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FRENET FORMULAE IN RECURRENT LAGRANGE SPACES
WITH d CONNECTION

Irena Comié

Abstract. Recurrent Lagrange spaces with d connection are defined. Using ideas of Miron
(3] and Moér [4] the connection coefficients and their laws of transformation are determined. The
Frenet formulae for horizontal and vertical curves are obtained.

1. Recnrrent Lagrange spaces with d connection. Let M be an n-
dimensional and E a 2n-dimensional differentiable manifold and let (E, 7, M) be a
vector bundle such that #(E) = M. If u € E, then in some chart, u has coordinates
(=%, 9"), 4,5, k,...=1,2,...,n. If (z'',4") are the coordinates of the same point u
in the new cocrdinate system

(1.1) g = zi’(xl, ez, ¥ = %:Z—:.’y'., rank [ZL;] =n,

then

(12) (a) &= 5337 = %’i—:é,-,, (b) & = b?x—,. = %“:,. B + a?;i;;jyi Bir.

Any vector field X € T(F) is given by

(1.3) X=X8+X8.

From (1.2b) we can see that 9; (i = 1,2,...,n) do not transform as vectors, so we

introduce a family of functions N}'(x, y) called the nonlinear connection which have
the following law of transformation:

; ” oz’ ozt 9?2z 9z’
3 = !, ! 4 —_——— N T T k
(14) NJ (:c) y) N] (Z 3 y ) azJ az" axj 62:):1 axl y
We define
(1.5) 8 =0; — N;jaj,
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then (1.3) has the form

(1.6) X = X6 + X'6;,
where
(1.7 X' =X'+ XN}

From (1.2)—(1.7) we obtain

;! 322 = 61‘ axi . 61;'. .
1.8 X' = —-—'}{z < —-——X' 6,'1 = ——.—,5,', it = 0.
(18) dzt X ozt v Ozt % Ozt %
Any 1-form w € T*(F) may be written in the form
(1.9) w = @;dzt + @ dy'

As dy* do not transform as tensors we define
(1.10) 6y :dyi+N;(x,y)d2:j.
From (1.9) and (1.10) we get

(1.11) w = w; dz’ +@; 8y,
where
(1.12) wi = @; — @;Ni{z,y).

We have the foilowing law of transformation:

i i . A i
(1.13) Wi = wgai. Wy = w, Oz dz* = dw'ax—. 6y = 6y 6ax

9z’ 9z ozt’

The vectors & i = 1,2,... ,n, span Ty(E), the vectors 5,-, i=12,...,n,
span Ty (E) and T(E) = Ty ® Tv. The 1-forms dz', i = 1,2,... ,n, span T} (E),
the 1-forms éy*, i = 1,2,... ,n, span Ty (E) and T*(E) = T5(E) @ Ty (E).

We shall consider the covariant metric tensor G € T*(E) ® T*(E), where

(1.14) G = gij dz* ® dz? 4 §i; 6y @ 6y,
(1.15) 9ij = 9ji, §i; = §ji,» rankgy;] =n, rank(g;]=n.

If [¢*7], [g"] are the inverse matrices of [¢;;] and (Ji;] respectively then the lowering
and raising the ivdices is given by

(1.16) Xi=g;X, Xi=§;X, o =g, o =jis,

gij and §; i transform as tensors of type (0, 2), g" and ¥ as tensors of type (2,0).
Xi, Xi, w!, @ determined by (1.16) transform respectively as w;, @;, dz?, 6 (in
1.13). (See also 1.10-1.12). We introduce a linear connection V in T(E) by

(1.17) V&ﬁj:Fﬁ-ék, V53 —F (9;,, Vs 5 —C'Lék, ‘Véia',-:éfia'k.
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If

(1.18) X=X&+X8, Y=Yi§+7Y

are two vector fields in T(E), then we have

(1.19) VxY = (Y X'+ Y ,.X8 + (VX + ¥ L, X8;,
where .

