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ON THE ZEROS OF OSCILLATORY SOLUTIONS
OF LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

M. Haé&ik and E. Omey

Abstract. Let y{x) be a real non-trivial solution of the differential equation (*) ¥+ fy = 0
and let {z,}n denote the sequence of zeros of y. In this paper wt examine the relationship between
the asymptotic behaviour of f and that of {x.}n and sequences related to it. We also compare
the zeros of solutions of (x) with those of solutions of Y + g¥ = 0 where f and g do not differ
too much.

1. Introduction.

Let y(z) be a real non-trivial solution of the differential equation

(1.1) V' (z)+ f(2)y(z) =0 z>0

such that y has an infinite number of zeros {z,}n. Here and in the sequel f :
R* — R* is a continuous function of z. In this note we examine the relationship
between the asymptotic behaviour of the zeros of y(z) and that of f(z).

In this section we first define the kind of asymptotic behaviour we are inter-

ested in. In sections 2 and 3 we state our results. For further use we define the
following classes of functions.

Definition 1.1. A positive and measurable function ¢ : Rt — R* belongs to
the class of Beurling slowly varying functions (denoted also ¢ € B) if

(1.2) lim £EFE@) _

, for each t € R.
sme0 p(z) :

If ¢ satisfies (1.2) uniformly on compact t-sets of R (denoted ¢ € Bu), then ¢ is
called self-neglecting, see [7].
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Bloom [4] showed that if ¢ € B is continuous, then ¢ € Bu. Whether
measurability is enough remains an open question. Bloom also showed that ¢ € Bu
if and only if it has the representation

(1.3) o(z) = () /0 " e(s)ds

where lim,—.co ¢(z) = 1 and £(z) is continuous with lim,; . e(z) = 0.
It follows from (1.3) that any ¢ € Bu satisfies

= 0.

(14) lim #(2)

T —00 x

A class of functions related to B is defined in

Definition 1.2. A positive and measurable function ¢ : Rt — R* belongs to
the class T' with auxiliary function h : R* — R¥ if (¢ € T'(h))

{
lim M =é', for each t € R.
Ry

As has been proved by de Haan [9], the auxiliary function h can be chosen in
such a way that h has the representation (1.3) and hence h € Bu. Also if ¢ € T'(h)
then ¢~!/2 € Bu.

In the following we will also need the class of regularly varying functions.

Definition 1.3. A positive and measurable function ¢ : Rt — RT is called
regularly varying with index o € R. (denoted ¢ € RV ) if

(1.5) lim elat) =17, for each t > 0. -
. -0 ()

When o = 0, ¢ is said to be slowly varying. If (1.5) holds, then it is well known
that it holds uniformly on compact t-sets of (0,00). Hence (1.4) and (1.5) imply
that ¢ € Bu. Note that (1.4) holds when a < 1.

A subclass of the slowly varying functions is defined as follows.
Definition 1.4. A slowly varying function ¢ is called II-varying with auxiliary
function L € RV (denoted ¢ € II(L)) if

L elet) = ()

= logt h ¢ .
Jim ) logt, for each ¢t > 0

For sequences we also give the following

Definition 1.5. A sequence {a,}n of positive numbers belongs to any of the
classes defined above if the function a(t) := apy does.
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All these classes of functions have proved to be very useful in all kind of
problems that deal with the asymptotic behaviour of functions and sequences. Ap-
plications in the theory of differential equations may be found in Marié and Tomié
[11], Wiman [16] or Omey [12]. For probabilistic applications of these classes of
functions we refer to de Haan [8, 9], or Feller [6]. For a survey of the theory of reg-
ular variation and related subjects we refer to Seneta [13], de Haan 8] or Bingham
et al. 1, 3]. :

2. Results

2.1. First order results. Let us start with the following result of Eastham
[5, p. 74].

LEMMA 2.1. (i) Suppose y(z) has n zeros in [a,b] and suppose f(z) < M for
allz € [a,b]. Thenn < (b—a)I~v/M +1.

