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A PROPERTY OF THE NUMBER OF PERFECT
MATCHINGS OF A GRAFPH

Ivan Gutman

Abstract. Let z,,...,25,¥1,...,Yp be independent edges of a graph G. Denote the sets
{z1,...,zp} and {y1,...,¥,} by X and Y, respectively. We consider mappings F : X UY —
{0,1}. For a given mapping F and two subsets X; C X and ¥; C Y, ¢,5 € {1,2,...,27}, we
define Gi; as the subgraph obtained from G by deleting the edge z if F(z) = 0 and by deleting
the edge z together with its endpoints if F(z) =1, z € X; UY;. We prove that the absolute value
of det||k:;]] is independent of the mapping F, where k;j is the number of perfect matchings of

Gij.

In this paper we consider finite graphs without loops and multiple edges. A
perfect matching of a graph G is a set of edges of G, such that every vertex of G
is the endpoint of exactly one edge form this set. The number of distinct perfect
matchings of the graph G is denoted by k(G).

Let p be a positive integer. In this paper we are concerned with graphs
possessing at least 2p independent edges, i.e. 2p edges no two of which have a
common endpoint. Let G be such a graph and let z;,y;, i = 1,... ,p, be a set of its
independent edges. Let further X = {z1,...,2,} and Y = {y1,...,y,} and denote
by P(X) = {X1,X2,...,X2r} and P(Y) = {¥1,Y3,...,Y2s} the power sets of X
and Y respectively. Label the subsets of X and Y so that z; € X; < y; € Y.
Define a mapping F : XUY — {0,1} i.e. for any z € XUY, F(z) = l or F(z) = 0.
Let f =}, cxuy F(2). The set of all mappings of X UY onto {0, 1} is denoted by
Fp. Recall that |Fp| = 27%P.

Define two special mappings from F:

Fy has the property f=0,ie. z€XUY = Fo(2) =0,
F; has the property f = 2p,ie. z€ XUY = Fi(z)=1.

For a given mapping F' € F, and a given set of edges X;UY; define a subgraph
Gij = Gij(F) of the graph G. Let G be obtained by deleting from G the edges
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z € X; UY; and, in addition, deleting the endpoints of those edges z € X; UY; for
which F(z) = 1. (If X; = Y; = &, then Gi; = G.)

Denote by k;; = ki;j(F) the number of perfect matchings of Gi;. Let K(F)=
||ki; (F)||; note that K(F) is a square matrix of order 27. We say that the subset
X, is associated with the i-th row of K(F') whereas the subset ¥j is assoclated with
the j-th column of K(F).

THEOREM 1. (a) If p=1, then for all F € F)
det K(F) = (—=1)f det K(Fo). : 1)

(b) If p > 1 then det K(F) 1s independent of F € F,.

Proof. We first observe that Theorem 1 holds in a trivial manner if the graph
G has no perfect matchings, £(G) = 0. Namely, then none of the subgraphs Giy;
has perfect matchings. Consequently, for all F € F, K(F) is a zero matrix and
det K(F) = 0.
Suppose therefore that k(G) > 0. Then in order to prove Theorem 1 we need
the well-known identity [2]
E(G) = k(G — zuy) + k(G —u —v) (2)

where 24, denotes an edge of G connecting the vertices u and v.

Let p > 1. Consider a mapping F, F € Fp, F # Fi. Then there exists some
20 € X UY such that F(z) = 0. Define a mapping F'* via

F*(z) = F(z) forz€ XUY \{z}; F*(z) = 1.
It is then sufficient to prove that for p > 1,
det K(F) = det K(F*). (3)
Recall that from the definition of F* it immediately follows
Ba(F) = ky(F) if 208 XiUY;. ()

We now have to distinguish between two cases. Either zo € X or 20 € Y.
Suppose first that zp €Y.