_ Yi =&Y + FLYY, Vi =677 + FiYF,
(1.20) oo

Yi|, =&Y+ CLY*, V|, =477 +CiY*.
If we want Y|J, , Y|, }_’li and ¥7|; given by (1.20) to transform as tensors then F;

and CJ"‘,- must have the following law of transformation:

£, oz’ 9z 9z* N &z* . ozt _ v 02 ozt dzi’ 9z
Ozt dz' Oz*' = Ozi fz* Oz*"’ i G Bz Bzt
The same formulae are valid if in (1.21) F' is substituted by F and C by C.

The linear connection V defined on T(E) by (1.17) introduces in the usual
way a connection V* (denoted also by V) in T*(E) where

(121) Ffi=

(122) Vs dad = —Fj de*, V5 6y = ~Fi8y*, V, dod = ~C, dz*,
’ Vs, 8 = —Ci; 8%, & =dy' + Njda'.

If X is given by (1.18) and G by (1.14) then we have
(128) VxG = (g,;, X" +9i s X*) do’ @ da? + (3, X* + 3 X*) 60" @ 6/,
where
(1.24) (@) 94 = a.lcgij ~ Fignj — Fjygin,
(b)  gijle = Okgi; — Clognj — Cligin-

If in (1.24) we substitute g by g, F' by F,C by C then (1 24) is valid. If X
is a vector between the points (z*,y') and (z* +dzf,y’ + dy') i.e.

(1.25) X = dz'd; + dy' 8; = dz*6; + 63 §;
then (1.19) may be written in the form

(1.26) VxY = DY = (DY¥)§; + (DY7)§;,
where

(1.27) DY =Yide +Yijsy, DV =V)da' + V)i 6y,
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From (1.23), (1.24) and (1.25) we obtain

(1.28) DG = (Dgi;) dz* @ dz7 + (Dgi;) 6y° ® 6y,
where
(1.29) Dgi; = 9,4 da* + gij |k 6y, Dgi; = 7 dz* + ;i 64"

" We shall determine the connection coefficients F, F, C, C under conditions

(1.30) g.

G = MGiiy 9l = i, G = MeBi Gigle = Babij,

where N = M dz® + A\, 64%, p = pp dz® + fig 6y* are covariant vector fields. From
the conditions (1.29) and (1.30) we obtain

(8) Fije = (6igix + 0k gij — 659ix) — (Aigik + Argi; — Ajgix)
+ (Fijk — Fixi + Frij),

1.31
(1.31) (b) Cije = (Gigjx + Orgi; — Oigix) — (iGix + prgij — Bigix)
+ (Cijr — Cjki + Crij),
where
(1.32) (a) Fiji = g;aF, Cijr = gjaCl,

(b) ka = Fijk - Fi-}-- é{k = C;‘ik - Cii'

The formulae (1.31) and (1.32) are valid if we write F, g, X f_‘, C, i, 5’, instead of
F,g, A\ F, C, ui, C respectively.

Definition 1.1. A 2n-dimensional differentiable manifold supplied with the
metric tensor G (1.14), (1.15) and the connection coefficients F', C, F, C determined
by (1.31) (1.32) we call recurrent Lagrange space with d-connectlon and denote by
RLd.

If we take \; = 0, F,-jk =0, u; =0, C{jk =0in (1.31) and (1.32) we obtain
Cartan connection coefficients in Ty (F) and if we take A; = 0, 1::’,-,-;; =0, a; =0,
Cijk = 0 then we obtain Cartan connection coefficients in Ty (E).

2. Frenet formulae in RLd for the horizontal curve. Let us consider
the curve

(2.1) ' =2'(t) o =9'(2) i=12,...,n,

where ¢ is a real parameter. The tangent vector to the curve (2.1) is the vector T,
where

'L'l

(2.2) (a) T=2= dy S8 =T8+ T8, (b) Thdt =6y = dy' + Nj da.
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Now we shall consider only a horizontal curve i.e. a curve for which the tangent
vector is in Ty(E), i.e. (2.2a) reduces to (2.3), where

(23) T() =T ()6, Ti)=0 iff ‘Sdlt'zo fdyf + Ni(z(t), y(t)) de? = 0.