(ii) Suppose y(z) has n zeros in (a,b) and suppose m <-f(z) for all z € [a,}).
Thenn > (b—a)I"}y/m—-1. O

From Lemma 2.1 we now obtain a result which is crucial for the rest of the
paper. Let {z,}n denote the sequence of zeros of a non-trivial solution of (1.1).

LEMMA 2.2. Forn=1,2,... we have

(2.1) /v §(0s) < znt1 ~za </ f(65)
where f(6;) = inf; f(s), f(8,) = sup; f(s) and I = [zp, 2pny1]. Also

(22) 6; - /\/T(0:) < 6, < 0 + 1/\/F(5).

Furthermore, if 1//f € Bu, then o431 ~ 2, (n — 00) and

(2.3) Tim /f@)(@n41 — 2a) = IL.

Proof. Inequality (2.1) follows from Lemma 2.1 by taking a = z,, and b =
Zn4+1- Recall that we assume f to be continuous so that 8, and 4; are well-defined.
Now (2.2) follows from (2.1) and the inequality |8, — 6;] < =41 — Zn. Finally,
if f~Y/2 € Bu it follows from (2.2) and the uniform convergence in (1.2) that
F(:) ~ f(8,) (n — o0). Since f(8;) < f(zn) < f(8,), (2.3) follows at once. To see
that zp41 ~ 2 (n — 00) use (2.3) and z2f(z) — oo (z — 00) (cf. (1.4)). O

To state our next result, let N{(A) denote the number of zeros in a set A.

THEOREM 2.3. Suppose 1/+/f € Bu; then
() N(Oz)~TO! [F/f(s5)ds  (z = o0)
(i) N((z,z+t//f(z)) =t~ 4+ 0O(1)  for each t > 0.
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Proof . (i) From (2.3) we have

- (24) S VF(@a)(@a41 — 2n) ~ Tm ~ IN((0,2m])  (m — 00).
n=1
Using a standard argument (2.4) gives

(2.5) /0 ) ds ~ TIN((0,2m])  (m — 00).

Using (2.3) the result now easily follows from (2.5).

(i1) To prove (ii), use Lemma 2.1 to obtain

where f(6;) = infy f(s), f(6,) = sup; f(s) and I = [z,z +1t/\/f(x)]. Since 1//f €
Bu it follows that f(z) ~ f(8;) ~ f(6,) (z — o0) and (ii) follows.

Remarks 2.4. 1. The condition f~/2 € Bu implies that z?f(z) — oo (z —
o0) (cf. (1.4)). For the case where 2?f(z) — C (z — o}, ' < oo, we refer to
Section 3. :

2. If the functions f and h are such that h%(z)f(z) — oo (z — o) and

i JEH (=) _

unformly in compact t-intervals of R, then the same arguments as in the proof of
Theorem 2.3 yield

(256) . (E2 z + th(z))) _

BN O)

In the special case when h = 1 we get from (2.6) and definition 1.4 that
N(J0,logz)) € I(IT~!/f(log z)). Note that (2.6) implies that

@7) N((0,z + th(z)]) ~ N((0,z])  (z — o0).

, for each ¢t > 0.

=i

Also (2.6) gives the rate of convergence in (2.7).

A natural extension of the class Bu is the class of so-called selfcontrolled
functions, i.e. measurable functions ¢ : R* — R™ for which there exist A, G > 0,
zg > 0 such that

(2.8) p(z +tp(z)) < Go(z), <A, 2220
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Using a similar technique as in the proof of Theorem 2.3 we now obtain the following
extension of that theorem.

THEOREM 2.5. If f is continuous such that f0°° Vf(s)ds = o0 and if p :=
1/2 gatisfies (2.8) with A > 11, then

1. N((0,2]) .
— <
¢ <tmifas JEJF(s)ds — lim sup

N((0,2])
n-1 f; V5(s)ds

<G

For further properties of the class of self-controlled functions we refer to Goldie
and Smith {7].

As a corollary we now obtain the following result of which part (i) is well
known, see e.g. Hartman [10, XI.5].

