TIJDEMAN'S ITERATIVE ALGORITHM

A. H. Osbaldestin and P. Shiu

Abstract. R. Tijdeman introduced the following algorithm: Let $\theta > 2$, and define (a_n) inductively by $a_0 = 1$, $a_{n+1} = [\theta a_n] + 1$, $(n \ge 0)$. Then the sequence (a_n/θ^n) converges to a limit x which has special properties relevant to "Mahler's $\frac{3}{2}$ -problem". Here we study x as a function of θ in the interval $(1,\infty)$. We give some basic results concerning its behaviour at rational points, and we prove that it is discontinuous in a set of rationals which is dense in $(2,\infty)$. We also give a method for the evaluation of $x(\theta)$ when θ is in various families of algebraic numbers.

1. Introduction. Let $\theta > 2$ and define (a_n) inductively by

$$a_0 = 1,$$
 $a_{n+1} = [\theta a_n] + 1,$ $n \ge 0,$ (1.1)

and then set

$$x_n = x_n(\theta) = a_n/\theta_n, \qquad n \ge 0. \tag{1.2}$$

Tijdeman [1] proved that the sequence (x_n) converges to a limit x which has the remarkable property that

$$0 < \{x\theta^n\} \le 1/(\theta - 1), \qquad n \ge 0;$$
 (1.3)

here $\{z\}$ denotes the fractional part of z.

Actually the limit

$$x = x(\theta) = \lim_{n \to \infty} x_n(\theta) \tag{1.4}$$

still exists when $1 < \theta \le 2$; but, of course, (1.3) now becomes a triviality. The purpose of this paper is to study x as a function of θ in the interval $(1, \infty)$. As we shall see, the function is always continuous from the right, and is continuous at each irrational number. The situation at a rational point is complicated, and we have not been able to prove that x is discontinuous at each rational number. Let D denote the set of discontinuities of x, so that D is a subset of the rationals in $(1, \infty)$. We shall prove

THEOREM 1. The set D of discontinuities of x is dense in the interval $(2, \infty)$.

Although it is easy to see that

$$x(k) = k/(k-1), \qquad k = 2, 3, 4, \dots$$

the determination of $x(\theta)$ for any rational non-integer θ such as 3/2 seems to be related to the "3/2-problem" of Mahler which was the inspiration of Tijdeman's paper [1]. We shall say more on this in Remark 2 of Section 5. On the other hand we can determine $x(\theta)$ for various families of algebraic numbers θ , the most interesting being

$$\theta = \lambda_k = (k + \sqrt{k^2 - 4})/2, \qquad k = 3, 4, 5, \dots$$
 (1.5)

Since λ_k is irrational, we know that x is continuous there. Furthermore, as we shall see in our proof of Theorem 1, the function x is "continuous when decreasing" in the sense that

$$\lim_{\theta \to \alpha_{-}} x(\theta) \le x(\alpha) = \lim_{\theta \to \alpha_{+}} x(\theta), \qquad \alpha > 1.$$
 (1.6)

It is therefore rather surprising to have

THEOREM 2. Each λ_k in (1.5) is a strong minimum of the function x, and

$$x(\lambda_k) = \lambda_k^2/(\lambda_k^2 - 1), \qquad k = 3, 4, 5, \dots$$
 (1.7)

The method used in the evaluation of $x(\lambda_k)$ can be applied to various families of algebraic numbers. We shall say more about the method after we prove:

THEOREM 3. Let $h \ge 1$, and let λ be the root of $z^{h+1}-z^h-\cdots-z-1=0$ satisfying $1<\lambda<2$. Then

$$x(\lambda) = \frac{1}{h} \cdot \frac{(h+1)\lambda^h + h\lambda^{h-1} + \dots + \lambda + 1}{(h+1)\lambda^h - h\lambda^{h-1} - \dots - \lambda - 1}.$$