Let us introduce the notation 'DQ = Vx@Q (Q is any tensor), where

(2.4) X =T ()6 = %6;, 6y’ = 0.

If we denote by Tp the unit vector in the direction of T then the following relations
are true:

(2.5) T = kOTI, (=0T OT () = K),
(2.6) 0:i(2(0), UNTIOTI (1) = 1.

In the following all the vectors and tensors will be considered on the curve (2.1),
so we shall not denote that they are functions of ¢.

From (1.27) we have

‘DI, _ ('DTE\, .. dof
27) % (T) b=T, b

As the vector ‘DTp /dt is in Ty (F), it can be decomposed in the direction of Tp and
Ty where Tp and T are unit mutualy normal vectors in Ty (E). We may write -

(2'8) (a) gijTgTii =0, (b) g,'iT;'Tii =1,
(2.9) 'DTE/dt = KQTE + KATi.

On the other hand, if we denote by to, (to = t}6;) the unit vector in the direction
of 'DT;/di determined by (2.7), we have

(2.10) (a) 'DT3/dt = koty,  (b) gijtht) = 1.
From 6y* = 0 and (1.29) we obtain ‘Dg;; = g.. , dz* and from (1.30) we have

ijik
(211)  'Dgij/dt = Mgijdz*/dt = 2Kgij, 2K = Ay dz¥/dt.
From (2.4) and (2.5) we obtain
(2.12) A dzF/dt = N Tak(t) = 2K.
From (2.6) we get
! I IDTn X
(2.13) dgt LTI + 295 —°T) = 0.

Substituting (2.11), (2.4) (2.12), (2.9) into (2.13) we obtain
(2.14) KJ =-K.



168 Comi¢
From (2.10a) and (2.10b) we have

'DT{'DT{
%iTa "dt
On the other hand using (2.8) and (2.9) we have

(2.15) = kggijtgt{) = kg

(216) 05 2B PT6 _ (kY2 4 (3.
-From (2.15) and (2.16) we get

(2.17) k2 = (KQ)® + (K{)*.
Using (2.14), from (2.17) we have

(2.18) (K2 =k — K2.

Substituting (2.14) and (2.18) into (2.9) we obtain

(2.19) 'DTi/dt = —KTi + \/k3 — K2T}.

Let us denote by ¢; the unit vector in the direction of DT} /dt, i.e.
(2.20) (a) 'DTi/dt = kyti,  (b) gijiiti = 1.

Let T3 be a unit vector in Ty (E) normal to Ty and T determined by

(2.21) DT} fdt = KOT§ + K}T} + KIT3 = K§T: «=0,1,2,

(2.22) 9i;TiT) =602 a=0,1,2.
Differentiating (2.8a), (2.8b) and using (2.9) and (2.21) we obtain
(2.23) (a) K} + K2 =0, (b) Ki =-K.

From (2.23a) and (2.18) we have

(2.24) K = 51/k3 - K2.

From (2.21), (2.23b), (2.22) and (2.20b) we obtain

(2.25) kf = (KD)* + (K1)? + (K]).
Substituting (2.23a) and (2.23b) into (2.25) we get
(2.26) (K3)? = k2 — k2.

Substituting (2.23b), (2.24) and (2.26) into {2.21) we have

(2.27) 'DTé fdt = F/kZ — K2T§ — KT} ++/k} — k3T3.
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In the similar way we obtain

(2.28)  'DTi/dt = +\[k} - k2Ti — KT’:F\/lc2 k2+k2 K2Ti,

where

'DTEJdt = koth,  gijtoth =1, ¢i;ToT] =6as, a=0,1,2,3.

