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ON WEAK CONVERGENCE
OF SPECTRAL DENSITY ESTIMATE

Pavle Mladenovié

Abstract. We study the periodogram based estimate
2
) = /BN o(zB5' — ABR')(2nrN)™! dz,

Z X{(t)e =

t=1

where —% < A < 7, (¢ is a weight function and By — 0, NBy — +oc0, when N — o0} of the
spectral densnty f(/\) —m < A < 7, of a strictly stationary random sequence. We renormalize the
scale in A and define the random process

Zn(N) = (NBn)?[fn(\Bn) - Efn(ABn)], M € 7BF',

in order to obtain the limiting {(Gaussian) process whose sample part functions are continuous with
probability one. A weak convergence of the sequence {Zn(A),a < A < b}n=1,2,... is investigated.

1. Introduction. Let X(t),t € {...,—1,0,1,...} = D be astrictly station-
ary real random sequence with the mean EX(t) = 0 and the spectral density f(}),
A€ [—m, 7] =1

Assumption A. All cumulant spectral densities of the random sequence
{X(t),t € D} are bounded.

This assumption is valid if all moments of the sequence {X(t),t € D} exist
and for the Rosenblatt mixing coefficients

a(r) = sup |P(AB) — P(A)P(B)|,

AER' _, BERTS,

the inequality a(r) < Ke™®, K > 0, 6 > 0 holds, where ® is the o-algebra
generated by the random variables X(t), a <t < b (e.g. Zurbenko [4]).

(1 ) = /ch,v(z — NIy (z)dz
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2
, where oy (z) =

N
—itz
N t; X(t)e
Bilo(zBR'), |z] < 7; ¢(z), 2] < 7, is a weight function that is symmetric about
0, has a bounded first derivative and such that p(0) = 1, [T ¢(z)dz = 1 and the
sequence (By) is such that 0 < By < 1 and By — 0, NBN — 400 when N — oo

(We assume that () = 0 for |z| > 7 and that the functions f and ¢n are defined
on the whole real line and 2w-periodic.) Note that

@) (=, )len(z) — v (v)] S HBR |z — o,

where H = sup |¢’(z)|. Under Assumptlon A one has the following inequality for
the cumulants of the random process fN(/\) —-r<AL™m

which is based on the periodogram Iy (z) =

Ky
(NBy)»-1

where the constant K, does not depend on the particular choice of points A1,y Ag,
.y An, (e.g. Bentkus, [1]).

39) |5 (Fv ), Fv ), T )| <

2. Results. Let £x()) = VNBn[fn(ABn) — Efn(ABy)] for |A| < ©/By
and Ex()) = En(m/By) for |\l > m/Bn. Let Z()),~00 < A < 400, be the
Gaussian random process with the mean EZ(t) = 0 and the covariance function

EZ0)20) == 2170 { [ ole ~ otz - wda + [ ot = Npte + waz}.

THEOREM 1. Let the sequence {X(t),t € D} satisfy Assumption A and
let the spectral density function f be continuously-differentiable. Then, the finite-
dimensional distributions of the random process fN(A) —00 < A < 400, converge
weakly to those of Gaussian process Z()), —oo < A < +o0.

THEOREM 2. Let the sequence {X(t),t € D} be Gaussian and its speciral
density function f bounded. Then, there exist the constants K >0,17>0 and
€ > 0 such that the inequality

ElEn(3) —En(m)]" < K|X — p|'+
holds for every N, X and pu.
Let C = C[a,b] be the space of all real continuous functions defined on
[a,b], ~00 < @ < b < 400, with the uniform metric p(z,y) = sup |z(t) — y(t)] and

let C be the clas of Borel sets in C. Denote by Py and P the probablhty measures
on (C,C) generated by the random process £x()),a < A < b, and Z(A),a < A<b,
respectively. Then, we have the following

THEOREM 3. Let the sequence {X(t),t € D} be Gaussian and its speciral
density function f continuously-differentiable. Then, Py converges weakly to P,
when N — co.
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3. Proofs. Proof of Theorem 1. By Theorem 2 from the paper {3], the
inequality (3) and E{N (A) = 0 it follows that all cumulants of the random process
En(X),—00 < A < 0o, converge to those of Gaussian process Z(A), —o0 < A < oo.

Let us denote Fy(z) = sin{Nz/2)sin"!(z/2). To prove Theorems 2 and 3
we need several lemmas:

LEmMMA 1. Let {X(t),t € D}.be a Gaussian process. Then, for A, p €
[-7Bx!, 7By'] one has

(4) Eén(Nén(u) = NBy /n (e = AB)on(y — B)Gi(z, ) dz dy,

where

2
one) = { g || APt = )+ ) e}

+{FIN-/I;f(a)FN(a—x)FN(a—y)da}z.

Proof. For the Gaussian vector (X1, X3, X3, X4) we have
E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1 X3)E(X2X4) + E(X1X4)E(X2X3)

and consequently we get

2 N
ElIn(z)In(y) = (-—E—> S EX(1)X (1) X (t3) X (ta)e!h ==ty

2N
t1,t2,%3,t4=1

(%rlN)z/n /() ,:

2 N 2
Zei(u—x)t da/ f(B) Zei(ﬁ—y)t
= I t=1

/ eiN(a=z) _ 1 giN(aty) _ 1
n

2

+ f(e) dex

eila=z) _ 1 eilaty) — 1

2

eiN(oz-—x) — 1 e”\r(a__y) _ 1
(5) + /I"I gila=z) _ 1 eila-y) =1 f(CY) da K

We also have

I it{a~ 1’)

(6) Ely(z)= ZTN . Z | () da,
eNe -1 N - D)z

(7) ] —FN(w)exp—g——,

(8) Efn(Nén(p) = NBN[E FNOBN)Fn(uBn) — Ef(ABn)Efn(uBn)]
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= NBN/2¢N(x—ABN)¢N(y—ﬂBN)X
n

X [E In(z)In(y) — EIn(z)EIn(y)] dz dy
and then (4) follows from (5)—(8).

