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ON ORTHOGONAL SERIES SOLUTION
FOR BOUNDARY LAYER PROBLEMS

Nevenka Adzié

Abstract. The paper is concerned with linear boundary layer problems. It gives the
solution as a sum of the reduced solution and the layer function which is approximated by the
truncated orthogonal series. The domain of the layer function is obtained by determining, the so
called, numerical layer length which depends on the small parameter ¢ in the differential equation
and on the chosen degree of spectral approximation. The error estimate and the numerical example
are given at the end.

1. Introduction. This paper will be concerned with the two point boundary
value problem

(1.1) Loy = -2y (z) + o(2)y (z) + B(z)y(z) = v(z), z€[0,1]

(12)  Gy=(y(0),4(1)) = (4, B).

where ¢ is a small parameter and a(z), 8(z), 7(z) € C[0,1]. It is well known that
the solution of this kind of problem has a boundary layer at one of the endpoints.
Without loss of generality we shall examine the case where z = 1 is the layer point.

The solution of problem (1.1), (1.2) describes the stationary state of the evolution
equation

Yt — 521/7;:1: + a(x)yz + ﬁ(:c)y = 7(1’): z € [0’ 1]) t>0
(1.3) y(0,t) = A, y(l,t) =8B, >0
y(z,0) = yo(z), z € 0,1},

which arises among the others in the convective-diffusion type flow problems. In
[6] we can find the sufficient conditions under which the solution of (1.1), (1.2)
represents a stable state of (1.3). That is given by the following theorem:

THEOREM 1. Let the conditions of one of the following cases hold for all
z € [0, 1), where ag, fo, 70 € R

1° a(z)>00>0, B(z)>PBo, of +4c%By>0.
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2 a(z)2a0>0, A)-d(a)2%, of +4e’n >0,

Then the problem (1.1), (1.2) is inverse monotone, which ensures that it has a
unique solution y(z) € C2[0,1] which is stable.

For the proof see [6, Th. 1]. In the further investigation in this paper we shall
assume that condition 1° or 2° is fullfiled.

The aim of this paper is to construct the approximate solution for the problem
(1.1), (1.2) using spectral methods and to estimate the error.

2. Transformation of the problem. Let us first examine the reduced
problem for (1.1), (1.2):

Lyye = a(z)yr(e) + B(2)y-(2) = 7(z), = €[0,1]
yr(0) = A.
It has a unique solution y,(z) which displays the boundary layer at z = 1. So, we
are going to ask for the solution of (1.1), (1.2) in the form
0 z€[0,1-4]
2.1 =Y , h =
e e =nE e, whee w@={ 0 Do

is the layer function which satisfies

(2.2) Lev=—e20"(z) + a(e)'(z) + B(z)v(z) = e2yl! (), z€[l-61]

(2.3) Gov = (v(1 —8),v(1)) = (0, Br), B; = B —y.(1).

Here, 6 > 0 is, so called, numerical layer langth, which is going to be determined
latter. :

Let us, now, construct the spectral approximation for the layer function
v(z) in the form of truncated series according to some orthogonal basis {Qk, k =
0,...,n}, of the space P, of all real polynomials of degree up to n. First we recall
some properties of such a system.

The set of polynomials {Qx(x)} represents the classical orthogonal polyno-
mials upon the interval {—1, 1] with respect to the weight function

p(z)= (1 -2)™(z+1)", m = B(1)/2, n=-B(-1)/2,
where B(z) is the coefficient in the differential equation which determines Q (2):

A(2)Qi(z) + B(x)Qi(z) + M Qi(2) = 0,

Al)=1-2%, X = —k(%lA”(O) + B'(O)), B(z) =az +b, a,beR.

It is well known that all classical orthogonal polynomials satisfy Bonnet’s recurrent
relation

(2.4) Qr1(x) — (arz -+ Be)Qx(z) + 1 Qx-1(z) =0,
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where ay, Bk, 71 are constants depending on the chosen basis, and the derivative
equation

(2.5) A(z)Qi(z) = (urz + v5)Qr(z) — wQr-1(2),
where
U = Z;—A”(O), v = kA'(0) — %rkA"(O), wi = g% (B'(O) + (k - %)A”(O)),

(rx = bi/ax, where a; and by are the two oldest coefficients in Qx(z) = arz* +
bgz®=1 4 ...). For these relations see [2, Ch. 2.2].