The general formula we shall obtain by induction. Let us suppose that the following
formulae hold:

(2.29) (a) 'DT:/dt = K2™\Ti_ 4+ K2Ti + KSH'Th,,,  (b) 'DTa/dt = katl,
where
(2.30) (a) g,-jT(‘;T;; = bqp, a,B€{0,1,...,m+1},
() gijtith, =1, a€{0,1,...,m},
() K¢ '=-KZ_, (d) K& = -K,
(e) (Ka*')? =kl - (K(‘i"l)2 - (K3)?,
(f) (Kat)? = k% — kg + kg — -+ (-1)°kE + &K,
5 = 0 foriodd '
' —~1 for i even.

Fora =0, a =1, a = 2 (2.29) (a) has the form (2.19), (2.27), (2.28). Formulae
(2.30) for &« = 0, @ = 1, @ = 2 have the form (2.17), (2.18), (2.23) and (2.25).

Let us denote by Ty(a42) the (@ +2)-dimensional subspace of Ty (E) spanned
by To,T1,--. Tat+1. Let Tmy2 be the unit vector normal to Tx(m42) determined
by the relations

(a) ,‘Dm-{-l/dt = I{o +1T + Km+1T’ + -
(2.31) +KnTh + K::LIT' 1+ EKniiTh,
(b) gng'iT,':,+1 =6a,m+1; a-O,l,... ,m+1.

and 2,41 the unit vector in the direction of ‘DT, , /dt, i.e.

(2-32) (a) IDT:n+1/dt = km+1t:n+1: (b) gijt:n+1tm+1 =1
Diﬂ'erentiating the relation (2.31b) for a = 0,. — 1 we obtain K3, ,; = 0,
KL, =0,..., Kpol = 0,50 (2.31a) reduces to the form

(2.33) ‘DI fdt = Ko T+ Kb oy + Kt

Differentiating (2.31b) for « = m and a = m + 1, we get
(2.34) (a) Ky =—-Knt',  (b) Kp=-K
From (2.31a) and (2.29b) we have

(2.35) k2 = (Km0 ) + (KphD)? + (KE)?.
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Substituting (2.34a), (2.34b) and (2.30f) into (2.35) we get
(2.36) (Kmfd)Y =k — k2 +E2 = (=)™ k2 4 6 K2
From (2.33)~(2.36) it follows that (2.29)-and (2.30) are true for i = n — 2. For
i=n—1 we have
(a) ‘DI, _i/dt = K)_\Tg + Kp_\Tj + -+ KP22T0_, + KP2ITE
(b) gi;TiTE_y =bane1, @=0,1,...,n—1,

because ‘DT, _y/dt is in Ty (E) spanned by Tp, T1,. .. yTn—1. On the other hand,
we have as usual

(2.38) (a) DTh_y/dt = knosth,_, (b) gijth_1t,_, = 1.

Using the same method as before, from (2.37) and (2.38), we obtain (2.39), where:
(2.39)
(a) Ka_y =0, o1 =0, ..., kP23 =0, KP-2= k0=, K=l = _F,

n—21 n
(b) k2_y = (K32 + (K32h)

n—1

(2.37)

Substituting (2.39) into (2.37) we obtain
(2.40) DTy it = KJZ3T3_, + KooiTi_y,

where

Kp-i=Krla \/xc,ﬂ,_2 —kia+-+ (=D 2%+ 6, 0K2, K'Il=-K.
So we proved

THEOREM 2.1. The complete list of Frenet formulae in RLd for the horizontal
curve is given by

'DT; /dt = KS™'TE_ + KST + KWTh .,
where
05 TaT) = 6ap, Kg'=0, K2, =0, Ki=-K, K& =-Ko,,
(e = R — kL 4+ k2~ 4 (1)%R2 + Sa K2, .
‘DT 'DT} 'DTE
dt dt '’ dt

k2 = gij = kott.

THEOREM 2.2. The curvatures ko, ky,... ,kaoy of the horizontal curve (2.4)
and the vector of recurrency X; of the space RLd are connecled by the formula
(241) Kl ki a4k g— 4 (1) U246, K2 =0, 2K = A dzt/dt.