LEMMA 2. Let {X(t),t € D} be a Gaussian process and sup |f(A)] = C3 <
A

+co. Then, there exists a constant ¢ € (0,+00), such that the following inequality
holds for every N, A and u:

(9) EIEn(A) — En(1)? < Calr — pl.

Proof. Using Lemma 2 and (2) we obtain

Elén(3) = En(m)* = EE4(A) + E€§ () — 2E En(M)én(p)
= NBy /m o (2 —ABN)pn(y — ABN) — on(y — pBN)IGn(z, y) de dy
+ NBn /m ¢n(y — pBN)lpn(z — ABN) — pn(z — pBN)IGN (2, y) dz dy
S NH|A - #I{/m [len(z = ABn)|+ lon(y — uBw)|]Gn (2, y) dz dy}
< NHlA—pI(A1+A2+A3+A4),

4 = / xsoNz~ABN>|{21N / FN(a—x)FN(a+y)f(a>da}2dxdy

A2=/2|<PN(I~/\BN)|{'2W—N/ FN(O‘—x)FN(Ol—y)f(a)da}zdzdy

where Az and A4 are similar integrals with ¢ (y — pBy) instead of en(z —ABN).
It follows from the equality

/ Fy(z— t)FN(y —t)dt = 2rFn(z —y)
II
that

1
NA; < Cs / low(z = ABy)|5 Fi(a +) da dy
II

< 27rC'3/ len(z — ABy)| dz ! / FZ(2)dz < k1 < +o0
bnd 2N but

and tha.n, the inequality (9) follows easily.

LEMMA 3. Let the sequence {X(t),t € D} be Gaussian, supy |f(A)] = C3 <
+oo and let x, be the n-th cumulant of the random variable En(A) — En(u). Then
Jor every n > 2 there exists a constant c,such that the inequality

(10) Xl < enld —p*"
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is valid for every N, X and p.

Proof . In the case n = 2 the inequality (10) follows from Lemma 2. Suppose
n > 3. The random variable £x()) — Ex(x) can be represented in the form

Env(A) = En(w) = (AX, X) - E(AX, X),

where X = (X(1),...,X(N)) and A is N x N-matrix whose element A, is given

H a /[Tl (:[ Ai ”) ¥ ( } 4 “)] ( )
2/( N bu N N

Since X is a Gaussian vector, the characteristic function of the random variable
En(A) — En(p) has the following form

N
(1) ol = aw(0) = exp (i Zu(N)>H 1= 2007,
j=1

where p; = ;45 ) ,J=1,2,..., N are the eigenvalues of the matrix M A and M is
the covariance matrix of the random vector X. It follows from (11) that

N
-1
Xn =2"""n! E /1?»
i=1

and for n > 2 we obtain
N
(12) Ixnl <27~ 2n'  max, 177 i 222/1 = 2" “n’xg max |,u ?=2.
<5<
j=1
Notice that max |p;| < ||MA|l < ||M|]||A|] Let ¥ = (y1,...,y~n) be a unit vector

in RN. Using the fact that M is the covariance matrix of the random vector
(X(Q1),...,X(N)) we get

Il = sup [(My,0) = sup Zy,y / eME=9) £(3) d
y =

lyll=2 t,s=1
I|y]| 1/H

2
F(A)d.

> et

t=1

Since

IIyII 1 /H

Zyte

t=1

dA = sup / <Z v +2 Zyty, cos(t — s)x)

livll=1 oy
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it follows that [JM|| < 2xCj3. Using (2) we get

All = Aly, = s Yils BN
Al = Sup, I(A(v, 9)| = e Z S\

X / [en(z — ABN) — @n(z ~ pBn)] cos(t — s)z dz

B
< sup \{ N/ !soN(:L'-/\BN)"PN(‘L‘—JBNN!Z%@
lolies 27
H|A -y
- VNBy )

and than we obtain (10) easily.

Proof of Theorem 2. Let n € {1,2,...}. Then we have
ERENO) = v ()P = 3 KijaegadXAXE - X500
where the sum is carried out over all vectors (j1, ja, . . ., J2n ) for which the equation
J1+ 272+ 373+ - -+ 2nj2n = 2n holds. Since x; = 0 all addends for which j; > 0
vanish.
For the addend corresponding to the vector (0, j2,...,J2,) we have

A xs X < Kald = pl?,

2n
where @ = 3 (s — 1)j,. The constant K, is the same for every N, A and p. Since
5=2
2n
Y (s—1)js > 2 for n > 3, the desired result follows if we put @ = 6 and € = 1.
Proof of Theorem 3. We shall use the following assertion (e.g. Bilingsley [2]):
Py converges weakly to P, when N — oo, if the finite dimensional distributions of
Py converge weakly to those of P and the family of probability measures { Py, N =
2,...} is tight. (The family {Pn} is tight if for every positive ¢ there exists a
compact set S C C, such that P(S) > 1~ ¢ for all N.) The tightness of sequence
{Pn} follows from Theorem 2 and then the desired result follows by Theorem 1.
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