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SPACE OF DISTRIBUTIONS INDUCED BY
CERTAIN FAMILIES OF LINEAR OPERATORS

José A. Canavati and Fernando Galaz Fontes

Abstract. We show that some basic concepts and elementary results from the theory of
distributions developed by L. Schwartz hold for a finite family £ of linear operators, L; : D(L;) C
X — X, when X is a Frechet space equipped with a pairing [-,-] : X xY — K (K = R or
K = C) and the family of adjoints, L}, satisfies a certain invariance condition.

Introduction. Given a Frechet space X and a finite family £ of linear
operators, L; : D(L;) C X — X, j = 1,2,...,n, we can study the problem of
“extending adequately” each L;. In the case X = Ll (), where O C R” is
an open set, L. Schwartz solved this question for the family of partial differential

operators Lj = 0/0x;, by developing the theory of distributions.

It is the purpose of this paper to present some general conditions that X and
L can have in order that Schwartz’s concepts apply and some of the elementary
results of his theory of distributions be valid.

Our working setting is that of a Frechet space X equipped with a “compatible”
pairing [-,-]: X xY — K (K = R or K = C). Then, the adjoint operator L* of
L:D(L) C X — X is defined when D(L) is a “test space”. Given a family £ of
linear operators on X, Ly, ..., L,, we show that a space of distributions for £ can
be developed if each D(L;) C X is a test space and if there is a test space ¥ C Y
that is left invariant by each L;, in a way to be precised in (2.1).

This abstract space of distributions is based on a duality notion defined by
means of the pairing (X,Y;[-,-]) and, in a “weak” sense, solves the extension
problem posed for the family £. As in the approach of Gelfand and Shilov [4],
distributions are defined as elements of the dual of the test space ¥, which is
endowed with an inductive limit topology. However, in our work the test space
(corresponding to Gelfand and Shilov’s fundamental space) is not arbitrary but
constructed from X and L. '
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Finally, we must mention Ehrenpreis [3] extended Schwartz methods to cer-
tain families of linear operators acting on functions defined on a countable at infinity
locally compact space.

1. Notation and terminology. Troughout all this work X is a Frechet
space and X’ is its dual space. X'’ together with its strong topology will be called
the strong dual of X and denoted by X!. We employ the notation

(z, ) = ¢(z), reXandgpecX

On X we will consider fixed an increasing sequence of seminorms, {p;}, which
generate its topology. Let X; be the space X together with the locally convex (not
necessarily Hausdorff) topology defined by the seminorm p;. Then

X,=LIJXII' (1.1)

Proceeding as in the case of normed spaces, it results that

el = sup{l(z, 8} : m(2) <1}, € X,

defines a norm on Xj. Also, under this norm, X/ is a Banach space and

Hz, o)l < ml2)lléll,, z€X, 6€X|. (1.2)

LeEMMA 1.1. The following continuous inclusions hold:

di ’ ! !
X=X X, <. =X,

Proof. From condition p; < piyy it follows that X, < X;, and hence
X| — Xj,,. Fixing I, we now show that X] < X!. Let {¢1} be a sequence in X
such that
¢ — 0 in X{. ' (1.3)
Let B be a bounded subset of X. Then, (1.2) and (1.3) imply ¢z — 0 uniformly
on B. This shows that ¢ — 0 in X/.

Let n € N and T = {T1,...,T,} be a family of linear operators in a vector
space Z. Given a nonnegative integer | and a set A we will take A(®) = {0} and
AW = A x ... x A (I times). To describe any composition between members of T'
we introduce the following notation.

Let I, = {1,...,n}. Then, for y = (71,...,m) € I,(.I), 1=0,1,..., we define
(M =1,Ty =Ty, 0...0Ty,, where Tj is the identity operator in Z. In this context
v will be called a subindez and [y] its length.

Suppose now that Z is a Banach space, with norm || - ||, and let m =
1,2,...,400. Then, we define V™(Z,T) to be the locally convex space obtained by
considering in {1, D(Ty) the topology determined by the family of seminorms

lzl, =TI, [ < m. (1.4)
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Notice that V™(Z;T) is a normed space for m € N and V+%°(Z;T) is metriz-
able. The following fundamental properities of V™(Z;T) are clear.

