
a method for the evaluation of z(§) when ¢ is in various families of algebraic numbers.

1. Introduction. Let § > 2 and define (a,) inductively by
ag = 1, any1 = [fan]+1, n >0, (1.1)

and then set

Zn = 2n(8) = an/0n, n > 0. (1.2)
Tijdeman [1] proved that the sequence (z,) converges to a limit = which has the
remarkable property that

0<{z8"} <1/(0-1), n>0; (i.3)

here {z} denotes the fractional part of z.

Actually the limit
z=z(f) = lim z,(0) ’ (1.4)

still exists when 1 < 8 < 2; but, of course, (1.3) now becomes a triviality. The
purpose of this paper is to study z as a function of 8 in the interval (1,00). As
we shall see, the function is always continuous from the right, and is continuous at
each irrational number. The situation at a rational point is complicated, and we
have not been able to prove that z is discontinuous at each rational number. Let
D denote the set of discontinuities of x, so that D is a subset of the rationals in
(1, 00). We shall prove

THEOREM 1. The set D of discontinuities of x is dense in the interval (2, 00).
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Although it is easy to see that
z(k) = k/(k-1), k=23,4,... .

the determination of z(8) for any rational non-integer § such as 3/2 seems to be
related to the “3/2-problem” of Mahler which was the inspiration of Tijdeman’s
paper [1]. We shall say more on this in Remark 2 of Section 5. On the other
hand we can determine z(f) for various families of algebraic numbers 6, the most
interesting being

=X =(k+Vk2-4)/2, k=3/4,5,.... (1.5)

Since Ay is irrational, we know that z is continuous there. Furthermore, as we shall
see in our proof of Theorem 1, the function z is “continuous when decreasing” in
the sense that

lim z(8) < z(a) = lim z(6), o> 1. (1.6)
f—a. f—ay
It is therefore rather surprising to have

THEOREM 2. Each A in (1.5) is @ strong mintmum of the function z, and

() =2 /(A2 -1), k=3,4,5.... (1.7)

The method used in the evaluation of (Ax) can be applied to various families
of algebraic numbers. We shall say more about the method after we prove:

THEOREM 3. Let h > 1, and let A be the root of zPH1 — 2P — ... 21 =0
satisfying 1 < A < 2. Then

1 (DM R4 4251
h (h+ 1A —hX-1T . )1

z(A) =

Figures 1, 2 and 3 are graphs of z,(8) for 1 < # < 4and 1 < n < 50.
In accordance with Theorem 2 it will be observed that there is rather strange
behaviour in z,(f) in the neighbourhood of 1 + g = g% where g = (1 4+ v/5)/2 is
the golden ratio. It was our initial calculations for a,(6) in the neighbourhood of
g? led us to the formula

a"(e) = fans1s for _fzﬂi__l <f< fany1 ,
f2n~1 f2n—1

where f, is the n-th Fibonacci number. It follows easily from f, ~ g"*t!/\/5, as
n — oo that v/5z(g?) = ¢%. The proof that g2 is a minimum depends heavily on the
identity f3.,; — fan4+3fan—1 = 1. Theorem 2 is a generalization of this discovery
and Theorem 3 is an extension of the method used.
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Figure 1. Graph of z17(8) with 2 < 8 < 4.
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Figure 2. Graph of z44(f) with 2.61 < § < 2.625.
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Figure 3. Graph of z44(8) with 1.5 < 8 < 1.7.

2. Proof of Theorem 1. That (z,) converges to & uniformly in [1 + 6, c0)
for any 6 > 0 is implicit in Tijdeman’s paper [1]. As we shall see, the uniformity
aspect is crucial to our consideration. Since Tijdeman only dealt with the case
8 > 2, for completeness sake we repeat his simple and elegant argument. From
fa, < [8an)+1 = an4+1 and the definition of z, in (1.2), it follows that z, < zn41.
Next, for 0 < m < n, we have