COROLLARY 2.6. Supose f has a measurable derivative f'.
() If f'(z) = o(f¥?(z)) (z — o0), then the results of Theorem 2.3 hold.
(i) If |f'(z)| = O(f3/%(z)) (z — o), then the results of Theorem 2.5 hold.

Proof. Let p(z) := f~1/%(z). Then we have .

o(z + tp(z)) - p(z)

29) ()

< / I (z + ()] db.

In case (i) we have ¢/(z) = o(1) (z — o) and using (2.9) this implies ¢ € Bu and
Theorem 2.3 applies. In case (ii) we have |¢'(z)| = O(1) so that using (2.9)

p(z +tp(z))
@) l| < Al

where |¢'(2)| < A (say). Hence (2.8) holds.

If we now restrict attention to regularly varying functions or to functions in
the class T we obtain that if f~!/2 € Bu, then N((0,z]) € RV, (resp. N((0,z]) €
I'(h) if and only if II™* [T \/f(5) ds € RV, (resp. I'(h)).

When it is known that f is regularly varying or that f is in the class ' we
obtain

CoroLLary 2.7. (i) If f € RV,, a > ~2, then N((0,z]) € RV(a42)/2 and
N((0,z]) ~ 2l Y(a + 2) " '2/F(z) (= — o0).
(ii) If f € T(h(z)), then N((0,z]) € I'(2h(z)) and

N((0,]) ~ 20 h()VFE) (- o).
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The proof of this corollary follows from Theorem 2.3 and elementary proper-
ties of the classes RV and T' (see de Haan [8] or Seneta [13]).

Remark 2.8. If in Corollary 2.7 (i) a = =2 and z%f(z) — o0 (z — o),
it remains true that N((0,z]) € RVy. For a refinement of this result we refer to
Theorem 2.11 (ii).

Next we obtain a result for the sequence of zeros {zn}n.
CoroLLARY 2.9. (i) If f € RV,, a > =2, then 2o/ f(zn) ~ nll(a + 2)/2

(n — o0) and
Tnyl — Zn 2
n —

Ty a+2
(i) If f € T(h(z)), then h(zn)\/f(zn) ~ nll/2 (n — c0) and

Tatpl — Zn 9

h(zy)

(n—c0).

(n — o0).

Proof. Use Corollary 2.7 with z replaced by z, and then use (2.3).

Remarks 2.10. 1. A somewhat weaker result than that of Corollary 2.9 can be
obtained as follows. If we define F(z) := II! [ \/f(s) ds, then F is non-decreasing
and F~! is well-defined. Theorem 2.3 now states that

-

(2.10) F(za) ~n (n — o0).

a) If F € RV, (b > 0), then (2.10) implies z, ~ F~(n) (n — co) and this
in turn implies that {z,}n € RVyy; in the sense of Definition 1.5. The additional
assumption that f € RV, (a > =2) ( = F € RV, with b = (a + 2)/2) gives
{z.IN E RVl/b but also that {zn41 — Zn}n € RVyp_1. ’

b) If we assume F € T(h), then (2.10) implies that |z, — F~!(n)] =
O(h(F~(n))) (n — o0) (cf. de Haan [9]). Hence also |z, — F~1(n)| = O(h(za)),
and {z,}~ € II(h(z,)) in the sense of Definition 1.5.

For a refinement of these results we refer to Theorem 2.13.

2. Since in (1.1) y”(z) has the opposite sign of y(z), y has exactly one local
extreme value between two consecutive zeros of y. Hence the values at which |y|
reaches a local maximum have the same asymptotic behaviour as the zeros {z,}n.

2.2. Second-order behaviour. In Theorem 2.3 we obtained a result for
N((0,z]). Next we state a second order result in which we estimate the difference
between N((0,z]) and I 7 +/f(s)ds. A classical result of Hartman (10, XI]
states that if f is continuous and of bounded variation in every interval [0, z], then

'N((u,v])—r—ll/v\/]_‘(T)dS Sl_i'&lﬂ— u"ld\,_/sz_%, 0<u<v<o
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and in general this estimate is best possible. If f is monotone this inequality reduces
to

(2.11) lN((u, v]) — %/uv Vf(s)ds fv)

f(u)

1
< =
<1+ 8H|log

; O<u<v<oo.