In order to construct the spectral approximation for the function v(z) we
have to transform the interval [1 — §,1] into [—1, 1] using the substitution

(2.10) z=(6/2)t~1)+1
which transforms (2.2), (2.3) into

(2.7) LW = =W (@) + )W) +EOW () = A1), te[-1,1]
(2.8)  GiW = (W(=1), W(1)) = (0, By), -

where
W(t) = v(g—(t— 1)+ 1), p= 275 n(t) = §a<g(t— 1)+ 1),

£(t) = ,B(g(t -1)+ 1), AMt) = si’y;’(g(t -1+ 1).

Thus, we are going to ask for the approximate solution of (2.7), (2.8) in the form

(2.9) W(t) = Wa(t) = ZQka(t)'

k=0

3. Numerical layer length. Numerical examples show that the accuracy of
the approximation (2.9) vitaly depends on the choice of number § so, we are going
to construct the procedure which determines it in quite a natural way, adapting it
to the chosen values of parameter ¢ and degree n of the spectral approximation.
In fact, we are going to find how far from the layer pont z = 1 we have to go to
provide the existence of certain n-th degree parabola which resembles the exact
solution. This leeds to the following definitions:

Definition 1. A function f(z) € C?[1—§,1] is called resemblence function for
the problem (2.2), (2.3) if 1° Gof = (0, B1); 2° z = 1 — § is the stationary point
for f(z); 3° for B, > 0 f(z) is concave and for By < 0 f(z) is convex.

Definition 2. The sufficiently small positive number § = 6(n, €), for which a
resemblence function satisfies the equation (2.2) at the layer point # = 1 is called
the numerical layer length.
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Now, we are able to prove the following lemma:
LEMMA 1. The n-th degree polynomial
(3.1) pa(@) = Bi((z - 1)/6+1)", 22
is a resemblance function for the problem (2.2), (2.3). '

Proof. 1t is obvious that p,(z) € C?[1 — 6,1} and that ps(1) = By and
pa(1=38) =0, so 1° holds. As

pn()"EB—l( 5 +1)n_1

we have p/ (z) = 0 only for = 1— 6, so 2° holds too. From

pn()—n(n—l)B‘( - +1>n_2

we have that for ¢ € [1 — 6,1] sgnpl/(z) = sgn B1, which proves 3°. Thus, by
Definition 1 (3.1) is resemblance function for the problem (2.2), (2.3).

THEOREM 2. The numerical layer length is given by the expression:

(3.2) 5= (rn —1/r2n? — 4¢e2n(n — 1)) /(29)
where q¢ and r denote the constanis
(3.3) g=¢eX/ (B! - B(1), r = al).

Proof. By Definition 2, applying the resemblance polynomial (3.1), we come
to the equality

en(n—1)B; (2 -1 n-? nBl n-t
- 52 ( 3 + 1) + afz)— 6 | +

+ B(z) B, (x—g—l + 1) = e’y (2),

which, at the layer point z = 1 gives
(3.4) (4! ()B7? - A(1))8? — a(1)nb + e%n(n — 1) = 0.

The solution of (3.4), using notation (3.3), is the expression (3.2), which existence,
for sufficiently small ¢, is ensured under the conditions of Theorem 1, ie.

D = r’n?—dge’n(n—1) > n(n—1)(r—4ge?) > (a2 +4efo—4e*y/(1) By )n(n-1).

In the case 1° as af + 4¢?B; > 0, for sufficiently small £ we have that D > 0.
Similary, in the case 2°, as af + 4e2y > 0 from

D > (af +4e?yo — ety (1)BT ! +4e?'(1))n(n - 1)



250 Adiié

" we, again, have D > 0 when ¢ is small enough.

Remark 1. The other solution of the equation (3.4) is either negative (if
¢ < 0), or too big (if ¢ > 0), so in both cases it exceedes the original interval [0, 1].

4. Construction of the spectral approximation. After the numerical
layer length 6 is determined, using formula (3.2), we can proceed to determine the
approximate solution (2.9) of (2.7), (2.8). One of the main problems is approxima-
tion of the functions n(t) and £(t). If these functions are approximated by the power
series or some orthogonal series of relatively large degree that might leed to a rather
complicated calculations which demande a large computational time and a lot of
memory space. Under the additional assumptions that a(z), 8(z) € C3[1 - 6,1] it
1s sufficient to approximate them by the low degree polynomials, let say of second
degree, which gives

n(t) = c1t? + cat + 3, E(t) m cqt? + cst + cs.

The order of such an approximation is O(6%), which is very small, so it doesn’t
effects the accuracy of the spectral solution.

