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ALMOST SURE SAMPLING RECONSTRUCTION
OF NON-BAND-LIMITED HOMOGENEOUS RANDOM FIELDS

Tibor Pogdany

Abstract. Almost sure convergence problems of sampling partial (and cardinal) expansion
sum sequence are discussed for non-band-limited homogensous random fields with not necessarily
continuous spsctral distribution function.

1. Introduction

The reconstruction of a random signal requires only that the sample inter-
val h/x is smaller then the reciprocal of the bandwidth w of the non-negligible
frequency components in the spectral distribution function of the signal.

Because the sampling representation (in the mean-square and almost sure
sense) is usually not discussed in the case h = w/w, the first purpose of the paper is
to specify the behaviour of the truncation error of band-limited {BL) homogeneous
random fields (HRF) with closed sampling interval S. A special importance will be
given to the continuity properties of the spectral distribution function of the HRF at
the points of &S. Also some mean-square {m.s.) and almost sure (a.s.) convergence
results are derived in the section III. In the sequel we generalize the resuits of
foregoing sections to the non-band-limited HRF class. With the help of combined
aliasing and truncation error we shall prove that for the a.s. convergence of the
sampling cardinal series expansion sequence to the intial HRF always holds {section
IV). We can also remark that the reference list of the sampling reconstruction of
non-BL, HRF is very short [10], [20]. The author didn’t find a.s. results in the
multidimensional stochastic sampling except for the short remark at the beginning
of the page 168 in [22]. So this paper completes the literature of the HRF sampling
on the rectangular lattice in BL and non-BL cases in above sense.

The mean-square sampling representation of a weakly stationary (WS), BL

stochastic process holds if the spectral distribution function is continuous at the
endpoints of the closed sampling interval, (1], {4], [21].
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The case h = w/w is avoided (or ignored) in the multidimensional sampling
in many papers in few methods. This methods and some related results are listed
in short in the following.

(A) Wider bandwidth approach. If the random signal (process or field)
is band-limited to the bandwidth w, it is band-limited to any @ > w. Since the
spectral distribution function possesses an at most countable discontinuity set Ag
the convenient choice of @ distinct of Ay is always possible. This method is due
to Belyaev and was generalized to vectorial BL and non-BL processes in [18]. For
the sampling of HRF (BL and non-BL case) in a wider bandwidth manner consult
[19]. ‘

(B) Open sampling interval. Gaarder derived periodic sampling results
on nonrectangular lattices for fields [8]. This approach exploite Petersen-Middleton
(2-, and 3-dimensional fields on rectangular lattices) [15], [16]; Barakat [2]; Mont-
gomery [12]; Lloyd (open support, non-BL WS processes) {11}, and Pogény [17].

(C) Continuity properties, special function classes. For deterministic
signals Parzen supposed that F € C(0II), [14], where 91 consists of all vertex
points of the multidimensional rectangle II. Butzer considers uniformly bounded
deterministic signals from C(R™")NL(R"), [5], [6]. SplettstoBer considers uniformly
continuous bounded functions on R" [20].

Unfortunatelly the author doesn’t have insight into paper of Miyakawa (in
Japanese) listed in [10].

Finally there are undefined cases where continuity properties on 85 are omit-
ted [9], [22]. Papoulis deals with bounded sampling region but he doesn’t specify
the closeness of this region [13]. We shall show that without this condition on 811
sampling representations do not hold.

II. Preliminary definitions and results

In his historical paper Belyaev has proved that the partial sampling expansion
sum of a band-limited mean-square continuous, wide-sense stationary stochastic
process converges with probability 1 (in other words almost surely) to the initial
process. He used the method (A).

Following some Belyaev’s ideas in the paper [19] there are given similar almost
sure conyergence results for homogeneous random fields in the band-limited and also
in the non-band-limited case.

Belyaev’s idea was: “Let {X(t),t € R} be a WSP, BL to the frequency w > 0.
Then X(t) is BL to frequency @ > w too. Hence from the mean-square sampling
representation

X{t) = Z X(nw/w)sine(wt — nn)
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it follows also in the mean-square sense that

o0
X(@) = Z X(nw /@) sinc(@t — nir)
—00
where sinc(z) := 2~ !sin(z).
As the sampling expansion partial sum

N
Xn(t) = ZX(nvr/u';) sinc(@t — nw)
-N

gives a mean-square truncation error

En(t) = E|X(t) - Xn(®)]* = O(N ™)
from the convergence of the series ) y; €x(t) by the Borel-Cantelli lemma it follows
that P{limy_c Xn(t) = X(t)} = L.