Now we prove

THEOREM 2.11. (i) If f € RV,, a > 2, and if f is monotone, then

(2.12) lN((u,z]) - % /“ * /T ds

= O(logz) (z — ).

(i) If f € RV_3 and if f is monotone with z?f(z) — oo (z — o), then
N((0,2]) € (I~ 'z+/ f(z)). '

Proof. (i) If f € RV,, then it follows from the representation theorem of
regularly varying functions, that |log f(z)| = O(logz) (z — o), (see e.g. [13], [1,
11]). Hence (2.12) follows from (2.11).

(i) If f € RV_3 we have for every ¢ > 1 that

- f:t\/f(s)ds_ ) b f(xs) ‘= 'l 1o
i i [y o= [ =

Hence part (ii) follows from (2.11) using 22 f(z) — oo (z — o0).

Remarks 2.12. 1. If z22f(z) — C, C < oo (z — 00), then Theorem 2.11 (i)
only gives N((u,z]) = O(logz) (z — o) since in this case [ \/f(s)ds = O(log z)
(z — 0). For a refinement of this result we refer to section 3, Corollary 3.2.

2. If the conditions of Theorem 2.11(ii) hold, then it follows from de
Haan [9] that the sequence {z,}~ belongs to the class T(II"!zn\/f(z,)). If
for example f(z) = z~%log’z (z > 0), then N((0,z]) € I(O~'logz) and
{zn}n € (I log z,). :

Since (cf. 2.11) [n—I1"! log? z,| = O(log ) (n — oo) it follows that {zn}n €
I'(v/2n/1) and that {zn}n is of the order of growth VI If f(z) = z~2(log* z)
(z > 0) then in a similar way it follows that z,, ~ exp((31In)}/3) (n — oo).

Using the previous results we now refine the results of remark 2.10.1. If
f € RV,, a > —2, we get from (2.12) that

(2.13) In— F(z,)| = O(logzn)  (n — o).

Since in this case {zn}N € RVg4j(at2) it follows from Seneta [13], that logz, =
O(logn) and hence (2.13) can be replaced by

(2.14) In — F(z,)] = O(logn) (n — o0).
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If f € I'(h), then (2.11) gives |n — F(zs)| = O(log f(zn)) (n — oo). Since
{h(zn)}n € RVy (cf. Remark 2.10.1), it follows from Corol‘ary 2.9(ii) and [13]
that also here (2.14) holds. Now (2.14) implies :

(2.15) F~Y(n— Blogn) <z, < F~'(n+ Blogn) (n > ng)
for some B > 0 and n > ng. Since (F~1)(z) = I/\/f(F-1(z)) it follows that

(2.16) |F~Y(n £ Blogn) — F~(n)| = LBlogn,

FF=2(0)) -

where |9 — n| < Blogn. If f € RV,, a > —2, this implies that f(F~1(§)) ~
f(F~1(n)) ~ f(zn) (n — o). Combining this with (2.13), (2.16) and Corollary
2.9 we obtain

|2 — F=1(n)] = O((zalogn)/n)  (n— o0).

If we assume f € T'(h), we have |[F~}(0) — F~(n)| = o(k(zy)) (n — o0). Using
Remark 2.10.1.b this implies f(F~1(8)) ~ f(z,) (r — c0).” Combining this with
(2.15), (2.16) and Corollary 2.9 we obtain

|zn — F=(n)| = O((h(zn)logn)/n) (n — o0).

Hence we have proved

THEOREM 2.13. Assume f is a monotone function and define F(z) :=
0=t f5 /F(s) ds.