As for the function A(t), it has to be approximated by the aproporiate or-
thogonal series as

At) = M) =D LQi().

k=0
So, we come to the problem

—uQWA/(t) + (Clt2 + cot + C3)W,Il(t) + (C4t2 + c5t + Cs)Wn(t) = Aﬂ(t),
Wa(=1)=0,  Wa(l) = Bi.

In the process of constructing the system for determining the coefficients qk,
k= 0,...,nof the spectral solution (2.9) we have to overcome two difficulties. The
first one is to express the first and second derivative of (2.9), i.e. to construct the
relation which expresses their coeficients through g¢;. In general this is achieved
by the repeted use of formula (2.5). The second difficulty is how to multiply (2.9)
and its derivatives by t and t2. This is achieved by the use of Bonnet’s relation
(2.4) and multiplying it by ¢. After a tedious calculations this leeds to an explict
system for g which we shall give for two orthogonal basis, Chebyshev and Legendre
polynomials:

I. Chebyshev basis. The first n — 1 equations in the system are obtained by
Horner in (4], and their construction is given in Table 1 for k = 2,3,..., n, using
the notation ¢_y = ¢k, I_; = I, where, for the left hand side of the equation
we multiply each element of the table by the column constant and row variable
and summarise the obtained terms, and for the right-hand side we make the linear
combination of the elements of the last column and the appropriate values of L,
t=k—4,...,k+4. Two additional equations are obtained from the boundary
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-u? c1 [ c3 Cq cs Ce

Qk—4 k+1

qx-3 ' 2(k ~3)(k+1) 2k + 1)

Qx-2 Ak =2}k +1) 2 4(k+1)
qr—1 2(k+3)(k—1) 8(k*-1) -2(k-1)

gx | 16k(k? — 1) 8k 2k -8k

Tt —2(k = 3)(k +1) —8(k? — 1) —2(k+1)

Qr+2 —4(k + 2)(k - 1) -2 4(k-1)
Qr+3 ~2(k+3)(k—1) 2(k-1)

[P k-1

Table 1.

conditions and they give " r_o‘qx(=1)* =0, 3%_o‘ax = B1, where we have used
that for Chebyshev polynomials T} (t) we have Ti(—1) = (—1)* and Ti(1) = 1.
(The notation ‘g means that summation envolves 0,5 - go rather than q0)-

When the obtained system is solved for qq, ... , ¢n the following algorithm is
used to evaluate (2.9):

Let 651, =05-qx for k=0,...,n.

Let bpyo = bpy1 = 0.

Evaluate b = 2b;}_1 +4 2bgy1 —brga for k=mn,...,0.
Let Wi(t) = 0,5 (b — b2).

II. Legendre basis. The system in this case is obtained in slightly different
way by the author in [5]. The first n — 1 equations are constructed form the Table
2. in the same manner as in the first case, and the two equations obtained from
the boundary conditions are

n n
ST=Drge=0, Y a =58,
k=0 k=0

because for Legendre basis Pi(t) we also have Py(—1) = (=1)¥ and Pc(1)=1.
In this case for the evaluation of (2.9) we need the following algorithm:
Let bpy2 = b1 = 0.

n—k+1 2n—2k+1

mbn—kn 4+t ————bp_pq1 for k =

Evaluate by} = qn_t — k+1
n—

0,...,n.
Let Wo(t) = qo.

5. The error estimate. It can be easily seen from (2.1) that the error
function has the form

L (@) = ()l ze(0,1-¢]
d(z) = { lo(z) = Wa(2(z — 1)/6+1)] ze[1-6 1]
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"*#2 Cy Ca C3 Cs Cs  {Ce
k(k - 1)
B2 (2k— 1)(2k - 3)
k(k - 1) k
Bt 2% — 1 2k - 1
2k% + 2k — 1
k o 1
% (2k + 3)(2k - 1)
’ 3k% 4+ 5k + 1 E+1
Gk ——m*" 2k+ 1 ‘ 13
(k+1){k +2)
2%k 2% —(2k+1 AT AT
r+3 (26 +1)(2k +3) (2 +1) (2k + 5)(2k + 3)
i>k+3
26 étap 2+ 2k +1 2k 41
. i—k
i ;t%pk;“‘*(?k-{—l)-——-z (i+k+1) -2(k+1)
Table 2.

In [1] the following theorem is given
THEOREM 3. For z € [0,1 — 8] the following estimate holds
d(z) < C(e* + exple~2a(D)(z - 1)}),
where C' is constant independent of x and ¢,

For the proof see [1, Ch. II, Th. 3.2].