Denote by N, Z7, R the set of all positive integers, g-tuples of integers,
g-tuples of real numbers.

With the aid of the wider bandwidth method has shown that a BL homoge-
neous random field {¢(z), z € R?} which is BL to the frequency W = (wy, ..., w,)

(and also BL to the wider bandwidth W = (@y,...,%,), ©; > wj, j = 1,...,9),
has a mean-square sampling representation

&) = Zﬁ(z") H sinc(bgzk — nET),
n k=1

where n = (n1,...,ny) € Z7, 2 = (z1,...,2,) € R, and z" runs over all points
of the lattice Lat(w) = {z" = (7ny1/t:,...,7ny/wW,);nx € Z}. Put

g
En(z) = Z &(z™) H sinc(Wrzp — ngm),
[nISN k=1
then the mean-square truncation error possesses the convergence rate
p: g -2
En(z) = Elé(z) - En(t)1* = O(NIZ™),

where |n| < N means that |n;| < N;, i=1,...,¢, Ny = min;{N;}. As
Z €q(z) < oo,
Ny

it follows immediately that &y (z) — &(x) almost surely as N, tends to inifinity,
[19]. See also [22, pp. 167-168] for the sampling expansion of a spherically BL,
HRF.
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IIT. Derivation of truncation error
Before giving the results on the truncation error upper bound we repeat some
results from Fourier-series expansion of the function exp(iAt).
Denote by 1{-} the indicator of the event {-}.
LEMMA 1. Let o := 1{X € (—w,w)}, r arbilrary posilive integer, N > 2.
Then for all A € [~w,w] and allt € R

N
Z exp(inAr/w) sinc(wt — n7) + O(N~°C-D-1p* N) =
-N

= aexp(iAt) + (1 - a)coswt. (3.1)

Proof. Consider a 2w-periodic, r-times derivable function f(A) such that
|f (M) € M,. Then the remainder Rn(f) of the symmetric complex Fourier-
expansion of f(A) on (—w, w) is bounded above, namely:

|Rn(f)] < AM,(w/7)"N="la N. (3.2)

Here A is an absolute constant. This result of Bernstein is treated in detail in [7].
For instance it is suggested that A=2+ (1 +In7)/In2.
The remainder of the Fourier-series of e'*' on [-w,w] is Ry(e*) =
2 ini>~ €Xp(inmA/w) sinc(wt — nx). From (3.2) it follows:
|Rn(e)] < A(wlt]/7)"N~"In N (3.3)

for all A € (—w,w).
It is obvious that cos(wt) = ztz(wt — nr)~!sin(wt). Since

N N
Z exp(inAr/w)sinc(wt — n7w) = Z(wt — n7) " sin(wt)
-N -N

at the points A = tw, and for sufficiently large N

Z (wt — nx)~?

In|>N

<

N
cos(wt) ~ Z(wt — nm)~ ! sin(wt)
-N

o0 o0
< 2ult|r? Z [(nm)? — (wt)?|7? < Quwlt|==2 Z n~% < 2uwlt|r~2/N,
N+1 N+1

by (3.3) follows the assertion of the Lemma 1.1
Remark 1. By the result (3.1) it is easy to prove that
Z exp(inmA/w) sinc(wt — nw) =
Inj<N

= (e + O(N " In N)) " (cos(wt) + O(N~1)) "%, (3.4)
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This form of relation (3.1) is more useful for the derivation of the ¢-dimensional
variant of Lemma 2.0J

Denote by (a,b) = 3" 1a;b; the inner product of the vectors a,b € R?. With-
out changing the order of coordinates of the vector a = (ay,...,a,) we choose
p coordinates from a, 0 < p < ¢. Let af denotes the new vector which con-
sists of such p coordinates, and let a?~7 denotes its “complement” with respect
to a. So (af,b?) = Y Tay;bi;, k; € {1,...,q}. A closed cube and a rectan-
gular lattice in R? are denoted by I := X![—w;,wy] and Laty (W) = {z" =
(mn1/wy, ..., 7ng/wy), |n] < N} respectively, where W = (wy,...,w,) is the ¢-
dimensional sampling frequency. There will be no difficulties to recognize the dif-
ference between partial time-vector zP and the lattice point z™.

