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ON SOME EQUIVALENCE TRANSFORMATIONS
OF HILBERT SPACE VALUED STANDARD WIENER PROCESS

Ljiljana Petrusevski

Abstract. The process X (t) taking values in real separable Hilbert space H with the
scalar product (-, -) and the norm || - || will be called equivalent to process Z(t) on interval (0,T)
if the mapping 4 : (u, Z(t)) — (u, X(t)), v € H, 0 < t < T, can be extended to a bounded linear
operator which has a bounded inverse and for which I — (A* A)!/? (simultaneously I — A*A and
I—(A-?)*(A™!)) is a Hilbert-Schmidt operator. Let

X(t)= /: Y (s)ds + B(t)

where B(t) is a Hilbert space valued standard Wiener process and

T
[ B @I < oo
]

(T is finite or infinite). In this paper the following statement is proved: If the process Y(t) is
independent of future increments of the standard Wiener process B(t), then the Hilbert space
valued processes X (t) and B(t) are equivalent. A significant corollary of that statement is the
following: If the process Y(t) is a measurable process well adapied to {Ui(B)} then the Hilbert
space valued processes X (t) and B(t) are equivalent.

1. Introduction. Let H be a real separable Hilbert space with scalar
product (-, -) and norm || - || and let B be the g-algebra of the Borel sets in H. Let
(R,U, P) be a probability space. We shall consider a Hilbert space valued random
variable as a measurable mapping from the probability space to the measurable
space (H,B). It is well known that the mapping £ :  — H is a Hilbert space
valued random variable if and only if (u, €) is a real random variable for each u € H.
A Hilbert space valued stochastic process Z(t), 0 < t < T is a family of Hilbert
space valued random variables Z(t), 0 < t < T. We assume that E(u,Z(t)) = 0
and E|(u, Z(t))|* < oo for each u € H and t € (0,T). Denote by U:(Z) o-algebra
generated by cylindrical sets

{2(t)) € ST, z(t2) € SE, ..., Z(tn) € SH}
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where t1,13,... ,tn <t and SH SH ... SH are Borel sets in H.

According to well known theorems, 2;(Z) is the cr~algebra generated by cylin-
drical sets

{1, Z2(11)), (w2, Z2(t2)), ..., (un, Z(tn))) € Sn}

where t1,%9,...,tn < f, u,us,...,u, € H and S,, n = 1,2,... are Borel sets
in R,,. The o-algebra U;(Z) is a sub-o-algebra of & and the family {U/;(Z)} is an
increasing family of sub-o-algebras of U.

Let Hy(Z) be the linear closure (in quadratic mean) of random variables
(u,2(s)), s < t, u € H. Hi(Z) is a subspace of Hilbert space L?(Q, R) of the real
random variables € : E¢? < oo, E€ = 0 with scalar product (§,7) = E€n and norm
[li€lll = E€*. Let ' :
HZ)y= |J H(2).

o<i<T

A Hilbert space valued process X(t) will be called equivalent to the process Z(t)
on interval (0,T) if the mapping A : (v, Z(t)) — (v, X (1)), v € H, 0 <t < T, can
be extended to an equivalence operator from Hilbert space H(Z) to Hilbert space
H(X), which means that the mapping A can be extended to a bounded linear
operator which has a bounded inverse and for which I — (4*A4)'/2 is a Hilbert-
Schmidt operator.

It is well known that the process Z(t) is then equivalent to the process X(t)
[9] and the two Gaussian processes X(t) and Z(t) are equivalent if and only if their
distributions are equivalent [8].

We also need the concept of the stochastic Ito integral with respect to stan-
dard Wiener process B(t).

.
J= /0 F(t)dB(2)

is the stochastic Ito integral standardly defined [1] for functions F(s) taking val-
ues in the Hilbert space So(H) of Hilbert-Schmidt operators in H with the scalar
product (F,G) = Sp G*F and the norm

[o=]
|F?=SpF*F =Y ||Fex’
k=1

where {e;}$° is an orthonormal base of the separable Hilbert space H:

T
/ IF(8)[2dt < oo.
0

The integrad J is a Hilbert space valued random variable and it can be represented
as infinite sum of stochastic Pettis integral [5]

=) T
J= kz::l/o F(t)er d(er, B(t))
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S0, i
BIIP = [ IP@Fdt < oo
0
and
0 T
@D =Y [ (F (e des, BO).
k=170 ’
The subject of this paper is the sum
t
(L1) X() = / Y(s)ds + B(t)
0

where B(t) is a Hilbert space valued standard Wiener process and

T
(1.2) /0 EY(s)|? ds < oo.

