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MARTINGALE APPROACH TO RANDOM EVOLUTION

DraZen Pantié and Predrag Peruniéié

Abstract. It is proved that so called random evolution process defined as X, (t) =
(2v/@) 7 [(=1)Ne® — 14 20 [f(—1)Va() ds], where {Na(t},t > 0} is a Poisson process with
intensity o, weakly converges o Brownian motion, when o tends to infinity. This is used to prove
Stroock’s result on approximating distribution of the solutions of Ito stochastic differential equa-
tions through the family of functionals defined on the random evolution. Also, a new martingale
characterization of Poisson process in the class ¢f pure point processes is given.

.

Introduction. In [Str] Stroock has pointed out an interesting method of
approximating the probability distribution of the solution of Ito stochastic differ-
ential equastions through the distribution of so called random evolution. Namely if
{By,t > 0} is standard Brownian motion in R, and {N(t),t > 0} a Poisson process
with intensity 1, then Stroock’s theorem can be formulated as:

THEOREM. Leta: R — R and b : R — R be bounded, smooih funcitions
having bounded derivatives of all orders. Define

Xt,z)==z +/(; a(X(s,z)jdB, +‘/(; b(X(s,2))ds
and
X.(ta)=c+e /0 a(X. (s, 2))(=1)VO) ds 4 ¢ / b(X. (s, ) ds.
0

Then the process {X.(te72,z),t > 0} weakly® converges to the process {X(t,z),
t >0}, ase 0.

We shall give a fully probabilistic proof of Stroock’s theorem, based on the
theory of martingales. This approach enabled us to relax the constraints on coef-
ficients @ and b, assuming them to be just Lipschitz continuous. Also, the case of
time dependent coeflicients is included.

AMS Subject Classification (1985): Primary 60 G 44

! The family of processes {Y,(t)} weaklly converges to the process {V(t)} as a — oo
if for each n € N and ty,... ,t, > 0 the distribution of (Va{t1),... ,Yo(tn)) converges to the
distribution of (Y(t1),...,Y(t.)).
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Martingale results. Let {N4(t),t > 0} be a Poisson procces with intensity
a and {F;,t > 0} the natural filtration generated by it. If we define process
{Xa(t):t Z 0} as

1 t
1 Xa(t) = == |(=1)N=() _ 1+2a/ ~1 N"(’)ds],
() ®=57|D )

then the following theorem holds:

THEOREM 1.1. Process {X4(t),t > 0} is a locally bounded mariingale relative
to {F:,t > 0}, whose predictable quadratic variation process {{Xqa),t > 0} satisfies
(Xo)t =t as.

Proof. Elementary calculations show that E{X,(t)} = 0 and E{X,(t)?} =t¢.
Then, using the fact that Poisson process has homogeneous independent increments,
one gets

(2) E{X.(t+s) ~ Xo()|F} = (-1)VWE{X,(s)} =0, and
(3) E{(Xa(t +5) — Xo(8)?[F1} = B{(Xa(s))?} = 5.

From (2) if follows that {X,(t),# > 0} Is a martingale, and by Doob-Meyer
decomposition Xo(t)2 = Ny + (X4)¢, where {N;} is a martingale and {(Xa):}
predictable quadratic variation. So, by (3) it is E{{Xa)i4s|F:} = (Xa)t + s.
Hence, {(Xq4): — t} is predictable martingale of bounded variation, what implies
that (Xa): —t = 0, [Ell]; so the theorem is proved.

It is interesting that the martingale property of the process similar to the
process {X(t)} characterizes Poisson process in the class of renewal processes.
Namely, let {£,,n € N} be a sequence of independent, identically distributed
nonnegative random variables with partial sums S, = Y 7_; & and associated
renswal process N(t) = Y>> I{S, < t}. Then the following theorem holds:

THEOREM 1.2. If, for some a > 0, the process {X4(t),t > 0}, defined as
= feyve / RIS
Xa(t)—2\/5( 1) 142« 0( 1)7 dsf,

1s martingale, then renewal process {N(t)} is Poisson process with intensity a.

Proof. Martingale {X,(t)} has paths of locally bounded variation so its
projection on the space of continuous martingales is zero, [Ell]. Also {X,(t)}
is right continuous, with jumps at the moments ¢ = S, such that AXo(Sn) =
(=1)*/+/a. So, Ito’s formula gives

FX(@) - £(0) = /( el X
+ 37 [F(Xa(Sn)) = F(XalSa=)) = F/(Xa(Sa=))AXa(Sa)].

Sa<t
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for f € C,. Putting ¢ = S and taking expectation one gets

k
E{f(Xa(St)—-F(0)} =D E{f(Xa(Sn))—f(Xa(Sn—))—f'(Xa(Sn—))AXa(Sn)}-

n=1

Now, for k = 1, Xo(S1) = —1/va + Va& and Xq(S1—) = a&i. Then it

follows f(0) = E{f(va&1)}—E{f'(Va&)}//@. Taking f(z) = exp(—Az/\/@) one
obtains E{exp(=A\&1)} = a/(a+ X), so P(&; € dz) = ae™*%dz. As {€x,n € N}
are identically distributed, {N(t)} is Poisson process. ]

Convergence results. Now, we shall investigate the limit distribution, as
@ — oo of the process {X,(t)}, defined in (1), as well as the limit distribution of
the process {Jo(t)}, where Jo(t) = \/Ef(;(—l)"'“(‘) ds.

THEOREM 2.1. Processes {Xq(t)} and {Jo(t)} weakly converge to the stan-
dard Brownian motion, as a — ©0.