LEMMA 2. Letr € N, op 1= 1{ € (mwr,wi)}, k =1,q, f:= 1{r = 1},
Ny := min{Ny,... , Ny} > [exp(1/r)] + 1. Then we have

q
Z eth=") ]__Isinc(wk:z:;c —nEw) + O(N;ﬁ(r"l)”1 I’ Ny) =
Inl<N 1

q q
= 2 H op + H(l — o) cos(wr Tk )+
1 1

9-1 P q
+Z Z eiA"77) (H :vkj> H (1 — ok, )cos(wg, e, ) (3.5)

p=1 ki1 <ka<...<ky 1 m=p+1

where 2™ € Laty (W) and 2P := (2k,,...,2k,). Relation (3.5) holds for all z € R?
and all A € I1.

Proof. By (3.4) we obtain:
g
Z e ]._:[sinc(uu,.:zr:;c - nEm) =

[nl<N 1

g
= H(exp('i)\kzk) + O(N{ " In Ni))®* (cos(wrz) + O(Nk"l))l_a" =: E,.
1
In special cases if oy = 1 (e = 0), 0 < k < ¢ we get

s

q :
E, = ™) L O(NI"In Ny) ( = cos{wgzr) + O(N_;l)>
1

respectively.
The general case gives us

g-—1 i :
53 ren({Te) T 0-en st on s
1

p=1 k1<...<kq m=p+1
q
+0 (\/ Nexlr=1-1 Nk> :
1

This completes the proof of the lemma. M
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Let {£(z),z € R} be a BL to W, HRF with E¢(z) = 0; the correlation
function of the observed field is K¢(z — y) = E€(z)¢*(y) with the variance G2 =
K¢(0). The spectral representations of £(z) and K¢(7) are

W W
£(z) = / X dZ(N);  Ke(r) = / M R ()
-W
:”u’“ e f’;q; Z(X) is the spectral process and F(}) the
spectral distribution function of the HRF £(z). Suppose F(}) is left continuous
with respect to A;, i = 1,¢. Put

respectively. Here f__WW =

En(z) = Z £(z™) H sinc(wpzy — ngm) (3.6)
k=1

Inl<N

where z" € Laty(W).

At first we are interested in the mean-square sampling truncation error. From
a general point of view the masses of F'(A) at all points of 8II have an important
role in the evaluation of the truncation error. Namely we shall show that if F())
possesses discontinuities on 9II the truncation error does not vanish if Ny — co.
For example suppose that F(X) is discontinuous at +w;. Then F(xw;;A!™!) =
F(wi+; M7Y) = F(w; A1) + F(—wi+; M7 — F—wy; A7),

THEOREM 1. Under the conditions of the Lemma 2 it follows that the mean-
square {runcation error €x(z) = Elé(z) — En(2)|? for all z € RY is

@)=y 3

p=0 k1<kz<...<kq

g 2
- i(ﬂ"",z"")n
1-e cos(wg; T;)
ptl

x Yar FOP; 2W777) + O(N P97 P Ny, (3.7)

X

where WP := XF(—wy,, wy;).

Proof. Put An(}) := A=) — Linj<N 22"} TT¢ sinc(wyz — ngw). Then it
follows clearly by Lemma 2 that -

g

An(A) = (1 - Hak>ei(’\’x) - H(l — ag) cos(wg k) —

1 1
g A q
- Z Z RICLIE S (H akj> H(l — ay, ) cos{wg, Tk, )+
P=1 k;1<...<kq 1 p+1
+OWNZPODT I Ny (3.8)

Fixing p and (ki,...,k;) we specify the vector \?7P at +W?P. That means

AP e WP A0 = 29 N = W o, =...=ay, = land ag,,, =...=ag, = 0.
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Therefore (3.8) becomes

[ANM]iwa-» = A=) (e‘(i!!."”,g“")

g
- H cos(wkm:ckm)> +

p+1
+O(NTPCD" 1P NL). (3.9)

By direct computation we obtain

w ;V_
En(z) = / anPaF) = [ . (ANOV? F Q) + [8n Flrcsr+

OIS S R IR

p=1 ki <ka<...<kq

As o1 2
O(NF¥ In® Ny) p=4q
(AN awa-r = |1~ e FWITN T cos(wr )|+ (3.10)
+OWNPD 11 ) 0<p<yq

we can see that [|An(A)|*]Lpe-» does not depend of the sign of +W?F, Therefore
we can assume:

g
ev@)=), .

p=1 k1<..<kq

x Yar F(M; £ W977) + ONFP=D7 108 N ) + O(NF¥ In® Ny). (3.11)