(i) If f €RVa, a > -2, then |z, — F~Yn)] = O((zn logn)/n) (n — o0)

(ii) If f € T(R), then |zn = F~Y(n)| = O((h(z4)logn)/n) (n — o). O

Our next application is devoted to comparing the zeros {zn,}n of any
nontrivial solution of (1.1) with the zeros {y,}n of any non-trivial solution of
Y"(z) + gY (z) = 0 (z > 0). For convenience we define G(z) := II"! [ \/g(s) ds.

THEOREM 2.14. (i) If f,9 € RV,, a > —2, are monotone and if f(z) ~ g(z)
(zx — o0), then z, ~ y, (n — o0). Furthermore, if |F(z) — G(z)| = O(logz)
(z — 00), then |yn — za| = O((zn logn)/n) (n — ).

(ii) If f, 9 € T(h) are monotone and if f(z) ~ g(z) (x -— 00), then |yp—za] =
O(h(z,)) (n — o0). Furthermore, if |F(z) — G(z)| = O(log f(z)) (z — o0), then
[¥n — za] = O((A(zn)logn)/n) n — co.

Proof. (1) The proof of the first part follows from Remark 2.10.1.a and

F~Y(z) ~ G~(a) (z — o0). The proof of the second part follows from Theo-
rem 2.13 and |F~}(z) — G~}(z)| = O(log2) (z — o0).
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(it) To prove the first part, note that the assumptions imply that F(z) ~ G(z)
(z — o0) so that (cf. de Haan [9])

FY(z) -G~ (=)
h(F~1(z))

—0 . (z— o00).

Now use remark 2.10.1.b to obtain |y, - zn| = o(h(zn)) (n - 00). The proof of the

second part follows from Theorem 2.13 since |F(z) — G(z)| = O(log f(z)) implies
|F=i(n) ~ G=1()| = O((h(za) logm)/n)  (n— o). D

Our next result is devoted to the differences Az, = 2,41 — z,. In Corollary
2.9 we obtained a result for Az,,. Next we seck a result for the second-order dif-
ferences Az, = Azn4; — Az,. We prove th.t if 1/y/f € Bu with some known
second-order behaviour then 7(z,)A%z, = O(1) or o(1) (n — co) for some normal-
izing function 7. For convenience we only prove a result for nondecreasing f.

LEMMA 2.15. If f is non-decreasing and if g := 1/\/f € Bu, such that for
some function 1(z),

(2.16) r(z)lg(z + Mg(z)) — g(z)] = O(1) or of1) (z — o0),
then

(2.17) T(%n)|Znt1 — 20 — Hg(z,)| = O0(1) or o(l) (z— o).
Furthermore, if 7(zn) = O(7(2n41)) (n — o), then

(2.18) T(zn)A%z, = O(1) or of1) (n — o0).

Proof. From (2.1) and the monotoncity of g we have that
(2.19) M(g(2n + Mg(2zn)) — 9(zn)) < M(9(2a+1) — 9(zn)) < Azn — Hg(zn) < 0.

Hence (2.16) implies (2.17). To prove (2.18), combine (2.19), (2.17) and the identity

T(za)A%z, = ;{‘%T(xn+1)(Atﬂ+1 —g(zn41))

+ T(:B,,)H(g(:z,,.,.l) - g(x,,)) - r(.:cn)(A:z:,, - Hg(::,,)). (]

As an example let us assume that f has a measurable derivative f’ such that
f' = o(f3/?(z)) and such that

. flz+t/Vf(=) _
(2.20) Jim e = 1



198 M. Hacik and E. Omey

uniformly in compact t-intervals of R. Then we have

(2.21) oz +t9() = 9() < [ 10z + ba(e)la(z) .
Now ¢'(z) = f'(z)f~3/?(z) — 0 so that g € Bu. Hence using (2.20) we have

g'(z+09()) _ fl(z+0//f(z)) (g(x+99(l‘))>3 a1 (2= 00)
7(z) f'(x) 9(z)

uniformly for 6 € [0, 1]. But then it follows from (2.21) that
lg(z +t9(z)) - g(z)| = O(lg'(=)g(=)]) (& — )

1 _ e
lg'(2)lg(z) — 1f' (=)

