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AN ALGORITHM TO RECOGNIZE A GENERALIZED
LINE GRAPH AND OUTPUT ITS ROOT GRAFPH

Slobodan K. Simié

Abstract. We present an efficient algorithm of comlexity O(m) (m being the number of
lines) to recognize a generalized line graph giving as output its root graph.

1. Introduction. It is well known in the spectral graph theory (cee [3])
that the least eigenvalue of 0-1 adjacency matrix of a line graph is bounded from
below by —2. Generalized line graphs (GLG for short) were introduced in [€] as an
extension of the line graphs with respect to this property. As shown in [4] (see also
[2]), it turned out that this generalization became more interesting, since it also
preserves some other properties of line graphs. In this paper we give an algorithm
capable to recognize a generalized line graph, and also to output its root graphs (if
any). Similar problems for line graphs (line digraphs) were treated in [8] and {10]
(resp. [11]).

To make the paper more self contained, we shall include here some necessary
facts. Let H = (V, E) be a graph. The line graph L(H) of H has E as its point
set and two elements z,y of E are adjacent in L(H) whenever the lines z,y of H
have a common end-point. The cocktail party graph CP(n) is a regular graph on
2n points of degree 2n — 2. To construct the generalized line graph, suppose we
are given (in addition to H) an n-tuple a = (a1,...,a,) of nonnegative integers
with a;, the i-th coordinate of a, corresponding to the point v; of H; then, the
generalized line graph L(H;a) of H is obtained from disjoint copies of L(H) and
CP(a;), by joining a point in L(H) with a point in CP(a;) whenever the point in
L(H) corresponds to a line in H that has v; as an end-point. As it can be seen, a
generalized line graph is a graph actually obtained from some labeled graph (with
coordinates of an n-tuple being the point labels). For our further purposes, we will
prefer to have some graph (or even a multigraph) instead of a labeled graph. As
already done in [4], we can convert a labeled graph to a multigraph as follows: to
each point of H, say v;, we shall (instead of a label) attach 2a; pendant lines, each
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parallel to exactly one line out of them. Call this multigraph H,; its generalized
line graph is actually its line graph (see the definition above) provided two points
are adjacent if the corresponding lines have “exactly” one end-point in common.
Other terminology, notation and facts, not to be mentioned hereafter, can be found
in [5].

2. Theoretical background. Two basic problems for line graphs (or gen-
erally, for graphs obtained by some graph valued function) are:

— characterization problem: given a graph, is it a line graph of some graph?

— determination problem: given a graph which is a line graph, to what extent
is its root graph determined?

For line graphs and generalized line graphs, there are several answers to both
problems. The most elegant solution of the characterization problem for line graphs
(in terms of forbidden induced subgraphs) appeared in [1]. Its natural generaliza-
tion for generalized line graphs is given in [4] (or [2]), and also, independently in
[8]. As these subgraphs (in both cases) have up to six points, this immediately
guarantees the existence of polynomial time algorithms (of degree at most six) for
recognition of line graphs (resp. generalized line graphs). Although these charac-
terizations are local, for our further purposes the following (essentially global ones)
are more preferable. In {7] line graphs were characterized by their clique structure.

THEOREM 1. A graph is a line graph if and only if its lines can be partitioned
into cliques such that:

i) each point is in at most two cligues, and
p

(i1) any two cligues have at most one point in common.

To prepare the generalization from {4] (or [2]), we need some more definitions.
The generalized cocktail party graph GC P(n, m), is a graph obtained from a clique
on n points by deleting m independent lines. A point of degree n — 1 (n — 2) is
called 1-type (resp. 2-type) point. '

THEOREM 2. A graph is a generalized line graph if and only if its lines can
be partitioned into generalized cockiail party graphs (GCPs for short) such that:

(i) each point is in at most two GPCs,
(ii) any two GCPs have at most one point in common, and
(iil) if two GCPs have a point in common, then il is of I-type in both of them.

We shall discuss the determination problem for connected graphs only. Actu-
ally, this restriction makes sense since the only connected graph with a disconnected
generalized line graph is a graph consisting of a point whose label is one; on the
other hand, a disconnected graph has a connected generalized line graph only if all
but one of its components are trivial (just a point with a zero label). Now the well
known result for line graphs (see [12], or [5]) reads:
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THEOREM 3. If G = L(H) is a connecled line graph, then except for G = K3,
its root graph H (ignoring isolated poinis) is unique; if G = K3 the H is either
K3 or Ky 3.

The next theorem refers to generalized line graphs [4] (or [2]).

THEOREM 4. Ezcept for the pairs of multigraphs from Fig. 1, if two connected
generalized line graphs are equal, then their root mulligraphs are also equal.

Fig. 1

A cover is a partition of lines of some graph into GCPs. It is called a proper
cover if it satisfies the conditions (i)~(iii) of the Theorem 2. The next theorem is
proved in [4].

THEOREM 5. If G is a connecled generalized line graph with more than 6
poinls, then there exists one and only one proper cover of G.

This theorem is from now on of crucial importance. Its immediate conse-
quence is that each point of a graph (satisfying the assumptions) could be assigned
a type according to the rule: a point is of a-type if it is a common point of two
GCPs; otherwise, it is of g-type (y-type) if it is 1-type (resp. 2-type) point of the
corresponding GCP.

In order to find a proper cover of some graph (if any), we first show how to
single out an a-type point. From now on, N(z) denotes the closed neighborhood
of the point z, i.e. all points including z which are adjacent to z. In the following
lemmas, we will assume that G is a connected generalizad line graph, other than a
GCP, having at least 7 points.

LEMMA 1. If z is en arbitrary point of G, then a point u of mazimal degree
among the points from N(z) is an a-lype poini.