LEMMA 1.2. Let Z be a Banach space and T; : D(T;) C Z — Z a linear
operator, j = 1,2,... ,n. Then:

(i) @ sequence {2} converges to z in V™(Z;T) if and only if
T'yzk - T7Z in 7, [7] <m;

(i) for any subindez v, T, : V+*(Z;T) - V**®(Z;T) is conlinuous;

(i) V+(Z;T) > V™Y Z;T) - V™(Z;T) — Z, m € N.

In (i) of the above lemma we employ the notation £ <« F' to state that
E C F and that the inclusion of £ into F' is continuous.

Assume Y is a linear space and -, -] : X x Y — is a bilinear mapping having
the following properties:

(a) fyeY and [z,y] =0 for all z € X, then y = 0.
(b) Ifz € X and [z,y] =0 for ally € Y, then z = 0.

(¢} For each y € Y, the linear functional Jy is continuous, where
(2, Jy) = [z,9]. (1.5)

Then, we say that (X,Y;[-, -]) is a P-space.

From the properties of a P-space (X,Y;[-, -]) and definition (1.5) it follows
that J : Y — X' is an injective linear operator. Since this map allows us to identify
Y with the subspace J(Y) C X', we call it the canonical identification of Y into
X'.

We will always consider in ¥; = J~1(X]) the negative norm
Il = ol =sup{lfe, 9l : () < 1}, z€X, yev (1.6)

Then J; = J|Y; : Y1 — X{ is an isometry, and
| <p@ylly, =zeX, yel, (1.7)

Let @ be a vector subspace of X. If y € Y and [z,y] = 0 for all z € @ imply
y = 0, then & is called a test space for Y. In a similar manner we define that a
vector subspace ¥ C Y is a test space for X.

Given a P-space (X,Y;[-,-]) and a linear operator L : D(L) — X where
D(L) C X is a test space for Y, then we can consider its adjoint operator L* :
D(L*) CY — Y, defined by the usual condition

(Lz,y] =[z,L*y], =z € D(L), ye D(L*).

It is easy to verify that L* is a well defined linear operator.
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Remark 1.1. In the case of complex scalars, we want to point out that all
our development is valid if instead of being linear in the second variable, the map
[-,-]: X xY — C is conjugate linear. This applies specially to the case of a
complex Hilbert space. )

Let (X,Y;[-, -]) be a P-space. If a subspace ® C X is dense, then ¢ clearly
is a test space for Y. Next we see the reciprocal is not true.

Ezample 1.1. Let X and Y be the Banach spaces L®(R") and L'(R"),
respectively. Defining

[u,v] = / uvdz, u € L®(R"), ve L*(R"),

we see that (X,Y;[-,-]) is a P-space. Take & = CZ®(R"), the space of those
functions on R" which are indefinitely differentiable and have compact support.
Although C®(R") is not dense in L°(R"), from the du Bois-Reymond lemma [1,
p. 59] it follows that C°(R™) is a test space for L}(R™).

2. Space of distributions for linear operators in the class C(¥).
Let (X,Y;[-,-]) be a P-space and consider a finite family of linear opertors £ =
{Ly,...,Ln}. To construct a space of distributions for £, the extension we make
of Schwartz methods requires that the adjoint operators L, ..., L}, be defined and
that they leave invariant a test space ¥ for X. This motivates the next definition.

Le ¥ be a test space for X. Given a linear operator L : D(L) C X — X, we
say that L belongs to the class C(¥), and write L € C(¥), if D(L) is a test space
for Y, ¥ C D(L*), and

L"(¥n)ceny, I=12..., (2.1)
where Y7 = J7}(X!), J being the canonical identification of ¥ in X’.