If eig. f/ € RV, (@ > —1), then (2.20) holds and (2.16) holds with r(z) ~
zf(z)/(a+1) (z — 00). Using Corollary 2.9 (i), (2.18) becomes n*A?z, /2, = O(1)
(n — 00). If e.g. f' € T'(h), then [9] f(z) ~ h(z)f'(z) (x — oo) and (2.20) holds.
Hence (2. 16) holds with 7(z) ~ h(z)f(z) (z — o). Using Corollary 2.9 (i), (2.18)
becomes n?A’z, /h(z,) = O(1) (n — o).

and (2.16) holds with r(z) =

3. The behaviour in case z2f(z) — C (z — o)

Up to now we always assumed that f~1/2 ¢ Bu which implies z2f(z) — oo
(z — 00). When z%f(2) — C > 1/4 (z — 0o) however (1.1) may remain oscillatory.
To deal with this kind of equations we transform (1.1) into a more suitable form.
Generally, consider the differential equation

(3.1) () +fy=0, ¢>0,2>a>0

where g € C'[a,o0) and f € G[a,00). If we choose ¥ € G2[u,c0) we can define

(3. (0= [ s 0= 55

With this transformation (3.1) becomes
(3.3) d*n/6€? + F(E)n(€) =0,  0< € <é(o0)

where F(€) = [(g0')' + f¥]¥3g (see [15, p. 597]). Now z,, is a zero of y if and only
if &, = &(z,) is a zero of 7. Hence the number of zeros of y less than or equal ¢ is
the same as the number of zeros of 7 less than £(¢). Now Theorem 2.3 yields

THEOREM 3.1. Suppose F(£) satisfies the conditions of Theorem 2.3. Then
for equation (3.1) we have

(3.4) N(©2) ~ & / T JFEOEG)ds  (z—o0). O
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In the case of (1.1) we have g = 1. If we choose ¥(z) = /z, a = 1, then
¢ =logz and F(£) = z?f(z) — 1/4. Hence Theorem 3.1 yields

COROLLARY 3.2. If F(z) = e** f(e®*) — 1/4 € RV,, a > -2, then

N@JD~Eﬂ%sz@%dM;%§ (z = o0).

If F € T(h(z)), then

N((0,z]) ~ I~ *2h(log z)\/z2f(z) = 1/4 (z — o0). O

Remark 3.3. Corollary 3.2 of course remains valid when z?f(z) — oo.

As an example let us consider the following generalized Euler equation. For
n > 0 define

lo(z) = =, Lat1(z) = log(la(2));
I‘/fo(x) =1, Mn+1(1') = Mn(x)ln(z);
K_i(z) = -1, Kn(z) = [Kn-1(z) + 1Ji2(2);

e ? = oo, el =0, e” = exp(e”1).

Also let
4k2 4+ 1+ Kn_1(z)

dMi(z)

where k is an arbitrary positive constant. The differential equation

falz) =

n>0, z>e" 2

(3.5) V' + fay =0, z>e" 2

is called a generalized Euler equation. Its fundamental system of solutions is given
by

(36)  wi(z)= My 2(2)sin(kla(2)),  3a(2) = Ma/*(z) cos(kin(2)).
For n = 1 we have fi(z) = (4k% + 1)/(4z?) so that, applying the transformation
¥(z) = /z, £(z) = logz, we obtain F1(€) = k% = fo(z) € RV,y. Hence Corollary
3.2 gives

N1((0,2]) ~ Tt (log z) - k= 0~ (z)k (z. — 00).

For n =1,2,... we obtain by induction that

Fry1(6) = & fagr(z) — 1/4 = fa(£).
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The result of n applications of the transformation as before reduces equation (3.5)
to equation (3.5) with n = 1. '

Hence the zeros of the nontrivial solutions of (3.5) satisfy
Na((0,z]) ~ kI~ a(2) (z — o)
a result which is obvious from (3.6).
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Added in proof. After finishing this paper M. Hatik deceased. Therefore the
second author dedicates this paper to M. Hatik, a nice colleague and friend.
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