Figures 1, 2 and 3 are graphs of $x_n(\theta)$ for $1 < \theta < 4$ and $1 \le n \le 50$. In accordance with Theorem 2 it will be observed that there is rather strange behaviour in $x_n(\theta)$ in the neighbourhood of $1 + g = g^2$ where $g = (1 + \sqrt{5})/2$ is the golden ratio. It was our initial calculations for $a_n(\theta)$ in the neighbourhood of g^2 led us to the formula

$$a_n(\theta) = f_{2n+1},$$
 for $\frac{f_{2n+1}-1}{f_{2n-1}} \le \theta < \frac{f_{2n+1}}{f_{2n-1}},$

where f_n is the n-th Fibonacci number. It follows easily from $f_n \sim g^{n+1}/\sqrt{5}$, as $n \to \infty$ that $\sqrt{5}x(g^2) = g^2$. The proof that g^2 is a minimum depends heavily on the identity $f_{2n+1}^2 - f_{2n+3}f_{2n-1} = 1$. Theorem 2 is a generalization of this discovery and Theorem 3 is an extension of the method used.

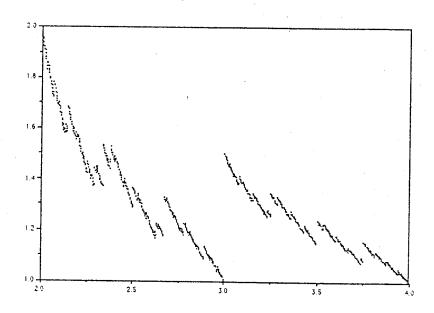


Figure 1. Graph of $x_{17}(\theta)$ with $2 < \theta < 4$.

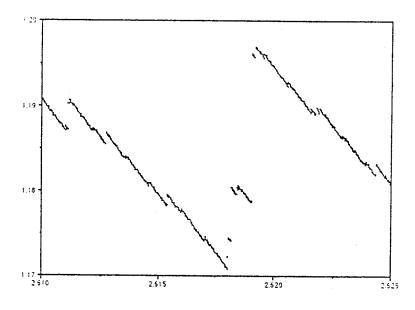


Figure 2. Graph of $x_{24}(\theta)$ with $2.61 < \theta < 2.625$.

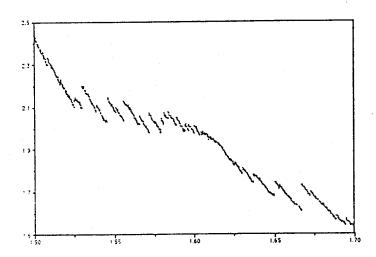


Figure 3. Graph of $x_{44}(\theta)$ with $1.5 < \theta < 1.7$.

2. Proof of Theorem 1. That (x_n) converges to x uniformly in $[1+\delta,\infty)$ for any $\delta>0$ is implicit in Tijdeman's paper [1]. As we shall see, the uniformity aspect is crucial to our consideration. Since Tijdeman only dealt with the case $\theta>2$, for completeness sake we repeat his simple and elegant argument. From $\theta a_n < [\theta a_n] + 1 = a_{n+1}$ and the definition of x_n in (1.2), it follows that $x_n < x_{n+1}$. Next, for $0 \le m \le n$, we have

$$\theta^{m}(x_{n}-x_{m})=\theta^{m}\sum_{m< j\leq n}(x_{j}-x_{j-1})=\theta^{m}\sum_{m< j\leq n}\theta^{-j}(a_{j}-\theta a_{j-1}),$$

and since $a_j - \theta a_{j-1} = [\theta a_{j-1}] + 1 - \theta a_{j-1} \le 1$ it follows that

$$\theta^m(x_n-x_m)\leq \sum_{m< j\leq n}\theta^{m-j}<\sum_{j>0}\theta^{-j}=\frac{1}{\theta-1}.$$

Therefore, for $0 \le m \le n$ and $\theta > 1$,

$$x_m(\theta) \le x_n(\theta) \le x_m(\theta) + 1/\theta^m(\theta - 1).$$

That $x(\theta) = \lim_{n\to\infty} x_n(\theta)$ exists now follows at once. Indeed, we have

$$x_m(\theta) < x(\theta) \le x_m(\theta) + 1/\theta^m(\theta - 1)$$
(2.1)

for all $m \ge 0$ and $\theta > 1$. In particular, if $\theta \ge 1 + \delta$, then $0 < x(\theta) - x_m(\theta) \le 1/(1+\delta)^m \delta$, so that (x_m) converges to x uniformly in $[1+\delta,\infty)$.

