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ON A COMMON FIXED POINT THEOREM OF A GREGUS TYPE
Ljubomir B. Cirié

Abstract. It is proved that if T and E (E continuous) are two compatible self mappings
of a closed subset K of a complete convex metric space X such that the condition:

d(Tz,Ty) € ad(Ez,Ey) + (1 ~ ¢) max{d(Ez,Tz),d(Ey, Ty)}

holds for all z,y in K, where 0 < a < 1, and Co[T(K)] C E(K), then T and E have a unique
common fixed point. This result generalizes a theorem of Fisher and Sessa [2] and a theorem
of Mukherjee and Verma {6] and shows that these theorcms remain true when the hypotheses of
linearity and non-expansivity of E are reduced to the continuiiy of E.

Let X be a Banach space and C' a closed convex subset of X. Gregus [3]
proved the following theorem:

THEOREM 1. Let T : C — C be a mapping satisfying the inequality
(A) Tz = Tyll < allz — ull + blITz ~ z|| + || Ty ~ 9|
Jorallz,ye€ C, whero0<a<1,5>0,c>0anda+b+c=1. ThenT has a

unique fized point.

Fisher and Sessa [2] extended Theorem 1 to a common fixed point theorem of
two weakly commuting mappings T" and I (Sessa [7]: T and I are weakly commuting
iff ||[TIz — ITz|| < ||Iz — T'z|]). They proved the following theorem:

THEOREM 2. Let T and I be two weekly commuting mappings of C into itself
satisfying the inequalily

(B) T2 = Tyll < alllz — Iy|| + (1 - @) max{||Tz — Iz}, |Ty - Iyll}

forallz,y € C, where 0 < a < 1. If I is linear, non-ezpansive in C and such that
I(C) contains T(C), then T and I have a unique common fized point in C.

Mukherjee and Verma in (6] gave an improvement of Th. 2, where C, T and
I are the same as in Th. 2, except that now I is affine instead of linear (I : C — C
1s affine if I(cz + (1 - c)y) = clz 4+ (1 - c)ly; 0 < e L 1, [B)).
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In this note we will use a new method and show that in the above theorems
a map I need not be linear (affine) nor non-expansive. It is enough that I be
continuous and W(T'z,Ty,1/2) € I(C) (see Definition 2 below). Also, T and I
need not be weakly commutative — it is sufficent that they be compatible. We
recall the following definitions:

Definition 1. (G. Jungck [4]). Self-maps T and E of a metric space (X, d)
are compatible iff limp (T Ez,, ETz,) = 0 when {z,} is a sequence in X such that
lim, Tz, = lim, Ez, =t for some t in X.

- Clearly, commuting maps are weakly comnmuting and weakly commuting maps
are comaptible, but neither implication is reversible, as examples in [5] and (7] show.

Definition 2. (Takahashi [8]). Let X be a metric space and I = [0,1] be
the closed unit interval. A continuous mapping W : X x X x I — X is said
to be a convex structure on X if for all z,y in X, A in I, d(u,W(z,y,2)) <
Ad(u,z)+ (1 —A)d(u, y) for all u in X. X together with a convex structure is called
a convex metric space. A subset K C X is convex, if W(z,y, A) € K wherever z,y
in K and Ain 1.

Clearly a Banach space, or any convex subset of it, is a convex metric space
with W(z,y,A) = Az + (1 — A)y. More generally, if X is a linear space with a
translation invariant metric satisfying d(Az +(1—- )y, 0) < Ad(z,0)+(1—A)d(y, 0),
then X is a convex metric space. There are many other examples but we consider
these as paradigmatic.

THEOREM 3. Let K be a closed subset of a complele conver metric space X
and T, E : K — K 1lwo compatible mappings satisfying the following condition:

(C) d(Tz,Ty) £ ad(Ez,Ey) + (1 — a) max{d(Ez,Tz),d(Ey, Ty)}

Jor all z,y in K, where 0 < a < 1. If Co[T(K)] C E(K) and E (or T) is
continuous tn K, then T and E have a unique common fized point in K.