67 (2n —2m) =67 Y (25— 2j-1) =07 D 07(aj —ba;),
m<ji<n m<j<n
and since a; — faj_y = [faj-1]+ 1 —fa;_; < 1 it follows that
I (an -z < 3 Om <30 = o‘i‘i
m<j<n i>0
Therefore, for 0 < m < n and § > 1,
2m(6) < 2a(6) < 2m(6) +1/0m(0 = 1).
That 2(8) = lim, .o 2 (f) exists now follows at once. Indeed, we have
zn(0) < z(8) <zm(0)+1/6™(6 - 1) (2.1)

for all m > 0 and § > 1. In particular, if § > 1+ 6, then 0 < 2(f) — zm(0) <
1/(1+ 6)™$, so that (zm) converges to z uniformly in [1 + 6, c0).
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We can now prove (1.6). The integer part function satisfies

al_i’rg_[(‘)z] <laz] = eEm [62]; (2.2)

ay
indeed we can specify the left-hand side here by
{ az—-1, ifaz€Z,

lim [§z] =
im [02] [az], otherwise.

—

(2.3)
It is clear that, for every fixed n,
lim a,(8) < an(a) = lim a,(8),
f—a_ oy
so that
lim z,(8) < z,(a) = lim z,(6).
f—a_ f—ay

Now let n — oo, and the required result (1.6) follows from the uniform convergence
of (zn) to z.

This shows that the function z is always continuous from the right, and that
it is also continuous at each irrational &. The discussion on whether z is continuous
at a rational « = p/q is deeply involved with the numbers

Jn = ja(a) = an(e) - ol_i.r;l_ an(6), n> 0. (2.4)

We shall require the following

LEMMA 1. Let o = p/q > 1, and let j, be defined by (2.4). Then jop1 > Ja.
Furthermore, let r,, be defined by

Tn = pas(a) (mod ¢), 0<r, <g;
then jni1 > Jn if either ry < (p = q)jn 07 jn = an(a) (modyq).

Proof. Write a, = an{a) and let § be smaller than « but sufficiently close to
a; for example close enough to ensure that the function a,41 is continuous in the
interval (6, ). Then by the definition of j, in (2.4) we have a,(8) = a, — jn and
0 an4+1(0) = [0(an ~ jn)] + 1. It now follows from (2.3) that

SET ant1(0) = [a(an = jn)] ~en + 1,

where e, =1 or 0 according to whether j, = an(a) (modq) or not. But ant1{e) =
[an] + 1 so that joy1 = [@an] — [e(an — ju)] + en. Next, by the definition of r,,,
we may write pa, = dg + r,, that is aa, = d+ r, /¢ and so
a(an —jn) = d+(ra ~pjn)/a=d~ja+ (ra — (P — 9)in) /g
which then gives
Jnt1 = Jn - [(Tn -(p- Q)jn)/9] + én.
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We can now use this iterative formula for j, to prove the lemma. Consider
the case j, = 0 first. Then clearly jn41 > 0 = j,. The condition r, < (p — ¢)jn
cannot be satisfied, and, if e; = 1 then jo41 = 0—[rp/g] +1 =1 > j,. Consider
next the case j, > 1. Since r, < ¢ we now have

Jntr 2 n~[la—(P—0) /2| +en =jn —[2— ] +ea.

But 2 — a < 1 so that we always have ju41 > jn, and with strict inequality when
either @ > 2 or e, = 1. Finally if r, < (p — ¢)Jjn, then we simply argue that

jn+1 > Jn— (rn - (P— Q)jn)/q > Jn. D
LEMMA 2. Let o = p/q > 1. Suppose that there ezists n such that
n(a) 2 1/(a—1) =q¢/(p—9)- (2.5)
Then a € D. In particular, if @ > 2 and if there ezists a positive j,(«) then o € D.

Proof. From (2.1) and (1.2) we have

g;r(gl—_5= oln (an(e)+5i—1).

It now follows from (2.4) and (2.5) that

2(0) < za(6) +

g a—-1

fim 2(0) < = (on(@) = in(@)+ 227 ) < 22 = 2, (o)

but z,(a) < z(a) by (2.1), so that z is discontinuous at a. O

We can now deduce Theorem 1. Let 2 < o < # < 00, and suppose, if possible,
that, for every n > 0, the function a,(f) is constant in « < § < 8. We then have

Za(@) _ anla) B° _ (ﬂ

2.8) T an an(®) ‘) T mRTmes

o

contradicting the existence of z(a) and z(8). Therefore, for some n, the function
an(#) has a discontinuity in [a, 8]. By Lemma 2, the function z has a discontinuity
at 6 € [a, ] so that the theorem is proved. O