(T is finite or infinite.)

The equivalence of process (1.1) to a standard Wiener process for the real-
valued case is extended to Hilbert space valued processes. From the assumption
(1.2) it follows that the process Y (¢) is an integrable L?(Q, H)-space valued function
on each finite interval (0,t), ¢t < T where L¥(Q, H) is the Hilbert space of Hilbert
space valued random variables £: E}|¢ |I> < oo with scalar product (€,7); = E(£,7)
and norm [|¢]|? = E|j¢]i>. Then with probability one

/Ot Y(s)ds = /01 Y(s,w)ds.

It is well known that a process Y(s) is integrable L2(Q, H)-space valued function
on interval (0,t) if and only if Y(s) = Y(s,w) is measurable with respect to dt x P
and [; [[Y(s)l, ds < oo.

We will follow Rozanov’s conception [9] of the equivalence of real process (1.1)
to a standard Wiener process. The study of the equivalence in [9] is not completed,
and with the help of [2], we will set the conditions under which X(¢) and B(t)
are equivalent. Ersov [2] sets the conditions under which the measures of the
processes X (t) and B(t) are equivalent, and it will be shown that these conditions
are also valid for the equivalence of the two processes. In this paper it is proved:
If the process Y (t) is independent of future increments of the standard Wiener
process B(t), then Hilbert space valued processes X(t) and B(t) are equivalent.
The significant corollary of that statement is the following: If the process Y(t) is
measurable process well adapted to {Uy(B)} i.e. Y (t) is measuiable with respect to
U,(B) for each t, then Hilbert space valued processes X (t) and B(t) are equivalent.

The study of equivalence of process (1.1) to standard Wiener process began
in [6] and [7]. This paper is a continuation of that study. Theorem 2 and Theorem
3 are new. Part of Theorem 1 is proved in [6] but we give a simpler proof of
that part of the statement. The equivalence on finite interval (0,T) is extended
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to an arbitrary finite or infinite interval (0, 7). The equivalence to Wiener process
(Example 1) is proved in [7], but we have simplified the proof. The example 2 is
an extension of Theorem 2 {4] for real Gaussian processes to Hilbert space valued
Gaussian processes.

2. Definition of equivalence of two processes and equivalence to
standard Wiener process. In this section we will define the equivalence of the
two processes with the help of the equivalence operator which is defined by Feldman
[3] and we will cite well known statements [9] which are also needed.

Definition -1 [3]. An operator G from Hilbert space H; to Hilbert space Ha
will be called equivalence operator if

(1) G is one-to-one onto, bounded, and has a bounded inverse.

(2) I - (G*G)*/? is Hilbert-Schmidt.

LEMMA 1. The operator G from Hilbert space Hy 1o Hilbert space Hy is an
equivalence operator if and only if

(1) G is one-to-one onto, bounded, and has a bounded inverse.
(2) I — G*G is Hilberi-Schmidt.

Proof. The preof of that statement fcilows from Definition 1 and from the
equality
I-G*'C= (I (G (I +(G*G)?).

If an operator G is bounded, then the self-adjoint operator I + (G*G)Y/? = F
is bounded too, and has a bounded inverse. Let G be an equivalence operator.
From the Definition 1 it follows that G is one-to-one onto, bounded, and has a
bounded inverse, and the operator I — G*G is Hilbert-Schmidt as the product of
the Hilbert-Schmidt operator I — (G*G)'/? and a bounded operator F.

Conversely, under the conditions of the theorem, G is one-to-one onto,
bounded, and has a bounded inverse. The operator I — (G*G)'/? is a Hilbert-
Schmidt operator as the product of the bounded operator F~! and a Hilbert-
Schmidt operator I —G*G. So, G is an equivalence operator. The proof is finished.

Definition 2. The Hilbert space valued proces X () will be called equivalent
to the process Z(t) on intrval (0,T) if the mapping

(2.1) A {(u, Z(1) — (u, X(1)), wuEH 0<t<T

can be extended to an equivalence operator from Hilbert space H(Z) to Hilbert
space H(X).