Proof. Substituting (2.36) for m = n ~ 2 into (2.39b) we obtain (2.41). For
K =0,ie when Ay =0 or A; dz* =0, (2.41) reduces to the form
(2.42) ki i =k o4 4+ (=1 1k2 =0
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Remark. Ift, n, b denote the unit tangent vector, normal vector and binormal
vector in the Euclidian space, then (2.42) reduces to

kK2—k2+k2 = (V)2 —(n')2+(t')* =0, where b =db/ds, n'=dn/ds, t = dt/ds.

3. Frenet forr_nulag in RLd for the vertical curve. Let us consider the
vertical curve z' = z*(t), ¥ = ¥ (t) for which the tangent vector has the form

T =T =T, %—6;’:0 = iz—:O = z'(z +dt) = z'(t)

dt
ﬂl_’. + !'ix_J = (_iy_'
dt ) dt dt’
Let us introduce the notation

(3.2) "DQ = V4+Q (Q is any tensor and T is determined by (3.1).)

(3.1)
Ti=

If we denote by Tp the unit tangent vector in the direction of T then we have
(33) () T =EkOT, () 550 yORT =1 = 57T =k
From (1.27) and (3.2) we have
DTy _ "DT§
dt dt

As the vector "DTp/dt is in Ty (E), it can be decomposed in the direction of To
and Ty, where Ty and Ty are unit mutualy normal vectors in Tv(E), To = T30;,
T, = Ti0;. We may write

. _. dy -
3,-:21"5[,-—%—6,-

(34) (a) g TaTi =0,  (b) ;7T =1

(3.5) "DTE (dt = R3T + K3T5.

On _the other hand, if we denote by g, 1o = ff,é,-, the unit vector in the direction of
“"DTy/dt, we have

(3.6) (2) "DT3/dt = kofy  (b) istofh = 1.

From dz* = 0 and (1.29) we obtain "Dg;; = Gijlx 6y*. From this relation and

(1.30) we get
3.7) (a) "Dgi; [dt = pxGij dyk/dt = 212_(7,',',
(b) 2K = i dy*/dt = pT* = @ Tk

From (3.3b) we have
Gii mimi _ npTi
- ToTs + 2g,-,-——dt°Tg =0.

4

(3.8)
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Substituting (3.7a), (3.7b), (3.5), (3.4a) into (3.8) we obtain
(3.9) K =-K.

From (3.6a) and (3.6b) we have

"DT§ "DT3 _ 12
dt dt o
On the other hand, using (3.4) and (3.5) we have

(3.10) Gij

_ DT "D}
From (3.10) and (3.11) we get
(3.12) k3 = (K9)? + (K3)*.

Using (3.9) from (3.12) we have

= (K)? + (K})*.

(3.13) (R =1 - K2
Substituting (3.9) and (3.13) into (3.5) we obtain the first Frenet formula in RLd
for the vertical curve:
"DTi Jdt = kTS + +/k3 — K2T5.
The other formulae may be obtained in the same way as those for the horizontal

curve. We have

THEOREM 3.1. The complete list of Frenei formulae for the vertical curve in
RLd is
"DTS = ReVT% | + RSTE + K3 Thy,,

where

5 ToT) = bap, R§=0, Kp_ =0, Ki=-K, Kg*'=-K3,,
(RGP = B =Byt By oot (7R 4 6K,

= "D DT "pTév - — .
2 _ 5., a 4 LA A & = = — 1.
kL = §ij 7 T 7 Vko, o g,'7 =1, o,f=1,2,...,n—1

THEOREM 3.2. The curvature ko, ky,... , ko1 of the vertical curve (3.1) and
the vector of recurrency ji; of the space RLd are connected by

B2 =B 4k — o ()R 4+ 60 B =0, K = uTF = kpTs.

n—

The proofs of Theorems 3.1 and 3.2 are similar to the proofs of Theorems 2.1
and 2.2 respectively.
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