We can now prove (1.6). The integer part function satisfies

$$\lim_{\theta \to \alpha_{-}} [\theta z] \le [\alpha z] = \lim_{\theta \to \alpha_{+}} [\theta z]; \tag{2.2}$$

indeed we can specify the left-hand side here by

$$\lim_{\theta \to \alpha_{-}} [\theta z] = \begin{cases} \alpha z - 1, & \text{if } \alpha z \in \mathbb{Z}, \\ [\alpha z], & \text{otherwise.} \end{cases}$$
 (2.3)

It is clear that, for every fixed n,

$$\lim_{\theta \to \alpha_{-}} a_{n}(\theta) \leq a_{n}(\alpha) = \lim_{\theta \to \alpha_{+}} a_{n}(\theta),$$

so that

$$\lim_{\theta \to \alpha_{-}} x_{n}(\theta) \leq x_{n}(\alpha) = \lim_{\theta \to \alpha_{+}} x_{n}(\theta).$$

Now let $n \to \infty$, and the required result (1.6) follows from the uniform convergence of (x_n) to x.

This shows that the function x is always continuous from the right, and that it is also continuous at each irrational α . The discussion on whether x is continuous at a rational $\alpha = p/q$ is deeply involved with the numbers

$$j_n = j_n(\alpha) = a_n(\alpha) - \lim_{\theta \to \alpha_+} a_n(\theta), \qquad n \ge 0.$$
 (2.4)

We shall require the following

LEMMA 1. Let $\alpha = p/q > 1$, and let j_n be defined by (2.4). Then $j_{n+1} \ge j_n$. Furthermore, let r_n be defined by

$$r_n \equiv pa_n(\alpha) \pmod{q}, \qquad 0 \le r_n < q;$$

then $j_{n+1} > j_n$ if either $r_n < (p-q)j_n$ or $j_n \equiv a_n(\alpha) \pmod{q}$.

Proof. Write $a_n = a_n(\alpha)$ and let θ be smaller than α but sufficiently close to α ; for example close enough to ensure that the function a_{n+1} is continuous in the interval (θ, α) . Then by the definition of j_n in (2.4) we have $a_n(\theta) = a_n - j_n$ and so $a_{n+1}(\theta) = [\theta(a_n - j_n)] + 1$. It now follows from (2.3) that

$$\lim_{\theta \to \alpha} a_{n+1}(\theta) = [\alpha(a_n - j_n)] - e_n + 1,$$

where $e_n = 1$ or 0 according to whether $j_n \equiv a_n(\alpha) \pmod{q}$ or not. But $a_{n+1}(\alpha) = [\alpha a_n] + 1$ so that $j_{n+1} = [\alpha a_n] - [\alpha (a_n - j_n)] + e_n$. Next, by the definition of r_n , we may write $pa_n = dq + r_n$, that is $\alpha a_n = d + r_n/q$ and so

$$\alpha(a_n - j_n) = d + (r_n - pj_n)/q = d - j_n + (r_n - (p - q)j_n)/q$$

which then gives

$$j_{n+1} = j_n - [(r_n - (p-q)j_n)/q] + e_n.$$

We can now use this iterative formula for j_n to prove the lemma. Consider the case $j_n=0$ first. Then clearly $j_{n+1}\geq 0=j_n$. The condition $r_n<(p-q)j_n$ cannot be satisfied, and, if $e_n=1$ then $j_{n+1}=0-[r_n/q]+1=1>j_n$. Consider next the case $j_n\geq 1$. Since $r_n< q$ we now have

$$j_{n+1} \ge j_n - [(q - (p - q))/q] + e_n = j_n - [2 - \alpha] + e_n.$$

But $2-\alpha < 1$ so that we always have $j_{n+1} \geq j_n$, and with strict inequality when either $\alpha > 2$ or $e_n = 1$. Finally if $r_n < (p-q)j_n$, then we simply argue that

$$j_{n+1} \geq j_n - (r_n - (p-q)j_n)/q > j_n. \quad \Box$$

LEMMA 2. Let $\alpha = p/q > 1$. Suppose that there exists n such that

$$j_n(\alpha) \ge 1/(\alpha - 1) = q/(p - q). \tag{2.5}$$

Then $\alpha \in D$. In particular, if $\alpha \geq 2$ and if there exists a positive $j_n(\alpha)$ then $\alpha \in D$.