Let Y; be a subset of Y containing zo and let Y; \ {z0} = Yj, € P(Y). Then
a special case of (2) is
k(Gijo(F)) = k(Gij(F)) + k(Gij(F7)),  ie.
k(Gij(F)) — k(Gijo(F)) = —k(Gi; (F7))-

This implies that by subtracting the jo-th column of K(F) from the j-th
column we obtain a matrix of the form
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Bu(F) oo kyoa(F) ~kg(FY) kigsa(F) ... kige(F) II
En(F) oo hayoi(F)  —kgg(FY)  kajsa(F) ... kaee(F)
karn(F) oo Kanj 1(F) —kars(F*) Kamsas(F) oo osao(F)

Since by such a transformation the value of the determinant is not changed we
immediately arrive at .

det K(F) = — det K’ (F),
where K/ (F) is the matrix obtained by writing F* instead of F in the j-th column
of K(F).

The above described construction is to be repeated for all columns of K(F)
associated with the subsets of Y containing zg. It is convenient to start with
such subsets of greatest cardinality and to end with subsets of smallest cardinality.
Bearing in mind (4) we then finally arrive at

det K(F) = (—1)" det K(F™*) (5)
where r is the number of times the construction has been repeated. Clearly, r is
equal to the number of subsets of Y containing 2, i.e. r = 2P~ 1,

Whence, if p > 1 then r is even and formula (3) follows. If p = 1 then r is
odd and (5) leads to (1).

If zo € X then a fully analogous reasoning can be applied, except that, of
course, in this case we have to transform the pertinent rows of K(F).

This completes the proof of Theorem 1. O
COROLLARY 1.1. Forp > 1

det K(F()) = det K(Fl) (6)

Proof. For p > 1 the equation (6) is just a special case of Theorem 1(b). If
p = 1 then (6) follows from (1) and the fact that for F}, f =2. O

A result equivalent to Corollary 1.1 was reported (without proof) in a recent
paper [1].

COROLLARY 1.2. Ifz* € X UY is an edge contained in all perfect malchings
of the graph G then for all F € Fy, p > 1, the determinant of K(F) is equal to
zero.

Proof. Without loss of generality we may assume that z* € X. Choose a
mapping F' from 7, for which F(2*) = 0. Then all elements of K(F) lying on rows
associated with the subgraphs of X containing z* are equal to zero and therefore
det K(F) = 0. Because of Theorem 1 this latter equality holds for all mappings
from 7,. O

COROLLARY 1.3. If 2* € X UY is an edge no! contained in any perfect
matching of the graph G then for all F & Fp, p 2 1, the determinant of K(F) is
equal to zero.
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Proof is analogous: choose a mapping F for which F(z*)=1. O

CoroLLaRY 1.4. If G has a unique perfect maiching then for all F € F,,
p>1, det K(F) = 0.

COROLLARY 1.5. If G is a forest then for all F € F,, p> 1, det K(F) =

If G is a graph containing circuits then det K(F') needs not be equal to zero.
The simplest example of this kind is provided by the four-membered circuit Cy. In
this graph we may choose two independent edges ¢ and y (whence p = 1). Then
. Fp has four elements. For the mappings F(z) = F(y) =0 and F(z) = F(y) = 1 we
have K(F) = || f 1|l whereas for the mappings F(z) =0, F(y) = 1 and F(z) = 1,
F(y) = 0 we have K(F) = ” 21 ” Consequently, in the case of the graph Cy the
determinant of K(F) differs from zero for all F € F,. This example also illustrates
Theorem 1la.
The proof of Theorem 1 is solely based on the recurrrence relation (2). There-
fore any other graph invariant I{G) conforming to the recurrence relation

HG)=I(G — zyy)+ I(G—u—v) )
will possess a fully analogous property:

THEOREM 2. Let I(G) be a graph invariant conforming to eq. (7). Then
Theorem 1 remains valid if the elements of the mairiz K(F) are interpreted as

I(Gij).

With minor modifications in the proof of Theorem 1 we arrive at another
result of this kind.

THEOREM 3. Let J(G) be a graph invariant such that for each pair of adjacent
vertices u, v the recurrence relation (8) holds:

J(G) = J(G = 2uy) ~ J(G — u —v). (8)

Then for all p > 1, det K(F) is independent of F € F, provzded the elements of
the matriz K(F) are interpreted as J(G;;).
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