2

P
_ MW ZTTT) H
1—e cos(wr; Tk;)
1

Finally, it is not hard to show that (3.11) proves the assertion of Theo-
rem 1.1

We can write:

n(z) = /n AN dF() = /m AN dF()+

g
+3° [ 1ANOF P aswer.
p=1 e
Since |An())|? does not depend of A we get from (3.10) that

q
En(z) = OWNFT N+ > Y AN lge-rx

T \P - g-p
x Yar FOP; £ W177). (3.12)

Suppose F is continuous at all points of JII. So Vargs F' = 0. For the case ¢ =1
consult (1], [21]. Finally we have

En(z) = O(N;¥ In® Ny). (3.13)
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So we complete the proof of
ProrosiTioN 1. If F € C(O1I) then Lim.y, o én(z) = E(z). W
The related a.s. convergence result is established in |
ProPosITION 2. If F € C(81I), then P{limp, o én(z) = &(2)} = 1.

Proof. As by (3.13) 3°y, €n(z) converges, from the Borel-Cantelli lemma
the assertion follows. W

When F(A) is discontinuous in at least one of the points of IT then Exn(z)
contains a nonzero term. In the sequel denote by i, the constant term in (3.11),
ie.

ﬂqzzi Z

r=1 k;<...<kq

g 2
— IR g7
1—e Hcos(wkja:kj) X

p+1

X \Q;a;r F(OP,£W97?). (3.14)

Ezamples. For a WS, BLPs is 4; = sin?(wt)(F(w+) - F(w) + F(-w+) -
F(—w)). This result was shown by Balakrishnan and by Wong, but they did not
evaluate the convergence rate of the truncation error {1}, [21].

Similarly a 2-dimensional case gives us

Yy = sin®(wiz)(F(wi+, wa—) — F(wy, wa=) = F(wi+, —wa+)—
— F(w1, —wa+)) + sin®(waz2)(F(wi—, wat+) — Flwy—, ws)—
— F(—wi+, wot) + F(—wy+, wq)) + |1 — exp(i(W, z)) x
x 112 cos(w;c:ck)P(F(w;—i-, wy+) — Fwy, we+) — F(wi+, wa)+
+ Fwy,wa) 4+« + F(—wi+, —wa+) — F(—wy, ~wa+)—
— F(—w1+, —w2) + F(~wy, ~wy)). O '

IV. Non-band-limited homogeneous random fields

A non-BL, HRF {{(z),z € R} possesses the spectral representation &(z) =
Jre e!M=) dZ(X). Its correlation function K¢ (r) = E€(2)¢*(y), 7 = = — y, has the
spectral representation K¢(z) = [, e/ dF()).

Consider the set A4 of all discontinuity points of the spectral distribution
function F'(}). It is well-known that A4 is at most countable and }~,, F < &2,

Consider a g-dimensional closed cube II = X{_,[—w;, w;]. We consider the
indicator function 1ry := 1{A € II} as a spectral characteristic of a filter £ of a

HRF £(z). So we get

w
Lé(@) =L /R e dz () = /R e 1 dz () = / _ePaz(. (@)
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A positive, monotonous increasing sequence of real numbers {w;j}$°, j = 1,q,
divergent to oo gives us a sequence of monotonous increasing g-dimensional cubes
(k) := X, [~wjk, wji], & € N. With the help of {11(k)}$° we define

(i) a sequence of spectral characteristics Irx) — 1re =1 if k£ — oo.
(ii) a sequence of filters {L£¢}{°, such that

Lxé(z) = /H (k)e*’W) dZ(\).

If £(z) is defined on the probability space (2, F, P), Li&(x), k € N, is defined
on (2, F, P) too.

(i) Ble(x) - L@ = [ dF(), IU(E) = R\ TI(R),
(k)
Denote by Bre the o-algebra of Borel sets of R?. As F(-) is a finite Borel
measure on Rf and F(B) = [5 dF()), B € Bra, by putting P{-} = G 2F(")
we get

Elé(z) - Lxé(2)]* = G*P{II'(k)}. (4.2)
(iv) l}é&g}' Lié(z) = &(z) for all z € RY.

The proof of (iv) is obvious.

In this way we get a sequence of BL, HRFs {£:é(z)}{°. Therefore we can
apply the results of the foregoing sections to {Li€(z)}5° elementwise.