Proof. From (2.1) and (1.2) we have

$$x(\theta) \le x_n(\theta) + \frac{1}{\theta^n(\theta-1)} = \frac{1}{\theta^n} \left(a_n(\theta) + \frac{1}{\theta-1} \right).$$

It now follows from (2.4) and (2.5) that

$$\lim_{\theta \to \alpha_{-}} x(\theta) \leq \frac{1}{\alpha^{n}} \left(a_{n}(\alpha) - j_{n}(\alpha) + \frac{1}{\alpha - 1} \right) \leq \frac{a_{n}(\alpha)}{\alpha^{n}} = x_{n}(\alpha);$$

but $x_n(\alpha) < x(\alpha)$ by (2.1), so that x is discontinuous at α . \square

We can now deduce Theorem 1. Let $2 < \alpha < \beta < \infty$, and suppose, if possible, that, for every $n \ge 0$, the function $a_n(\theta)$ is constant in $\alpha < \theta < \beta$. We then have

$$\frac{x_n(\alpha)}{x_n(\beta)} = \frac{a_n(\alpha)}{\alpha^n} \cdot \frac{\beta^n}{a_n(\beta)} = \left(\frac{\beta}{\alpha}\right)^n \to \infty \quad \text{as } n \to \infty,$$

contradicting the existence of $x(\alpha)$ and $x(\beta)$. Therefore, for some n, the function $a_n(\theta)$ has a discontinuity in $[\alpha, \beta]$. By Lemma 2, the function x has a discontinuity at $\theta \in [\alpha, \beta]$ so that the theorem is proved. \square

3. Proof of Theorem 2. Let $k \geq 3$, and define (b_n) inductively by

$$b_0 = 1, b_1 = k, b_{n+2} = kb_{n+1} - b_n.$$
 (3.1)

It follows easily by induction that b_n satisfies

$$b_n^2 - b_{n+1}b_{n-1} = 1; (3.2)$$

indeed, on solving the difference equation (3.1) we find that

$$b_n = \frac{\lambda^{n+2} - \lambda^{-n}}{\lambda^2 - 1}, \qquad n \ge 0 \tag{3.3}$$

where $\lambda = \lambda_k$ is given by (1.5). Write

$$B_n = \left[\frac{b_n - 1}{b_{n-1}}, \frac{b_n}{b_{n-1}} \right), \qquad n \ge 1; \tag{3.4}$$

it then follows from (3.2) that (B_n) is a nested sequence of intervals whose intersection contains exactly one point. Moreover, by (3.3), this point is given by $\lim_{n\to\infty} b_n/b_{n-1} = \lambda$. The determination of $x(\lambda)$ is based on the following lemma.

LEMMA 3. For $n \ge 1$, we have

$$a_n(\theta) = b_n, \quad \text{for } \theta \in B_n.$$
 (3.5)

Furthermore, if θ satisfies

$$\theta > \lambda, \qquad \theta \in B_n, \qquad \theta \notin B_{n+1}$$
 (3.6)

then

$$a_{n+1}(\theta) = b_{n+1} + 1. (3.7)$$

Proof. We prove (3.5) by induction on n, the case n=1 being trivial. Suppose then that (3.5) holds, and let $\theta \in B_{n+1}$. Then, since $\theta \in B_{n+1} \subset B_n$, we have $a_n(\theta) = b_n$ so that, by (1.1), $a_{n+1} = [\theta b_n] + 1$. Now, by the definition of B_{n+1} in (3.4), the condition $\theta \in B_{n+1}$ gives $b_{n+1} - 1 \le \theta b_n < b_{n+1}$ which gives $a_{n+1} = (b_{n+1} - 1) + 1 = b_{n+1}$ and so completes the inductive step for (3.5).