Ezample 2.1. Let  C R"” be a nonempty open set. Fix a sequence {K;} of
compact sets such that K; C int Kj4q and Q@ = |J; Ki. Foru € L (Q),1 < p < o0,

loc
consider the seminorms Y
P
nw={ [ wpas}
K,

Then, X = L2 _(f) is a Frechet space. Next, take Y = L2'(Q) the space of all those

loc
functions in LP'(Q) that have compact support contained in  where 1/p+1/p’ = 1.
~ Defining
(4, 5] = /uv de,  well (), veI?(Q)

we can verify that (X,Y;{-,-]) is a P-space. Moreover, the du Bois-Reymond
lemma implies that ® = ¥ = C(R) is a test space for Lf, () and L?' () respec-
tively.

Let X; = (X,p),1=1,2,...,and ¥; = {v € L* () : supp(v) C K;}. Then,
Y; is a Banach subpace of L? (). Given v € 1, it is clear that Jv € X|. Using the
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usual identification betwen Lf;(I{l)' and L?'(K)), it follows that J: ¥ — X] is an
isometric isomorphism.

Hence, for ¥ = CZ(Q2), we have ¥ NY; = {p € C=(Q) : supp(¢) C Ki}.

Returning to our discussion, let £ = {Ly,...,L,} be a family of linear op-
erators in the class C(¥). For each [ € N, let L}, be the restriction to ¥ NY; of
L}, and £*(l) the family of these restnctlons We now define the metrizable locally
convex space ¥y, as ¥; = ¥ NY; with the topology inherited by V= (Y;; £*(1)). It
follows from Lemma 1.1 that ¥; — ¥;4,, and Lemma 1.2 implies

WY, I=12.... ' (2.2)

Also, from (1.1), we have ¥ = | J, ¥;.

Let us consider in ¥ the inductive limit topology defined by the increasing
sequence of locally convex Hausdorfl spaces ¥; «— ¥;;;. The next result shows
that this topology turns ¥ into a locally convex Hausdorff space, which is simply
referred to as the test space. This test space will be denoted by ¥(X; L) or simply
by ¥.

LEMMA 2.1. If L is a finite family of operators in C(¥), then: (i) the canonical
identification J : W(X; L) — X is continuous; (i1) ¥(X; L) is o Hausdorff space.

Proof. (i) From the properties of an inductive limit topology, it is sufficient
to show that, for each I € N, J : ¥; — X! is continuous (Schwartz {7, p. 20, Cor.
A22]. For this, let us note that J can be expressed as the composition

U Y 2 X o XL
From (2.2), the definition of || - ||;, and Lemma 1.1, it follows that the composition
is continuous. :

(it) It is immediate from the fact that J is one-to-one, and X is Hausdorff.

Example 3.1 shows that the test space ¥(X; L) is not necessarily complete.
Moreover, applying the theory of inductive limits, we can see that several properties
of the spaces ¥; are inherited to the test space ¥(X;L) [2, pp. 6 and 11]. In
particular, since each ¥ is a locally convex metrizable space, we have the following

PROPOSITION 2.2. The test space ¥(X; L) is bornological.

Given a nonnegative integer m and ¥ = (41,...,9m) € 1™ recall the nota-
tion LY = L3 ...LY '

ProPOSITION 2.3. For each i)ositive integer m and subinder v € I,(,m), the
linear operator L3 : ¥W(X; L) — ¥(X; L) is continuous.

Proof. From the properties of the inductive limit, it suffices to show that
each L} : ¥ — ¥(X; L) is continuous. Since ¥; — ¥(X; L), from (2.1) it suffices
to prove the continuity of each L] : ¥; — ¥;. But this is immediate from the
definition of ¥; and Lemma 1.2.
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The dual of the test space ¥(X; L) is now defined to be the space of distri-
butions corresponding to the family £ and the space X.

PROPOSITION-2.4. The space of distributions ¥(X; L), is complete.

Proof. As the strong dual of a bornological space is always complete (Bour-
baki, p. 12), the conclusion is immediate from Proposition 2:3.

In the following we represent by K (R or C) the field of scalars.