3. Proof of Theorem 2. Let £ > 3, and define (b,) inductively by
bo=1, bi=k,  bpys=kbyys — bn. (3.1)
It follows easily by induction that b, satisfies
b2 —bpy1bp_y =1; (3.2)
indeed, on solving the difference equation (3.1) we find that

,\n+2 -~ \-"

n = Tl_’ n> 0 (33)
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where A = Ay is given by (1.5). Write

m:[ﬁ:l b ) n> 1 (3.4)

bn—l ' bn-—l

it then follows from (3.2) that (B,) is a nested sequence of intervals whose in-
tersection contains exactly one point. Moreover, by (3.3), this point is given by
limy o0 b /bn—1 = A. The determination of z(}) is based on the following lemma.

LEMMA 3. Forn > 1, we have

an(8) = by, for @€ B,. (3.5)
Furthermore, if 0 satisfies
g > A, g € By, 0 & Bny1 (3.6)
then |
Ont1(0) = bpyr + 1. (3.7

Proof. We prove (3.5) by induction on n, the case n = 1 being trivial.
Suppose then that (3.5) holds, and let # € B,4;. Then, since § € B,y C By,
we have an(f) = b, so that, by (1.1), ant1 = [6b,] + 1. Now, by the definition of
Bp41 in (3.4), the condition 8 € Bn4y gives byyy — 1 < 0b, < b,y which gives
an+1 = (bngy1 — 1) + 1 = byyy and so completes the inductive step for (3.5).

Suppose now that 6 satisfies (3.6). Then

bn+1/bn S 9 < bn/bn—l
so that, on applying (3.2),

b2 bn_1bs
batr < Oby < - = 1;’ 1+ 1 <bpyr+ 1. (3.8)
n-1 n—1

Therefore, by (3.5}, »
ant1(0) = [fan(0)] + 1 = (0b,) + 1 = bpyy + 1.
The lemma is proved. 0O
We can now establish (1.7). Since A € B, for all n > 1 we have a,()) = b,,
and so z, = b,/A". The required result now follows from (3.3).

Finally we show that there exists § = §(A) > 0 such that 2(8) > z()) when-
ever 0 < |§ — A| < 6. According to (2.1) it suffices to find m, depending on 8, such
that

zm(0) > z(X). : (3.9)
We shall specify 6 later. Consider first the interval A — 6 < 8 < A\. We choose m
so that § € Bm, 8 ¢ Bmyi. Then, by (3.5) and (3.4), we have a,,(6) = b, and
6 < (bynt1 — 1)/dm so that

em(@) = 220 Sy <—b—"‘—) (3.10)

gm Bsr — 1
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we shall see later that this exceeds z(X).

Similarly, when A < 8 < A+ 6 we choose m so that § € B, and 8 ¢ B,,.
Then, by (3.7) and (3.4), we have a(f) = by + 1, and 6 < b1 /bm_3 so that

bm m—a ™
L 1) (P2 (3.11)
o bt

z,m(0) =

Let us write Uy, and V;, for the right hand sides of (3.10) and (3.11) respectively.
In order to establish (3.9) it remains to show that U, and V;, exceed z()) which
is given in (1.7). But it follows from (3.3) and the definitions of Uy, and V;, that
limpy, w0 Um = limm_,o Vi = 2(A). Therefore it suffices to show that (Um) and
(Vin) are decreasing sequences. We deal with the more delicate case of V,, and
consider

Vintr _ bmyr +1 bmoy ( b2 _, )m Il Y _ 2 \"
Vie b +1 bm bmbm-2 B b (bm + 1) b?n—l -1

using the identity (3.2). The first factor here is less than

bm+1/2 1 1
T %:+0<b“2;)

whereas the second factor is
1 m m
1+__) =1+o(_).
( b —1 b2,

Vm+1 1 m
7 <1—-2-E O<b—gn—><l

when m is large. Returning to the specification of 6, it is clear that m has to be
large when 6 is chosen to be small. The theorem is proved. O

Therefore

4. Proof of Theorem 3. We shall require the following:
LEMMA 4. Let h > 1 and define (b,) by

b0=1) bn:O lf TL<0, (41)
bn+1:bn+bn—1+"'+bn—h+1 if n > 0. )

Then _
0< b2 ~bpyibny1 <bp—baoy  if n> 1. (4.2)

Proof. Let the two required inequalities be denoted by P(n) and Q(n) which
we rewrite as

b b bn b1 —1
P(N): bHSbtl’ em): 3 lsb—ﬂ_—l‘
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The cases P(n), Q(n) with n < h can be verified directly. We now apply an
inductive argument in the following manner:

(1) P(n-2),...,P(n—h—1)= P(n),
@iy P(n-1),...,P(n~h)=Q(n).