Proof. Put f(t,,0) = E{exp(iAJa(2)) - I{(=1)N=(") = 0}}, for A € R and
6 € {—1,1}. Then

Ft+e, A, 0) = Blexp(ida(t +¢)) -I{(=1)V=(+) = g}} =
= E{exp(iXa(t +€)) - H{(—~1)"" = 0} - I{Na(t +€) = Na(t)} }+
+ E{exp(iMa(t +€)) - I{(=1)N) = —9} - I{No(t +€) = Na(t) + 1}} +0(c) =
= exp(iAv/ae) - P{Na(t +€) = No (1)} - f(t, A, 0)+
+ E{exp (-MW&/E(—1)”=~(f+*)—N«(‘) ds) I Ng(t +5) = No(t) + 1}} x
x f(t, X, —0) + o(c) = exp(iX0v/ac — ag) f(t, A, 6)+
+E{exp(—=iXva(E1 —e+ &) -E{& < e < E1+ &}, A, —0) + ofe).

So, we conclude that

9
(4) = (t,1,0) = (IM0Y/@ = o) f(t, 1, 0) + (2, X, —6).
Then, using the above formula one easily gets
o? L, 0 2 s
(5) wf(t,/\,é’)-i_Za-a-?f(t,/\,H)+/\“af(t,/\,0) =0.

Having in mind that f(0,},8) = (1 + 8)/2, from the relations (4) and (5) it
follows that, for A\? # «, '

fEA 1) = %(1 * ﬁ%‘f“) exp(~ta +t(a® — \e)!/?)
YR

\
2 wive a2 32 3\1/2
tsUl-az /\2/0)1/2) exp( ta — t(a? — Aa)!/?), and
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1 1
fitA-1)= §mexp(—ta + t(a® ~ A2q)!/?)
1 1
sy P (-te — te® = Na)'2).

Straightforward calculation shows that limg—.eo f(2, A, 6) = e‘*2/2‘/2.

Now,
E{exp(i/\Ja(t))} = f(t,A\ 1) + f(¢,A,—1), -and
E{exp(iAXa(t))} = f(t, ), 1) + e~ Vef@ A ~1),

so one can conclude that

alirr;o E{exp(iMJa(t))} = a{li_’rgxQ E{exp(i/\Xa(t))} = E{exp(i\B:)}.

For0 <t <...<t, and Ay,..., A, € R, let us define

b s =S ur0)

Then
iy tn(Ay ey A0) =

E{exp <Z;§ Am,(n)) - exp (zg Ak (Jalte) = Ja(tl))> } =
E{exp (:é AkJa(t1)> - exp (ié/:(—n’v«(’)ds’)} =
- E{exp ( gm(tl)) y
X exp (i(—l)N"(“) é,\k / HT L yNett N ) d)}
= E{exp (z Zn: AkJa(t1)> X

k=1

. n tx—1,
<a{exp (i(-1% 3" | (-1t ) | f}} -
k=2 0
= f(tl)z ’\k) 1) " gt;—tl,... ,t,.—tx(’\Z) s vAn)'i'
k=1

+ f(tly Z) /\k) —1) ° gtg-—tl,..‘ ,t“—h(~A2) e »”‘/\n):
k=1
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The principle of mathematical inductior yields

lim E{exp( ZM«M(U))} {exp( Z)"‘B‘*)}

o= k=1 k=1
The proof for {X.(t)} goes along the same lines, haviﬁg in mind that

Xa(t) — Xols) = ‘
1 i—s
(= WVe() L) Na(®)=Na(s) _ ] 19 / _\Wels+w)=Na(w) gy | [
VP (S +2a [ u
The Stroock’s theorem, and more, follows as a consequence of the theorem
from {G-S, p. 339].

THeoREM (Gikhman-Skorokhod). Let {Ua(t),t > 0} be a process adapted to
filtration {F;,t > 0}, such that

(a) [B{Ua(t +5) = Ua()|F:}| < Cs, (b) B{(Ua(t +s) ~ Ua(1))*|F:} < Cs,
(c) coefficientsa: Ry x R — R and b: Ry x R — R satisfy:

Ja(t, 0)] + 1b(t, 0)| < C,

la(t, z) — a(t, )| + [b(t, ) — (¢, ¥)I < Clz — yl,

Jaft + 5,2) — a(t, )] + |b(t = 5, 2) = b(t, 2)| < 9(s)(1 + ),
where g(s) — 0 as s — 0.

(d) the family of random elements {zq4,Ua(t),t > 0} weakly converges to
{z,U(t),t > 0} as o — o0;

then the process {Ca(t),t > 0}, defined as
! 1
a(t)— 2o = Sa d b:.a'dUa )
alt) = 20 = [ ats,Cole)) ds+ [ bo,als)) dU(s)
weakly converges to the process {(4(t),1 > 0}, defined as
tYy—z = d b(s, dU' . O
(=2= [ als,ce)ds+ [ o () dU )

Finally, Theorem 2.1 and Gikhman-Skorokhod theorem imply the following
theorem.

THEOREM 2.2. Suppose coefficients a and b satisfy condition (c) from the
Gikman-Skorohod theorem. Then the process {X4(t),t > 0}, defined as

Xolt, z) = z+va/ a(s, Xo(s, 2))(=1)Ne (’)ds+/ b(s, Xa(s,2)) ds,
weakly converges, as o — 0o, 1o the process {X(t,z),1 > 0}, where

1 i
X, z) = x+/ a(s,X(s,z))dB, +/ b(s, X(s,z))ds. O
0 0
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