Proof. By assumptions on G, its proper cover consists of at least two GCPs.
Thus any point is adjacent to {or coincides with) some a-type point. On the other
hand, it is obvious that an a-type point has more neighbors than each S-type or
v-type point adjacent to it.O
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We next show how to resolve the closed neighborhood of some a-type point
into two GCPs. Actually, it is enough to single out one of these two GCPs. The
next lemma enables us to find in all but one particular case the points of this GCP
with possibly one extra point (from the other GCP) included.

LEMMA 2. Let u be an a-type point of G. We then have:

1° if u is adjacent to all other points of G, then G consists of two GCPs (u
is their common point), and possibly, some independent lines which join the 1-type
points from different GCPs. _

2° if v ( # u) is a poini from N(u) of mazimal degree, then it is also an -type
point and these two points together with their common neighbors, all but possibly
one, constilute a GCP.

Proof. The first part is obvious. By Theorem 2, it follows at once that v is
an a-type point. Let C be a GCP containing both u and v. More than one point
outside C, adjacent to u and v, cannot exist without violationg (i) or (ii) from the
Theorem 2.0

The discussion concerning the extra point from 2° in above, will be given in
the next section. We now show how to complete the proper cover if we already
know at least one of its members.

LemMma 3. If Cy,...,Cr are GCPs belonging to the proper cover of G, then,
provided any of them is known, we can determine the rest of them by a simple
procedure.

Proof. Suppose, without loss of generality, that C, ..., Ci (I < k) are already
known. Observe the points of G which belong to these GCPs and are incident to
lines not belonging to them. These points are a-type points, and since we know
one GCP incident to them, the other is determined at once. (J

3. The algorithm. The outline of the algorithm is as follows. We first single
out an a-type point, the common point of the first two clusters (point sets which
are intended to be GCPs). If these two clusters (basic ones) are indeed GCPs, we
proceed by scanning all other a-type points not scanned so far. An a-type point is
(fully) scanned if at least two clusters incident to it are detected. The process of
scanning the a-type points has also strong refuting capabilities based on Theorem
2. If no contradiction is encountered, we first update the set of non scanned a-
type points and then skip to the next a-type point. When all a-type points are
scanned, the labelling of points is performed in order to get the root graph. The
label of some point is intended to be a two element set consisting of the end points
of the line in the root (multi-) graph to which the point observed corresponds. The
process of labelling (at least partially) can also start in some earlier stages, as it
will be described below.

From now on, only to gain clarity, we will assume that an instance graph G
(=(V, E)) is a connected graph with at least 7 points, which is not a GCP.
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Step 1: initial branching

Pick any point, say z. Find u € N(z) of the largest degree. If deg(u) = |V|-1,
then go to step 2; otherwise go to step 3.

Step 2: detection of basic clusters if rad(G) = 1

Find in N(u)\ {u} two points, say v and w, with the largest degres (assume
deg(v) > deg(w). Now we have:

a) If deg(v) = deg(w) =|V| — 1, then stop. (G is not a GLG)

b) If deg(v) = |[V|— 1 and deg(w) < |V|—1, then set S := {s|s € N(u)n
N(v),deg(s) = 2}. If |S| # 1 then stop; otherwise C; := V \ {s}, C; :=
{v, s}, and go to step 4.

¢) If deg(v) < |V| =1, then, if N(v) N N(w) = {u} set C; := N(v), C> :=

N (w); otherwise pxck any point s € N{v) N N(w) not equal to u and set
C’1 = N(w)N(N(w)U N(s)), C2 :=(V\ C1)U{u}, and go to step 4.

Step 3: detection of basic clusters if rad(G) > 1.

Pick v €» N{u) of the largest degree, and w € N(v) \ N(u). Set C; :=
(N(u) NN (v)) \ (N(u) N N(w)), Ca := (N(u)\ C1) U{u}, and go to step 4.

Step 4: preparation of the main loop

Assign type ts each point of C; and Ca. Then check if these clusters are
indeed GCPs. If not, then stop; otherwise, check if S-type and y-type points
of these GCPs are adjacent only to the points within GCP to which they
belong. If not, then stop; otherwise label u by setting lab(u) := {1,2} and
half label any other point, say z, of Cy (or C3) by setting lab(z) := {1} (zesp.
lab(z) := {2}). Next, set Sy := {s|s € N(u)\ {u}, typ(s) = a} (the a-type
points to be scanned), & := 2 (the GCP counter), and go to step 5.

Step §5: main loop

Until Sy # O repeat. Pick s € S, for scanning. If |lab(s)| = 2, then stop if
there is a point in N(s) not already visited (without type); otherwise, mark
s as scanned and reenter the loop. If on the other hand |lab(s)] = 1, then
set k:= k+1and Cx := {t |t € N(s),lab(s) Nlab(t) = D} U {s}. Next,
assign type to each point of Cy, and check if it is a GCP. If not, then stop;
otherwise, check if F-type and y-type points of Cp are adjacent only to the
points within it. If not, then stop; otherwise half label each point ¢t € C; by
setting lab(t) := lab(t) U {k}. If |lab(¢)| = 3 for some ¢, then stop; otherwise,
if t is an a-type point not already marked as scanned, then set Sy = S, U {t}
and reenter the loop.

Finally, if we exit the loop with S, = & then G is a GLG. To obtain its root
graph, it is ehough to full label the points which are so far only half labeled
(8 and v type points). To end this we have to keep track of the fact that two
v-type points from the same GCP have the same labels.
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The corectness of the algorithm easily follows from the considerations given

in the previous section. The time complexity is of O(|E}), since for each point v of
an instance graph, the amount of work done is of the order O(deg(v)).
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