Suppose now that θ satisfies (3.6). Then

$$b_{n+1}/b_n \le \theta < b_n/b_{n-1}$$

so that, on applying (3.2),

$$b_{n+1} \le \theta b_n < \frac{b_n^2}{b_{n-1}} = \frac{b_{n-1}b_{n+1} + 1}{b_{n-1}} \le b_{n+1} + 1. \tag{3.8}$$

Therefore, by (3.5),

$$a_{n+1}(\theta) = [\theta a_n(\theta)] + 1 = [\theta b_n] + 1 = b_{n+1} + 1.$$

The lemma is proved. \square

We can now establish (1.7). Since $\lambda \in B_n$ for all $n \ge 1$ we have $a_n(\lambda) = b_n$, and so $x_n = b_n/\lambda^n$. The required result now follows from (3.3).

Finally we show that there exists $\delta = \delta(\lambda) > 0$ such that $x(\theta) > x(\lambda)$ whenever $0 < |\theta - \lambda| < \delta$. According to (2.1) it suffices to find m, depending on θ , such that

$$x_m(\theta) > x(\lambda). \tag{3.9}$$

We shall specify δ later. Consider first the interval $\lambda - \delta < \theta < \lambda$. We choose m so that $\theta \in B_m$, $\theta \notin B_{m+1}$. Then, by (3.5) and (3.4), we have $a_m(\theta) = b_m$ and $\theta < (b_{m+1} - 1)/b_m$ so that

$$x_m(\theta) = \frac{a_m(\theta)}{\theta^m} > b_m \left(\frac{b_m}{b_{m+1} - 1}\right)^m; \tag{3.10}$$

we shall see later that this exceeds $x(\lambda)$.

Similarly, when $\lambda < \theta < \lambda + \delta$ we choose m so that $\theta \in B_{m-1}$ and $\theta \notin B_m$. Then, by (3.7) and (3.4), we have $a_m(\theta) = b_m + 1$, and $\theta < b_{m-1}/b_{m-2}$ so that

$$x_m(\theta) = \frac{b_m + 1}{\theta^m} > (b_m + 1) \left(\frac{b_{m-2}}{b_{m-1}}\right)^m.$$
 (3.11)

Let us write U_m and V_m for the right hand sides of (3.10) and (3.11) respectively. In order to establish (3.9) it remains to show that U_m and V_m exceed $x(\lambda)$ which is given in (1.7). But it follows from (3.3) and the definitions of U_m and V_m that $\lim_{m\to\infty} U_m = \lim_{m\to\infty} V_m = x(\lambda)$. Therefore it suffices to show that (U_m) and (V_m) are decreasing sequences. We deal with the more delicate case of V_m and consider

$$\frac{V_{m+1}}{V_m} = \frac{b_{m+1}+1}{b_m+1} \cdot \frac{b_{m-1}}{b_m} \cdot \left(\frac{b_{m-1}^2}{b_m b_{m-2}}\right)^m = \frac{b_m^2 - 1 + b_{m-1}}{b_m (b_m+1)} \cdot \left(\frac{b_{m-1}^2}{b_{m-1}^2 - 1}\right)^m$$

using the identity (3.2). The first factor here is less than

$$\frac{b_m + 1/2}{b_m + 1} = 1 - \frac{1}{2b_m} + O\left(\frac{1}{b_m^2}\right)$$

whereas the second factor is

$$\left(1 + \frac{1}{b_{m-1}^2 - 1}\right)^m = 1 + O\left(\frac{m}{b_m^2}\right).$$

Therefore

$$\frac{V_{m+1}}{V_m}<1-\frac{1}{2b_m}+O\bigg(\frac{m}{b_m^2}\bigg)<1$$

when m is large. Returning to the specification of δ , it is clear that m has to be large when δ is chosen to be small. The theorem is proved. \square

4. Proof of Theorem 3. We shall require the following:

LEMMA 4. Let $h \ge 1$ and define (b_n) by

$$b_0 = 1, b_n = 0 if n < 0,$$

 $b_{n+1} = b_n + b_{n-1} + \dots + b_{n-h} + 1 if n \ge 0.$ (4.1)