The correlation function of Hilbert space valued process Z(t), t € (0,T) is
the operator function I',(s,t) which fulfills the equality

(u, Z(s)), (v, Z(1))) = (Ta(s,)u,0),  w,v € H.
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Let B(t) be the Hilbert space valued standard Wiener process. The correlation
function of the standard Wiener process is the function I'w (s, 1) = min{s,t}-I.
We also need the following well-known statements [9].

LEMMA 2. If x:(z) is an indicator funciion, then the mapping
Vi (u, B(t)) — xi(z)u, ueH, te (0_, T)
is an isomorphism from H(B) to Hilbert space L?((0,T), H) of functions taking

values in H with scalar product

T
(fl)fz)z'/o (fl(.l'),fz(:v)) dz.

LeEMMA 3. The Hilbert space valued process X (t) is equivalent to the standard
Wiener process B(t) on interval (0,T) if and only if the mapping

(2.2) Ag s xa(z)u — (u, X()), ue H, te€(0,T)

can be extended to a bounded linear operator which has a bounded inverse and for
which I — A} Ax s Hilbert-Schmidt operator.

Let us notice that, for isomorphism V defined in Lemma 1 and for operators
A and A; defined by (2.1) and (2.2),

A1V=A

from where it follows that the statement of Lemma 3 is true.

3. The equivalence. In this section the equivalence of process (1.1) to
the standard Wiener process for the real-valued case is extended to Hilbert space
valued processes.

Let
(3.1) X(t) = /t Y(s)ds+ B(t), 0<t<T
Q

where B(t) is the Hilbert space valued standard Wiener process, and Y(s)
(E(u,Y(s)) = 0) is L*((0,T), L*(, H)) space valued function i.e.

T
(3.2) /0 EY(s)[|? ds < oo.

(T is finite or infinite.)
From equality (3.1) it follows that

(3.3) (Ta(s,t)u,v) — (Tx(s,t)u,v) = f(s,t) + g(s,t) + h(s, 1)
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" where

so0=~{ [wrens [(wrya)
st = ~( [ (0, Y (@) dz, (0, B0)
o) = ~{(w B, [ Y (D).

The first right-hand-side addend in equality (3.3) can be written in the following
form

(3.4) foy == [ [ (vl dody

where I'y(z,y) is the correlation function of the Hilbert space valued process Y (¢).
According to the assumption (3.2), Iy (z,y) is a Hilbert-Schmidt operator for al-
most each z,y € (0,T) and for the Hilbert-Schmidt norm [Ty (2, y)|:

T T
(3.5) / / [Ty (2, 9)|? dzdy < oo.
o Jo
Denote by P the projection operator from Hilbert space L?(€2, H) onto H(B). Let
© T
(3.6) Pu,Y(z) =Y / co(u, z,y) d(cx, B(z)).
k=1 0

Let us observe the second addend from the right-hand-side of (3.3) now. It is
obvious that

ot =~ [ (P, gj [ eenriten, B ) éa

Hence, according to equality (3.6)

g(s,t) = — /03 g‘;/ot ce(u, z,y)(ex,v) dydz

and finally '

(37) .= [ [ () dsdy
where

(3.8) Flz,y)u= —ick(u,x,y)ek.

k=1
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From previous equalities it follows that:

(3.9) / (F(z, yyu,v) dy = (1, Y (2)), (v, B®)))

for each t € (0,T).

Using these equalities we get that F(z,y) is a linear operator for almost each
z € (0,T) and for almost each y € (0,T). From equality (3.8) it follows:

1F(z, w)e;ll® =D lex(ej, 2, )l

k=1

Hence, according to (3.6)

T
/0 IF (2, )es I dy = E|P(e, Y(2)) < El(es, Y(=))[?
and

T ©o°
2 2 -
| S IFG eI dy < EIY @I
0 k=1
Now, it is clear that F(z,y) is a Hilbert-Schmidt operator for which
T T T
[ ] reupdaays [ Byeirde
o Jo 0
so, according to (3.2),

T T
(3.10) /0 /0 |F (2, 4)|? dzdy < oo.