We remark that the mediant of a collection of fractions lies between the minimum
and the maximum of the fractions. For (i) we consider

1 bn—l bn—2 bn-—h bn—h-—l
— < <L < .
1 bn_z ™ T bninct T bpopoo

Ca
IN

L+

e
We then have

L4 baor+ - +baop T4baor+ o+ bronot bn
I+bn ot - +bypopy =~ lbbpo+ - +bpp_a  bn_y

so that
1+bn—1+"'+bn-—h+bn b" .

< ;
1+ bn—Z +t bn—h—-l + bn-—l - bn-—l
which is just P(n). Similarly, for (ii), we consider

bn—h+1 < bn—h_

bn—l bn—? . bn-—h - bn—-,'.-—l
which gives
bn bn+bn—1+"'+bn—h
- <
Op_1 — bn—-l + bn-—2 R bn—h-—l
which is just Q(n). The lemma is proved. O

by —1 b,
Bn - [ bn—l ’bn—1>

then B,i1 C Bn, and we shall see later that the intersection of BB, is precisely
the point A in the theorem. If we now apply (4.2) in Lemma 4 (instead of the
identity (3.2)) into (3.8) in the proof of Lemma 3, then we again have a,(8) = b,
for § € B, n > 1. In particular, we have

2(A) = lim an(A)/A" = lim by/A". (4.3)

If we write

Let us write
fle)=2Mt o

sc that f(z) = 0 is precisely the auxiliary equation associated with the difference
equation {4.1), and that X in the theorem is the real zero of f(z) in the interval
(1,2). We shall require the resuit that the other zeros A; of f(z) are distinct and
satisfy |a;] < 1,1 < 7 < h. This can be establised by applying Rouché’s theorem to
show that the two functions (z — 1) f(z) = 2#+? ~2:*+1 1 1 and 22"+ — 1 have the
same number of zeros, namely h + 1 in the region |z| < 1 + ¢ for every ¢ satisfying
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0<e< 1/2. That |Aj| < 1,1 <j < hnow follows easily; indeed consideration of
the derivative of (z — 1)f(z) shows that these zeros are all simple.

Next, we write Ag = A and let

1 Ao -+ AR
1 Ay oo+ AR
A= . . :
1 A - ,\'}:

Then, on solving the difference equation (4.1) in Lemma 4, we have
bp = Ao/\8 +--'+Ah/\’,: - 1/h

where
(Ao, ,Ah)A:(bo-f-l/h, ,bh+1/h)

Since [M\jl <1< X =Afor1 <7< h, we now have lim, oo bn /a1 = Ap = A
This not only shows that (B, = {A} but also allows us to use (4.3) to write

z(A) = Ao = [Ao|/ |A] (4.4)

where Ay is the matrix obtained from A with the first row (1, Ao, ... , M%) replaced
by (bo + 1/h,... by + 1/h). The Vandermond determinant IA| and {Ag| have the
expansions '

A= T Gi=-2= T Co=d)x JI -2

0<j<k<h 1<5<h 1<j<k<h
; 1
|Aof = Z (1Y a; (bk + 3) X H (A = Xe)
j+E=h 1<j<k<h
where o; is the elementary symmetric polynomial in Ay, ..., Ap with degree j; that

is .
(z= A1) (2= Ap) = 002" - c12" 4 (=D,
But the left hand side here can also be expressed as

fz) PP -1
z—X z—A

=n+nM
where 1 = 1, 7j = Atj_1 — 1. Therefore (—1)70; = 7; and so (4.4) now gives

R I Q=22 = Y (hbe+ 1)1 (4.5)