Then

$$0 \le b_n^2 - b_{n+1}b_{n-1} \le b_n - b_{n-1} \quad \text{if} \quad n \ge 1. \tag{4.2}$$

Proof. Let the two required inequalities be denoted by P(n) and Q(n) which we rewrite as

$$P(N): \frac{b_{n+1}}{b_n} \le \frac{b_n}{b_{n-1}}, \qquad Q(N): \frac{b_n}{b_{n-1}} \le \frac{b_{n+1}-1}{b_n-1}.$$

The cases P(n), Q(n) with n < h can be verified directly. We now apply an inductive argument in the following manner:

(i)
$$P(n-2), \ldots, P(n-h-1) \Rightarrow P(n),$$

(ii)
$$P(n-1), \ldots, P(n-h) \Rightarrow Q(n).$$

We remark that the *mediant* of a collection of fractions lies between the minimum and the maximum of the fractions. For (i) we consider

$$\frac{1}{1} \le \frac{b_{n-1}}{b_{n-2}} \le \frac{b_{n-2}}{b_{n-3}} \le \dots \le \frac{b_{n-h}}{b_{n-h-1}} \le \frac{b_{n-h-1}}{b_{n-h-2}}.$$

We then have

$$\frac{1+b_{n-1}+\cdots+b_{n-h}}{1+b_{n-2}+\cdots+b_{n-h-1}} \le \frac{1+b_{n-1}+\cdots+b_{n-h-1}}{1+b_{n-2}+\cdots+b_{n-h-2}} = \frac{b_n}{b_{n-1}}$$

so that

$$\frac{1+b_{n-1}+\cdots+b_{n-h}+b_n}{1+b_{n-2}+\cdots+b_{n-h-1}+b_{n-1}} \le \frac{b_n}{b_{n-1}};$$

which is just P(n). Similarly, for (ii), we consider

$$\frac{b_n}{b_{n-1}} \le \frac{b_{n-1}}{b_{n-2}} \le \dots \le \frac{b_{n-h+1}}{b_{n-h}} \le \frac{b_{n-h}}{b_{n-h-1}}$$

which gives

$$\frac{b_n}{b_{n-1}} \le \frac{b_n + b_{n-1} + \dots + b_{n-h}}{b_{n-1} + b_{n-2} + \dots + b_{n-h-1}}$$

which is just Q(n). The lemma is proved. \square

If we write

$$B_n = \left[\frac{b_n - 1}{b_{n-1}}, \frac{b_n}{b_{n-1}}\right)$$

then $B_{n+1} \subset B_n$, and we shall see later that the intersection of B_n is precisely the point λ in the theorem. If we now apply (4.2) in Lemma 4 (instead of the identity (3.2)) into (3.8) in the proof of Lemma 3, then we again have $a_n(\theta) = b_n$ for $\theta \in B_n$, $n \ge 1$. In particular, we have

$$x(\lambda) = \lim_{n \to \infty} a_n(\lambda)/\lambda^n = \lim_{n \to \infty} b_n/\lambda^n. \tag{4.3}$$

Let us write

$$f(z) = z^{h+1} - z^h - \cdots - z - 1,$$

so that f(z)=0 is precisely the auxiliary equation associated with the difference equation (4.1), and that λ in the theorem is the real zero of f(z) in the interval (1,2). We shall require the result that the other zeros λ_j of f(z) are distinct and satisfy $|\lambda_j| < 1$, $1 \le j \le h$. This can be establised by applying Rouché's theorem to show that the two functions $(z-1)f(z)=z^{h+2}-2z^{h+1}+1$ and $2z^{h+1}-1$ have the same number of zeros, namely h+1 in the region $|z|<1+\epsilon$ for every ϵ satisfying

 $0 < \epsilon < 1/2$. That $|\lambda_j| < 1$, $1 \le j \le h$ now follows easily; indeed consideration of the derivative of (z-1)f(z) shows that these zeros are all simple.