Proof. Let x € K be an arbitrary point and let yo = Ez and v, = Tz.
Choose points z;3,z2,z3 in K such that Exy = Tz, Fzy = Tz, Exz = Tz,.
This choice can be done since T(K) is contained in E(K). Put y; = Ez; = Tz,
y3 = Fz3 = Tz,. Then by (C)

d(y1,y2) = d(Tz,Tz) < ad(Ez, Ez,) + (1 — @) max{d(Ez,Tz),d(Ez,,Tz,)}
= ad(yo, yl) + (1 - a) ma'x{d(yO) yl)) d(yla y2)}
Since 0 < a < 1 we obtain d(y1,y2) < d(¥0,%1). Analogously, we can get
(1) d(y2, y3) < d(v1, ¥2) < d(yo, 1)

Similarly, by simple calculations and by using (C) and (1) one can show that the
following inequality is true:

(2) d(y1,¥3) < (1 + a)d(yo, y1)-
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Let z = W(ya, y3, 1/2) and choose u € K such that z = Eu. This choice can
be done since Co[T(X)] C E(X). Since

(w1, 2) = d(y1, W(y2,¥3,1/2)) < (1/2)[d(y1, v2) + d(vs1, v3)],

using (1) and (2) we obtain

(3) d(y1, 2) < (14 a/2)d(yo, y1)-

Similarly we get

(4) | d(y2, 2) < (1/2)d(y2, y3) < (1/2)d(vo, 11)-

Put Tu = v. Then

(5) d(v, z) = d(v, W (v2, 33, 1/2)) < (1/2)[d(y2,v) + d(ys, v)]-

By (C) we have

d(yz,v) = d(Tz1,Tu) < ad(Ezy, Ev) + (1 — a) max{d(Ez1,Tz1), d(Eu, Tu)}
< ad(yy, z) + (1 — a) max{d(y1, y2), d(z,v)}.

On using (1) and (3) we get
d(ys,v) < a(1 + a/2)d(yo, y1) + (1 — @) max{d(yo, 1), (v, 2)}.
Similarly, by (C), (1) and (4) we have
d(ys, v) < (a/2)d(yo, v1) + (1 — a) max{d(yo, 11), d(v, 2)}.
Then by (5) we get
d(v,2) < (1/4)a(3 + a)d(yo, 1) + (1 - a) max{d(yo, 1), d(v, 2)}
and hence
d(z,v) < max{(1/4)(4 — a + a*),(1/4)(3 + a)} - d(30, v1)-

As 2 = Eu, v = Tu, yo = Ez, y1 = Tz we have d(Eu,Tu) < Ad(Ez,Tz), where
0 < A= (1/4)(4 - a+a?) < 1. Now by simple considerations we conclude that

(6) inf{d(Ez,Tz):z € K} =0.
Now we will prove that the infimum is attained. Put
Ap={z €K :d(Ez,Tz) < 1/n} (n=1,2,3,...).

From (6) it follows that A, is non-empty for every n = 1,2,3,.... Therefore
TAn #DandTA; DTA22 ... 2 TAn D .... Since X is complete it follows that
B =), TA, is non-empty. We will show that B is singleton.
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Let 2’y € TA,,. Then there exist z,y € Ap such that 2’ = Tz, iy = Ty. So
we have

d(z',y’) = d(Tz,Ty) < ad(Ez, Ey) + (1 — a) max{d(Ez,Tz),d(Ey, Ty)}
< a[d(Ez,Tz)+ d(Tz,Ty) + d(Ty, Ey)] + (1 — a)(1/n)
< ad(z',y') + 2a(1/n) + (1 - a)(1/).

Hence d(z',y') < (1 + a)/n(1 — a). Therefore, diam(T'4,) = diam(T4,) — 0, as
n — oco. This implies B = {u} for some u € K.