ProprosiTION 2.5. Let u : ¥ — K be e linear functional. Then, u is a
distribution if and only if for every 1 = 1,2,..., there ezist C; and m; € N, such
that :

(¥, u)| < Comax{[IL39g[|” : (] s mi}, e (2.3)

Proof. From the properties of the inductive limit, u is continuous if and
only if each restricition u : ¥; — K is continuous. Since ¥; is a locally convex
metrizable space, whose topology can be generated by the increasing sequence of
norms |[%llz. ,, = max{||L}¥||” : [y] < m}, the continuity of u : ¥; — K is
equivalent to condition (2.3).

Given z € X, we define the linear functional Iz : ¥ — K by (¢, Iz) = [z, )],
YeV,

THEOREM 2.6. The following holds: (i) Iz € ¥(X;L), for each z € X;
(i) I: X — ¥(X; L), is a continuous linear operalor.

Proof. (i) ss an immediate consequence of (1.7) and Proposition 2.6.

(i1) Let {z+} be sequence such.,that z; — 0in X. We must show that Iz — 0
in ¥(X; L),. From the definition of strong toplogy this is equivalent to show that
Iz — 0 uniformly on each bounded subset of ¥(X;L). Let then B be a bounded
subset of ¥(X; £). From Lemma 2.1, J(B) is a bounded subset of X!. Let us pick a
sequence {r;} of positive numbers satisfying v — +o00 and r¢zy — 0 in X. Then,
by definition of the strong topology in X!, there is a C > 0 such that

C 2 [(reze, JY) = rellze, ¥)l = rel (¥, Ize)] - (k=1,2,...),
for all ¥ € B. This implies that Iz — 0 uniformly on B.

Since ¥ is a test space for X, I : X — ¥(X; L)' is an injective linear operator.
This will allow us to identify X with I(X) C ¥(X; L), and so we call I the canonical
identification of X in ¥(X;L)'.

Let ¥ C Y be a test space and L € C(¥)." Then, the mazimal closed extension
of L, L: D(L) C X — X, is defined by the condition

(Lz,¢] = [z, L™}, z € D(L), y € V.

The basic properties of L are summarized in the following lemma, which can
_be rapidly verified.
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LEMMA 2.7. IfL € C(\I’) then: (1) L is a closed linear operator; (ii) L is
closable and L C L, where L is the (usual) minimal closed extension of L.

THEOREM 2.8. Let L = {L,,...,Ln} be a family of linear operators in C(¥).
If the identification I : X — U(X; L) is onlo, then each of the linear operators
Ly,...,Ly is continuous.

Proof. Let £ € X. From propositions 2.4 and 2.7 it follows that the linear
functional u : ¥(X; L) — K, given by (y,u) = (L}¢, Iz), ¥ € ¥, is continuous.
By our hypothesis, there exists a z € X such that

(Liv,Iz) = ($,1z), % €V¥ or equivalently, [z, L;¥]=[z,¢], veV.

This shows that z € D(L) and L;z = 2.

Since the linear operator L is closed and D(L;) = X, the conclusion is
obtained by applying the closed graph theorem.

From the condition (2.1) it is easy to check that for £ = {L1,...,L,} C C(¥),
and ¥ = (711,.-. ,m) € ™ we have

[Lyz,y] = [z, L 4], z€D(Ly), ye V. (2.4)

where Yop = (Ym, ... ,71)-

If u € ¥/, (2.4) motivates to define the linear functional Lyu: ¥ — K, in the
weak sense (or in the sense of distributions), as

(¥, Lyu) = (L3, ¥, ), Yvev. (2.5)

It follows from Proposition 2.4 that L,u € ¥(X; L)

If z € X, then Theorem 2.7 implies that Iz € ¥(X; £)'. In this case we write
L,z instead of LIz, and we interpret in the weak sense. Thus

(¥, Lyz) = [z, L], ¥], Y EU. (2.6)
It follows from (ii) of the next proposition that, via the identification  — Iz, L,
is an extension of L., which will be called the weak eztension.

Proceeding directly from the respective definitions, we obtain
PROPOSITION 2.9. (i) The weak extension Ly : W(X; L)Y — W(X;L) is the
dual operator of L), : ¥(X; L) — ¥(X;L).

(i) If = € D(Ly), then LyIx = ILyx, where L, is the mazimal closed
extension of L.