Next, we write $\lambda_0 = \lambda$ and let

$$\Lambda = \begin{pmatrix} 1 & \lambda_0 & \cdots & \lambda_0^h \\ 1 & \lambda_1 & \cdots & \lambda_1^h \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_h & \cdots & \lambda_h^h \end{pmatrix}.$$

Then, on solving the difference equation (4.1) in Lemma 4, we have

$$b_n = A_0 \lambda_0^n + \dots + A_h \lambda_h^n - 1/h$$

where

$$(A_0,\ldots,A_h) \Lambda = (b_0 + 1/h,\ldots,b_h + 1/h).$$

Since $|\lambda_j| < 1 < \lambda_0 = \lambda$ for $1 \le j \le h$, we now have $\lim_{n \to \infty} b_n/b_{n-1} = \lambda_0 = \lambda$. This not only shows that $\bigcap B_n = \{\lambda\}$ but also allows us to use (4.3) to write

$$x(\lambda) = A_0 = |\Lambda_0| / |\Lambda| \tag{4.4}$$

where Λ_0 is the matrix obtained from Λ with the first row $(1, \lambda_0, \dots, \lambda^h)$ replaced by $(b_0 + 1/h, \dots, b_h + 1/h)$. The Vandermond determinant $|\Lambda|$ and $|\Lambda_0|$ have the expansions

$$|\Lambda| = \prod_{0 \le j < k \le h} (\lambda_j - \lambda_k) = \prod_{1 \le j \le h} (\lambda_0 - \lambda_j) \times \prod_{1 \le j < k \le h} (\lambda_j - \lambda_k)$$
$$|\Lambda_0| = \sum_{j+k=h} (-1)^j \sigma_j \left(b_k + \frac{1}{h} \right) \times \prod_{1 \le j < k \le h} (\lambda_j - \lambda_k)$$

where σ_j is the elementary symmetric polynomial in $\lambda_1, \ldots, \lambda_h$ with degree j; that is

$$(z-\lambda_1)\cdots(z-\lambda_h)=\sigma_0z^h-\sigma_1z^{h-1}+\cdots+(-1)^h\sigma_h.$$

But the left hand side here can also be expressed as

$$\frac{f(z)}{z - \lambda} = \frac{z^{h+1} - z^h - \dots - z - 1}{z - \lambda} = \tau_0 z^h + \tau_1 z^{h-1} + \dots + \tau_h$$

where $\tau_0 = 1$, $\tau_j = \lambda \tau_{j-1} - 1$. Therefore $(-1)^j \sigma_j = \tau_j$ and so (4.4) now gives

$$h \prod_{1 \le j \le h} (\lambda - \lambda_j) x(\lambda) = \sum_{j+k=h} (hb_k + 1) \tau_j.$$

$$\tag{4.5}$$

But we also have

$$\prod_{1 < j < h} (\lambda - \lambda_j) = f'(\lambda) = (h+1)\lambda^h - h\lambda^{h-1} - \dots - 2\lambda - 1;$$

moreover, since $\tau_j = \lambda^j - \lambda^{j-1} - \cdots - \lambda - 1$, we find that the coefficient of λ^j in the polynomial $\sum_{j+k=h} (hb_k + 1) \tau_j$ is given by (with k = h - j)

$$-(hb_0+1)-\cdots-(hb_{k-1}+1)+(hb_k+1)=h(b_k-\cdots-b_0)-k+1=h-k+1=j+1;$$

in other words the polynomial concerned is simply

$$\sum_{j=0}^{h} (j+1)\lambda^{h} = 2(h+1)\lambda^{h} - f'(\lambda).$$

Therefore (4.5) now becomes $hf'(\lambda)x(\lambda) = 2(h+1)\lambda^h - f'(\lambda)$, so that

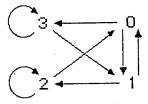
$$x(\lambda) = \frac{2(h+1)\lambda^h - f'(\lambda)}{hf'(\lambda)}$$

and the required result follows from this.