The problem of the error estimate of the layer function we shall solve by
generalizing Oliver’s estimate in [3] for the one dimensional case. First we have to
remark that the error, upon the subinterval [1 — §, 1}, by the use of (2.6), may be
written down as

(5.1) z2(t) = |v((6/2)( — 1) +1) - W,,(t)!r_-. [W(t) = Wa(2)].

As W(t) € C?[—1,1] it can be exactly represented by the infinite orthogonal series
according to the chosen basis as W(t) = Y o, arQr(f). The coefficients a, k =

0,..., are, in fact, determined by the infinite system of the same form as for ¢,
k=0,...,n. These two systems can be written down in the vector form as

o0 n

D Aigi=R and ) Aigi=R,

1=0 i=0

where A; and R are the appropriate column matrixes. By substracting these two
equalities we come to

(5.2) ZAi(Qz‘ —a) = Z Asa;.

=0 i=n+l
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Let us now define the values a,(j), J2n+1,4i=0,...,n as the solutions of
Z:;O A‘.al(']) = AJ
The equality (5.2) now gives

n oQ n R n e 0] .
ZA,'(q,' - a,-) = Z (Z Aia,(J))aj = ( Z a?)aj>A,-,
=0 j=n+1 V=0 i=0 “j=n+1
which implies
(5.3) g—a= Y olle i=0,... ,n
j=n41
As the examined error is
o0 n
dt)=| Y arQut)— Y (g — ar)Qi(t)
k=n+1 k=0
(5.3) gives
(o] n i
(5.4) 0= ¥ (X o0 -0))as|
j=n+41 M=0

This proves the following theorem:

‘THEOREM 4. The error (5.1) can be approzimately estimated by

n+m
zm(t) = Z €jq;, mE€N, where
j=n+1

e = Zagf)Qk(t)—Qj(t), j=n+1,... ,n4+m,
k=0

and g} determines the magnitude of q;.

In the proof we have, also, to use the fact that the summ (5.4) is dominantly
determined by the first few terms and that the magnitude of the coefficients in the
infinite series is of the same order as for the finite one (of degree n + m) when n is
large enough.

In practice it is sufficient to take m = 1 or m = 2 to obtain a quite satisfying
estimate.

6. Numerical example. We shall construct the spectral approximation for
the boundary value problem due to [1]

2+ 4e? — 2%z e2n? 7(1 - z) 2r . w(l-1z)
_p2 0 ; —
A I I Tl st L L

¥(0) =y(1) = 0.
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€ =10"% n=10 (1 - 6,1] = [0.99991, 1]
z y(z) d(z) z1(t)
0.99995 0.993 1-10* 1.10-3
0.99997 0.950 1.10-¢ 9.10—*
0.99999 0.632 4-.10-% 4-10~4
0.999993 0.503 4.10"¢ 7-10~14
0.999996 0.330 2.10"°% 6-10"°
0.999998 0.181 1.10-°% 7-10-4
0.999999 0.095 5.10"¢ 7-1074
Table 3.
. (1l —-=z) .
The reduced problem has the solution y,(z) = cos - and for the approxima-

tion (2.9) of the layer function we are going to use Chebyshev basis. The absolute
error d(z) and the error estimate z;(t) are given in the Table 3 for n = 10 and
€2 = 107" in several points displayed through the boundary layer.

The similar results can be obtained for other orthogonal basis.

REFERENCES

(1] E. Doolan, J. Miller, U. Schilders, Ravnomernie éislenie metodi resenija zadaé s pograniénim
sloem, Mir, Moskva, 1983.

(2] G. Milovanovi¢, Numericka analiza, Nauéna knjiga, Beograd, 1988.

[3] J. Oliver, An error estimatimation technique for the solution of ordinary diferential equations
in Chebyshev series, Computation 12 (1969), 57-62.

[4] T.S. Horner, Recurrence relations for the coefficients in Chebyshev series solution of ordinary
differentijal equations, Math. Comput. (1980), 893-905.

[5] N. Adzié, Recurrence relations for the coefficients of Legendre solution of some ordinary
differential equations, Zbornik radova FTN u Novom Sadu 19 (1988), 14-25.

[6] J. Lorenz, Stability and monotonicity properties of stiff quesilinear boundary problems,
Zbornik radova PMF u Novom Sadu 12 (1982), 151-173.

Fakultet tehni¢kih nauka (Received 18 09 1989)
21000 Novi Sad
Jugoslavija



	246.tif
	247.tif
	248.tif
	249.tif
	250.tif
	251.tif
	252.tif
	253.tif
	254.tif