From (3.7) it simply follows that the third right-hand-side addend of equality (3.3)
can be represented in the form

(3.11) h(s,t) = /01 /OS(F‘(y, z)u, v) dzdy.
Let us conclude that from equalities (3,3), (3.4), (3.7), and (3.11) it follows
that :
(3.12) (Te(s,t)u,v) — (Tx(s,t)u,v) = /ot /Oa(K(z, y)u, v)dzdy
where

K(z,y) = ~Ty(z,y) + F(z,y) + F*(z,y)

is a Hilbert-Schmidt operator for almost each z,y € (0,T) with Hilbert-Schmidt
norm |K(z,y)| for which, from (3.5) and (3.10) it follows that

T 4T
(3.13) /O/OIK(z,y)Izdzdy<oo.
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Let us notice that from assumption (3.2) it simply follows that {(u, Y (z)), (v, B()))
is a bilinear functional in H for almost each z,y € (0,T) so that

((uv Y(:z:)), ('U, B(y))) = (I‘Y.B(x) y)u’ 'U)

where T'y p(z, y) (the mutual correlation function of two processes Y (t) and B(t))
is a linear bounded operator. From equality (3.9) it follows that

. y
Ty s(z,y) = / F(z,2)dz
o :
and
4
dy
is a Hilbert-Schmidt operator for which
T [T
Iy
Let b = b(z) be an arbitrary function from L2((0,T), H). Let G be a Hilbert-
Schmidt integral operator in L2((0,T), H) defined by the kernel

(3.19) Ty,(z,y) = F(z,9)

2
dzdy < oo.

d
d—yPY,B (z,9)

T
(d/dy)Ty,s(z,y) = F(z,y) ie Gb(y) = /0 F(z,y)b(z) dx.

THEOREM 1. If —1 is not the eigenvalue of the Hilbert-Schmidt integ al op-
erator in L2((0,T), H) with kernel (d/dy)Ty s(z,y) = F(z,y), then the stochastic
process

t
X(t) = / Y(s)ds + B(t)
0
is equivalent to the standard Wiener process B(t) on interval (0,T).

Proof . If we write equality (3.12) in the form

T T .
(Ta(s,t)u,v) — (Tx(s,t)u,v) =/0 /0 (K{(z, y)xs(z)u, x:(y)v) dzdy

it is clear that, for operator A; defined by (2.2)

T
(3.15) (I - AJAD(Y) = /0 K(z, y)b(z) dz

which, according to well known theorems ([9]) and relation (3.13), is the Hilbert-
Schmidt operator. .

Let b = b(z) be an arbitrary function from L?((0,T), H). Using the previous
equalities, we get

T ,T
(3.16) /o /0 (K(z,y)b(z),b(y))dedy = f+g+h
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where .
T T
- /0 ]0 (Ty (2, 9)b(), b(y)) dady
T T
9= f [ (F(z,9)b(z), b(»)) dudy
T T
h= [ [ e, ) dedy

The first right-hand-side addend of equality (3.16) can be written in the form
2

T
/O (5(z), Y () dz| .

According to the definition of the operator F(z,y) the second right-hand-side ad-
dend of equality {3.16) can be written in the form '

(3.17) f=E

e T T
g=-%" f / ex(b(z), 2, %) ex, b(y)) dydz
k=1 0 0 )
from which it simply follows
T
(3.18) o=~ / (P(b(z), ¥ (2)), (b))} dz
where
e T
a5 =S /0 (b(z), e&) dex, B(y))
k=1

is real random variable for which

, ,
(3.20) Eln®) = [ 1o dy.
Finally
. _
(3.21) o= -( [ 6. v@)dz ).
In the same way, we get that the third right-hand-side addend of equality (3.18) is
r ,
(3.22) k= -»<7;(b), / (=), Y (2)) dz>.
0

From equalities (3.16)~(3.22) it follows
T T
| [ e i), v ey

r T 2
= [ a5 (5($),Y($))d2:+7}(5)!~ |
¢ 4] .
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Let b # 0 be an elernent of L((0,7T), H) i.e.

' T
/o le(w)|12 dy # o.

If we suppose that

T T T .
/ / (K (2, 0(@), b)) dedy = [ DI s
0 o] 0
then we have T
| @@, v@dz+ny =0

which is an element of the Hilbert space L2(2, R). Since P is a bounded operator,
from this equality it follows that

© T
> [ 6P, ) de + 0t =0.
j=170

Hence,

© P o0 LT
;/0 ;/0 (b(z), e;)clej, z,y) dz d(ex, B(y))+

0 LT .
+3 [ e den, BG) =0,
k=1
So, it is obvious that
®© LT
G+ Y [ 0 e)eles, 0)da =0
i=1
which, acco.ding to the definition of the operator F(z,y) means that

T
b(y) + / Fz, y)b(z) dz = 0

i.e. the Hilbert-Schmidt integral operator defined by kernel (d/dy)ly 5(z,y) =
F(z,y) has eigenvalue —1 which contradicts the assumption of the theorem. There-
fore, for any b € L2((0,T),H), b # 0

T ,T T
(3.23) | e s dsas # [ i s

Let us conclude that from equality (3.15) it follows that I — A} A, is a Hilbert-
Schmidt operator. Hence, A is bounded. From (3.23) it simply follows that the
operator’s greatest eigenvalue is less then one, i.e. A; has a bounded inverse.
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According to Lemma 3 this means that the processes X (t) and B(t) are equivalent
on the (finite or infinite) interval (0,77). This completes the proof.