- 5. Remarks. 1. Lemma 2 in the proof of Theorem 1 can be used to prove that $\alpha \in D$ for some special classes of rational α . For example, it can be proved by induction that if $\alpha = k + 1/q$ then $j_n = [a_n/q]$ for n > 0 so that x is discontinuous at such rationals. However, for a general rational α we are unable to establish that j_n in (2.4) must be eventually positive; in other words we cannot prove that q must divide $a_n(p/q)$ for some n. Nevertheless we conjecture that the hypothesis for Lemma 1 will always be satisfied by at least q/(p-q) values of n; thereafter the hypothesis is satisfied trivially because $r_n < q$. This conjecture implies that every rational $\alpha > 1$ is a discontinuity of x.
- 2. The following description of the behaviour of $a_n \pmod{4}$ when $\theta = 3/2$ may indicate the difficulty in the determination of x(3/2). The sequence (a_n) is now given by

$$a_0 = 1$$
, $a_{n+1} = a_n + [a_n/2] + 1$, $n \ge 0$.

For $a_n \equiv 0, 1, 2, 3 \pmod{4}$ we have $a_{n+1} \equiv 1, 0, 0, 1 \pmod{2}$ respectively. The value of $a_n \pmod{4}$ therefore has the following 'transition diagram':



It is conceivable that $a_n \pmod 4$ may cycle through any given path for arbitrarily long runs, but it must exit from the periodic path eventually. For example, it may happen that $a_n \equiv 2 \pmod 4$ for a long run of integers n, but eventually we must have $a_{n+K-1} \equiv 0 \pmod 4$, $a_{n+K} \equiv 1 \pmod 2$.

In order to demonstrate this, let A_k denote a number A satisfying $2^k|A$ but $2^{k+1} /A$. Suppose now that $a_n \equiv 2 \pmod{4}$. Then there exists $K \geq 2$ such that $a_n = A_K - 2$, and so

$$a_{n+1} = (A_K - 2) + (A_K - 2)/2 + 1 = 3A_K/2 - 2 = A_{K-1} - 2$$

Proceeding inductively, we find that $a_{n+k} = A_{K-k} - 2$, $0 \le k \le K$. Therefore $a_{n+k} \equiv 2 \pmod{4}$ for $0 \le k \le K - 2$, but

$$a_{n+K-1} = A_1 - 2 \equiv 0 \pmod{4}, \qquad a_{n+K} = A_0 - 2 \equiv 1 \pmod{2}.$$

A similar but more complicated argument ought to show that there cannot be any eventual periodicity for $a_n \pmod{4}$. However, a proof or disproof of this would still be of no help in the determination of x(3/2).

3. The method used in the proof of Theorem 2 also allows us to show that

$$x(\mu_k) = \frac{\mu_k^3}{(\mu_k^2 + 1)(\mu_k - 1)}, \quad \text{for } \mu_k = \frac{1}{2} \left(k + \sqrt{k^2 + 4} \right), \qquad k = 1, 2, \dots$$

It should be possible to identify some other families of algebraic numbers θ using linear recurrence relations more general than (4.1) thereby generalizing Theorem 3. More specifically, let $h, k \geq 1$, $b_0 = 1$, $b_1 = k + 1$ and define (b_n) inductively by $b_{n+1} = (k+1)b_n - b_{n-h}$, with $b_n < 0$ for n < 0. The auxiliary equation associated with this difference equation has a root $\lambda_{k,h}$ in the interval [k, k+1), and $\lambda_{k,1}$ is precisely λ_k of Theorem 2. Similarly, let $\mu_{k,h}$ and $\nu_{k,h}$ be the roots in [k, k+1) of the auxiliary equations associated with the difference equations

$$b_{n+1} = kb_n + b_{n-h} + 1$$
, with $h < k$,

and

$$b_{n+1} = k(b_n + b_{n-1} + \dots + b_{n-h}) + 1$$

= $(k+1)b_n - kb_{n-h-1}$

respectively. One should then be able to evaluate x at $\mu_{k,h}$ and $\nu_{k,h}$, and in fact $\nu_{k,1}$ is precisely λ in Theorem 3.

REFERENCE

[1] R. Tijdeman, Note on Mahler's 3-Problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.

Department of Mathematical Sciences
Loughborough University
Loughborough, Leicestershire, LE11 3TU, England

(Received 21 03 1990)