1< <h j+k=h

But we also have

I O=-2)=FF0)=Gr+DA* = - =2 -
1<5<h
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moreover, since 7; = M —M-1_..._Xx=1, we find that the coefficient of X in
the polynomial )\, (hbi + 1) 7; is given by (with k = h — j)

—(hbo+1)—- - -—(hbr—1+1)+(hby+1) = hiby — - ~bo)—k+1=h—k+1=j+1;
in other words the polynomial concerned is simply
h
Y GHDA =2h+ )M - F(N).
j=0
Therefore (4.5) now becomes hf'(A)z(A) = 2(h + 1)A* — f/()), so that

(k)0 — ()
"N ="

and the required result follows from this. O

5. Remarks. 1. Lemma 2 in the proof of Theorem 1 can be used to prove
that o € D for some special classes of rational «. For example, it can be proved by
induction that if o = k 4+ 1/¢ then j, = [an/q] for n > 0 so that z is discontinuous
at such rationals. However, for a general rational o we are unable to establish
that j, in (2.4) must be eventually positive; in other words we cannot prove that
g must divide a,(p/q) for some n. Nevertheless we conjecture that the hypothesis
for Lemma 1 will always be satisfied by at least ¢/(p — ¢) values of n; thereafter the
hypothesis is satisfied trivially because r, < ¢. This conjecture implies that every
rational o > 1 is a discontinuity of z.

2. The following description of the behaviour of a, (mod4) when § = 3/2
may indicate the difficulty in the determination of z(3/2). The sequence (a,) is
now given by

ag =1, Gny1 = an +[a,/2)+1, n>0.
For a, =0,1,2,3(mod4) we have ap4y = 1,0,0,1(mod 2) respectively. The value
of a, (mod4) therefore has the following ‘transition diagram’:

C3<———o
34

2 a— 1

It is conceivable that a, (mod4) may cycle through any given path for arbitrarily
long runs, but it must exit from the periodic path eventually. For example, it may
happen that a, = 2 (mod4) for a long run of integers n, but eventually we must
have anikg—1 = 0(mod4), ansx = 1(mod 2).
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In order to demonstrate this, let Ax denote a number A satisfying 2¥|A but
28+1 JA. Suppose now that a, = 2(mod4). Then there exists K > 2 such that
an, = Ag — 2, and so

tnt1 = (Ak = 2)+ (Ak —2)/2+1=34K/2 -2 = Ag_, - 2.

Proceeding inductively, we find that apyx = Ag_; — 2, 0 < k < K. Therefore
Gntt = 2(mod4) for 0 <k < K — 2, but

anyr-1=A1 —2=0 (mod 4), anyk = Ao —2=1 (mod 2).

A similar but more complicated argument ought to show that there cannot be any
eventual periodicity for a, (mod4). However, a proof or disproof of this would still
be of no help in the determination of z(3/2).

3. The method used in the proof of Theorem 2 also allows us to show that

3
Hi 1
=, forpupr==lk+Vk2+4), k=1,2,....
o) (g + ) = 1) K 2( )

It should be possible to identify some other families of algebraic numbers 6 using
linear recurrence relations more general than (4.1) thereby generalizing Theorem 3.
More specifically, let h,k > 1, bo = 1, by = k + 1 and define (b,) inductively by
bny1 = (k4 1)bp — bn_p, with b, < 0 for n < 0. The auxiliary equation associated
with this difference equation has a root Ag,; in the interval [k, k + 1), and Ay is
precisely Ap of Theorem 2. Similarly, let pg 4 and vg , be the roots in [k, k + 1) of
the auxiliary equations associated with the difference equations

bpy1 = kb + by + 1, with A < k,

and
bn+l = k(bn + bn—l + -4 bn-—h) +1
=(k+ Dby — kbp_p-;
respectively. One should then be able to evaluate z at Men and vgp, and in fact
Vg1 is precisely A in Theorem 3.

REFERENCE
[1] R. Tijdeman, Note on Mahler’s 2-Problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.

Department of Mathematical Sciences . (Received 21 03 1990)
Loughborough University
Loughborough, Leicestershire, LE11 3TU, England



	027.tif
	028.tif
	029.tif
	030.tif
	031.tif
	032.tif
	033.tif
	034.tif
	035.tif
	036.tif
	037.tif
	038.tif