As u € TA,, for every n = 1,2,3,..., it follows that for each n there is -
z;, € TA, with d(u,z,) < 1/n. Let z, € A, be such that 2, = Tz,. Then
d(u,Tz,) < 1/n and we have d(u, Ez,) < d(u,Tz,) + d(Fz,,Tx,) < 2/n. Hence

) li'fn Fz, = li'{nT:c,. =u.

Then by the continuity of F

(8) li’{nE(Tzn) = li’inE(Ez,.) = Fu.

Since T and E are compatible, (7) implies lim, d(E(Tz,), T(Ez,)) = 0. Then by
the triangle inequality and (8) we get

(9)  limd(Eu,T(Eza)) < limd(Eu, B(Tz,)) + limd(E(Tz,), T(Ez)) = 0.
Now by (C)

d(T(Ezpn), Tu) < ad(E(Ez,), Eu) + (1 — a) max{d(E(Ez,),T(Ez,)),d(Eu, Tu)}.

Letting n tend to infinity we obtain d(Eu, Tu) < (1 - a)d(Eu, Tu). Since a > 0 we
conclude that d(Eu,Tu) =0, i.e. Eu = Tu. Then by (C) we have

d(Tz,,Tu) < ad(Ezn, Eu) + (1 — a) max{d(Ez,,Tz,),d(Eu, Tu)}.

Using (7) and letting n tend to infinity we get d(u,Tu) < ad(u, Eu) = ad(u,Tu).
This (and a < 1) implies that d{u,Tu) = 0. Therefore we have Tu = Eu =y, i.e.
u is a common fixed point of T and E. The uniqueness of u is a consequence of the
condition (C). The proof is complete.

COROLLARY 1. Let K be as in Theorem 3 and T : K — K a mapping
satisfying

(A") d(Tz,Ty) < ad(z,y) + (1 — a) max{d(z, Tz),d(y, Ty)}
forallz,y€ K, where 0 < a < 1. Then T has a unique fized point.

Since a Banach space is a convex metric space and (A) implies (A’), Corollary
1 is a generalization of Gregu§’s Theorem 1.

COROLLARY 2. Let K be as in Theorem 3 and E a continuous mapping of
K onto K which satisfies the following inequality:

d(z,y) < ad(Ez, Ey) + (1 — a) max{d(Ez,z),d(Ey,y)}
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with 0 < a < 1. Then E has a unique fized poind.

CoRrOLLARY 3. Let K be a closed conver subset of a Banach space and
TE : K —» K as in Theorem 3. Then T and E have e unique common fized
point.

Clearly, Corollary 3 is an extension of Theorem 2 of Fisher and Sessa and the
Mukherjee and Verma’s theorem [6] and a theorem of Diviccaro, Fisher and Sessa
for the case p = 1. The following example shows it.

Ezample 1. Let K = [0,1] be the closed unit interval and T, E : K — K be
defined by Tz = /4 and Ez = (2)/2. Clearly T(K) C E(Ix) E is continuous
and T and F weakly commute. As

_lz-ul _l=—y 2 _ d(Ez, By)
d(TI)Ty)“" 4 S 4 :1:1/2+y1/2 - 2
for all z,y € K, we conclude that all the hypotheses of Corollary 3 are satisfied
and 0 is a unique common fixed point. But E is neither linear nor nonexpansive
and so Theorem 2 of Fisher and Sessa is not applicable.

The following example shows that Corollary 1 is an extension of Gregus’s
theorem.

Ezample 2. Let K = [-1,1], Tz = 0 for =1 < z < 1/2 and Tz = —1 for
1/2 < & < 1. Then T satisfies (A’) with a = 1/3. But T does not satisfy (A) as,
for example, for x = 0 and y = 3/4:

d(Tz,Ty) = 1> max{d(z,y), [d(x,T=) + d(y,Ty)]/2} = max{3/4,7/8}.
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