Since A4 is at most countable, then {w;£}$°, j = 1,¢ can be chosen distinct
from A4. This method was used in [17], {18].

Remark 2. In current considerations we do not suppose that AgN{wjr} = @.
However, it is convenient to use such {w;;} that Ay is a subset of {ztw;} and {w;1}
is an increasing positive sequence which diverges to co, whenever it is possible. [

Finally, let 5 x(z) be just the sampling partial expasion sum of the BL, HRF
Li&(z), namely:

q
Evi(z)= > Lit(z") [] sinc(w;z; —n;7) (4.3)

In[<N i1
where " runs over Laty (W) = {(7n1/wik, ... , mng/we), nil < Ni, 5= 1,¢}.

From Theorem 1 it follows that
E|LrE(2) — En k() = o + ONTP™ D7 1P Ny, (4.4)

where Ny = min(Ny,...,Ny), B = 1{r = 1} and Yy is the term like (3.14) with
respect to the sampling interval II(k).

LEMMA 3. For allz € RY; k, N € N the following holds

§(2) — Lié(z) L Lig(z) — & i (). (4.5)
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Proof. Since Z(A) is a process with orthogonal increments and because

E(&(z) - La€(2)) (Ceb(z) — Enp(2))” =

q
= / / et} (e“i(’\"”) - Z e~ihe) Hcos(wj;;xjk - nﬂr)) X
R JRO 1

Inl<N
we have that (4.5) follows. B

THEOREM 2. The mean-square truncation error of the sampling ezpansion of
a non-BL, HRF {(z) s

€wi(z) = ElE(2)=En () = S*PIU ()} + 8+ OV "D 0P V). (4.7)

Proof. Since €y i (z) = E|é(z) — Li€(2)|* + E|Lré(z) — En i (z)]? from (4.4)
and (4.5) the assertion follows. M

Remark 3. The relation (4.4) shows that &n k() does not converge to Lx&(z)
in the mean-square or almost surely as N — oo when F ¢ C(01I(k)), because
then U1 #0, k € N.O

The cardinal sampling expansion series 7,(z) of a BL, HRF 7(z) is the ex-
pression

Z n(z™) Hsinc(wjxj —n;7), (4.8)
1

n

where n runs over Z? and z” € Lat(W).

THEOREM 3. There exists a convenient choice of {w;r}$°, j = 1,9 such that

the sequence of cardinal series expansions {€, 1(2)}$° converges almost surely to
the initial non-BL, HRF &(z) if k — oo.

Proof. Let {w;k}?°, j = 1,4q, be a sequence from the Remark 2. If it is not
possible to construct such a {w;¢}, then suppose Ay N {w;z} is nonempty (such a
sequence always exists).

Since the probability P, = P{|{(z) — &sx(z)| > €} is bounded above by
e 24k + (6/e)?P{Il'(k)} it is sufficient to prove that the series S pe; Ugr and
S re, P{II'(k)} converges. But,

guqk :ii Z

k=1p=1 k;<...<kq

P 2
- l'(W”.év"):[__[
11— cos(wg,; zk;)| x

ji=1

q
x Var FOP; 2W{ ™) < 4 > Var F(AP; 2W{F) < 46? < co.
k k p=1 *
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On the other hand one can clearly choose such {w;x} that > po, P{II'(k)} < oo,
since {G~2F(B), B € Brs} Is a probability measure. Finally

S P < (/e (4+ iP{H'(m) < oo,
k=1 k=1

and by the Borel-Cantelli lemma we get P{limg—co &ax(z) = &)} =11

V. Conclusions and final remarks

In this way we have shown that for non-BL, HRFs the continuity of the
spectral distribution function is not a necessary condition for the almost sure con-
vergence of the sampling series expansion sequence in the foregoing sense.

The author must also remark that the purpose of this paper was not to give
an exact truncation error upper bounds.

The result on 4; as an example can be found in [1]. But Balakrishnan
did not consider non-band-limited processes; also he needed a continuity property
of the spectral distribution function for his investigations. Lloyd in his famous
paper discussed the almost sure convergence in a different approach. He gave very
interesting results, but he used Ay of the spectral distribution function distinct of
the sampling point set, namely he decomposed the entire real axis into a union of
disjoint open intervals [11]. In the papers[6], [20] non-band-limited processes and
their m.s. sampling representations were considered in a different context.

Acknowledgmenti. 1 have a pleasure to thank here my friend Predrag Perunicié
for many helpful discussions and suggestions on the ideas contained in this paper.
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