4. The main theorems. In this section we shall set some additional con-
ditions and, under these conditions, we shall prove the equivalence of the process
(1.1) to the standard Wiener process.

Let
(4.1) X(t)= /ot Y (s)ds + B(t), 0<t<T

where B(t) is Hilbert space valued standard Wiener process, and

T
(4.2) / E|Y(s)l)*ds < o0
0
(E(u,Y(s)) = 0 and T is finite or infints).

THEOREM 2. If a process Y (t) is independent of fulure increments of the
standard Wiencr process B(t), then the precess

t
X(t) = / Y(s)ds + B(2)
0
is equivelent o the standard Wiener process B(t) on interval (0,T).
Proof. The independence of Hilbert space valued random variables Y (z) and

B(t) — B(s) (for 2 < s < t) will stand for orthogonality of real randoin variables
(v, Y(x)) and (u, B(t) — B(s)) (u,v € H). So,

P(u,Y(a:))=kZ=1 /0 cx(u, 2,y) d(ex, B(y))

where cx(u,z,y) =0 for y > =.

Let F(z,y) be the Hilbert-Schmidt operator defined by (3.8). The Hilbert-
Schmidt integral operator with kernel (d/dy)l'y 5(z,y) = F(z,y) (F(z,y) = 0 for
y > ) can be represented in the form

T
Gb(y) =/ F(z,y)b(z) d=.
]
The operator G is a Volterra Hilbert-Schmidt integral operator in L?((0,T), H).

Let —1 be an eigenvalue of completely continuous operator G. Then —1 is an
eigenvalue of the adjoint operator G*:

Gb(z) = / " P (2, )b(y) dy



212 Petrusevski

which means that
T
b(z) +/ F*(z,y)b(y)dy = 0 for almost each z € (0,T).
0

This is a homogoneous integral equation of the Volterra type and, under our con-
ditions, it follows that its only solution is b € L2((0,T), H), b(z) = 0 fcr almost
every z € (0,7). Hence, the operator G has not the eigenvalue —1. According to
Theorem 1, the process X (t) is equivalent to standard Wiener process. The proof
is completed.

Let U;(B) be a o-algebra generated by cylindrical sets
{B(t:) € SF,B(t;) € SH,... ,B(ta) € S7}
where t1,ts,... ,t, <tand SH,SH .. SH are Borel sets in H. According to well
known theorems, U;(B) is the o-algebra generated by cylindrical sets
{((w, B®)), (u2, B(t2)), ..., (un, B(ta))) € Sa}

where t1,%2,... 1, <1, u,u9,...,u, € H and Sy, n = 1,2,... are Borel sets in
R,. The o-algebra U:(B) is a sub-o-algebra of U and the family {U;(B)} is an
increasing family of sub-o-algebras of Y. Let H(U;(B)) be the set of Hilbert space
valued random variables ¢: E(u,€) = 0, E|(u,£)]? < co measurable with respect to
Uy(B). In the sequel, we assume that Y = Y (t) is measurable process well adapted
to Uy(B), which means that Y (¢} is measurable with respect to U;(B) for every ¢
(Y (t) € H(U:(B)) for every t).

THEOREM 3. The Hilbert space valued process
X(s) = /:Y(s)ds+B(t), 0<t<T
where Y (t) is a measurable process well adapted to Uy(B) for which
/OT EHY(.S)”2 ds < 0

is equivalent to the standard Wiener process on interval (0,T).

Proof. The independence of Hilbert space valued random variables B{s) and
B(t+71)— B(t) (for s < t, 7 > 0) will stand for independence of B(t+7)— B(t) and
H(U:(B)). Hence, according to the assumptions of the thegrem, the process Y (t)
is independent of future increments of the standard Wiener process B(t). Using
Theorem 2 we get that the processes X(t) and B(t) are equivalent. The proof is
finished.

5. Examples. Ezample 1. Let X(t) be the solution of the stochastic integral
equation '

(5.1) X(t) = /0 CA()X(s)ds+ B),  te(0,T)
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where A(t) is a Hilbert-Schmidt operator for almost each ¢ € (0,T) and
T
(5.2) / IA@)2dt < oo
0
Let R(2,s) be operator-function which fulfills the integral equation
1
(5.3) R(t,s) =1+ / A(z)R(z, s) dz.
It is well known, that R(¢, s) is a bounded operator with norm
¢ T
IR < exp [ A@de < exp [ 1@ de.
s 0
The process X(t) can be represented in the form
. :
(5.4) X(@) = / V(t,s)dB(s) + B(t)
0

where V(t,s) = R(t,s) — I is Hilbert-Schmidt operator with Hilbert-Schmidt norm
|V (2, s)| such that

T
/ |V(i,s)ds < oo.
0

This statement simply follows from the equality

WE3) Az, 5)+1).
Put
(5.5) Y(6) = AQ)X(t) = /0 A(D)R(t, s) dB(s).
Hence, according to (5.1)
(5.6) X(t) = /0 Y(s)ds + B(2).

From equality (5.5) it follows that the process Y (¢) is independent on future incre-
ments of standard Wiener process B(t) (Y (t) is measurable well adapted to i;(B))
and for finite t < T

[ B as <o

Using Theorem 2 we get that the solution of the stochastic integral equation (5.1)

is equivalent to the standard Winer process on finite interval (0,¢). If for an infinite
T

T
| 1awia: < o,
0
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then the solution of the stochastic integral equation (5.1) is equivalent to the stan-
dard Wiener process on infinite interval (0, T).

Ezample 2. This example is an extension of Theorem 2 [4] for real Gaussian
processes to Hilbert space valued Gaussian processes. Let

.7) X(t) = B(t) - /Ot{/o (s, :c)dB(:c)} ds

where B(t) is a Hilbert space valued standard Wiener process and I(s,z) €
L%((0,T)2, S3(H)) is a Volterra kernel. Let

Y(s)= —/03 {(s,z)dB(z).

Then the process X(t) can be written in the form (4.1). It is clear that the process
X(t) is equivalent to the standard Wiener process on interval (0, 7).

REFERENCES

{1] 0. II. Haneuxust, C. B. doMuH, Meptt u dugifepenyuaabrsle YpacHEHUR & GECKOHEUHOMEPHBIX
npocmpancmeax, Hayxa, Mocksa, 1983.

[2] M. P. Er3ov, On absolute continuity of measures corresponding to diffusion type processes,
Probab. Theory Appl. 17 (1972}, 182-187.

[3] J.Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958),
699-708.

(4] M. Hitsuda, Representation of Gaussian process cquivalent to Wiener process, Osaka J. Math.
5 (1968), 299-312. ‘

[5] G. Kallianpur, V. Mandrecar, Multiplicity and representation theory of purely mon-
deterministic stochastic processes, Probab. Theory Appl. 10 (1965), 553-581.

[6] Jb. Ilerpymercku, OF 5K8UGANEHMHOCMU OOHOZO XAQCCE CAYUATUHBX NPOLECCOB 6 2ULbOEPIMOBOM
NPOCMPAHCIMEE U BUHEPOBCKO20 npoyecca , Publ. Inst. Math. (Beograd) 45 (59) (1989) 185-194.

[7} Jb. Herpymescxu, OF sxsusanemuocmu o0Hoz0 npouecca OUPGPYIUOHO20 munda 6 zua bOEpMOBOM
NPOCMPAHCmee U QUHEPosCKoeo npoyecca, Publ. Inst. Math. (Beograd), 45 (59) (1989) 195~
201.

(8] Yu. A. Rozanov, Infinite-dimensional Gaussian Distributions, Amer. Math. Soc. Providence,
1971.

[9] K. A. Posanos, Teopua oOrosaaiowux npoueccos, Hayxa, Mocksa, 1974.

Katedra za matematiku (Received 18 05 1989)
Arhitektonski fakultet

Bulevar revolucije 73/11

Beograd



	201.tif
	202.tif
	203.tif
	204.tif
	205.tif
	206.tif
	207.tif
	208.tif
	209.tif
	210.tif
	211.tif
	212.tif
	213.tif
	214.tif