(i) Ify = (11, -+, ¥m) € IS™, then Ly=Ly o...0L, inthe weak sense.
Let u € ¥(X; L) and v € I,(m). We write Lyu € X, if there exists a z € X

such that L,u = Iz. This is equivalent to the condition (L‘ hu)=[2,¢9), eV,
If this is the case, we write L u = z.
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LEMMA 2.10. If z € X and Ljz € X, where L; is the weak extension, then
¢ € D(Lj) and Ljz = Ljz.

Proof. From (2.6) we have Ljz € X if and only if there is a 2 € X such that
[z, L}Y] = [2, 9], ¥ € V. This means precisely that z € D(L;) and Ljz = z = L;z.

Ezample 2.2. Let us continue in the context of Example 2.1 with p = 1.
There we have shown that ¥; = J=1(X]) = {v € L®() : supp(v) C K;}, and the
norm in Y; is the L*°-norm. Thus, for ¥ = C°(R), we have ¥NY; = {¢ € C(Q) :
supp(¢) C Ki}. From this it follows immediately that the family of operators

0 0
3-—{5;—1,...,5;:—;},

belongs to the class C(C°(Q)).

Notice now that the convergence ¥ — v in ¥, is equivalent to 9%y — %%
uniformly on the compact set K, for every multi-index «. Therefore

¥(Lioc(9);0) = D(R),
the space of test functions on £ with the Schwartz topology; and
¥(Lioc(92);0) = D(QY,

the space of distributions on Q.

Going back to our initial context, let £ = {L;,...,L,} be a family of linear
operators in the class C(¥). Take L : D(L) C X — X, of the form

L= Y ayL,, 2.7)
[rlgm
where a, € K. Note that L € C(¥).

ProPOSITION 2.11. Let L be an operator as in (2.7). Then:
() W60 — WD), (i) W(X; LY, — W(X; L),

Proof. (i) Being ¥(X;L) the inductive limit of the increasing sequence of
spaces {¥;(X; L)}, it is enough to show that ¥;(X;L) <« ¥(X;L). But since
U(X; L) «— ¥(X; L), then it is sufficient to estabilish the continuity for each one
of the inclusions ¥;(X; L) — ¥;(X; L).

So let {yr} be a sequence such that yx — 0 in ¥;(X;L). Then
L.‘;yk — 0 in ¥;(X; L), for every subindex v. (2.8)

Taking into account that (L*)™, m =0,1,..., is a linear combination of operators
of the form L3, from (2.8) it follows that

(L)Y — 0 in ¥ (X;L), m=0,1,...;
hence yp — 0 in ¥;(X; L).
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(i) It is immediate from (i).

3. The normed case. In this section we want to make some remarks
concerning the space of distributions ¥(X; L)', when X is a Banach space.

Let (X,Y;[-,]) be a P-space, where X is a Banach space with norm || - Il-

In Y we consider the negative norm || - ||~ given by (1.6). Let ¥ be a test space
for X. Condition (2.1) takes now the simpler form
L}(¥)C v, i=1,...,n (3.1)

Let £ = {L1,...,Ls} be a family of operators in the class C(¥). It follows
readily that each Lj : D(L") CY — Y is a closed operator. Next, denoting by
L* the famxly of these closed operators, we form the family of spaces V™(Y; L*),
m=0,1,...,400. According to (1.4), we consider on V™(Y;L*), m < +oo, the
norm

llvll e m = max{||L39l™ : [y] S m}.
Then ”yHC‘,m S ”ynﬂ‘,m+11 ye Vm+1(y ;L:*)-

From the condition (3.1) we have ¥ C V™(Y;L*), m = 0,1,... ,+00; so we
can define for m=0,1,...,+oo,

Ve*(Y; £*) = closure of ¥ in V™(Y; L").

In this normed case, the test space ¥ C V1 (Y; L*) is metrizable, and its
topology is generated by the increasing sequence of norms

(I o :m=0,1,...}.
Since ¥ is dense in V5t (Y; £*), from the Hahn-Banach theorem we have
U(X; L) = Ve (Y; L), (3.2)
Remark 3.1. If the locally convex metrizable space Vg™ (Y; £*) is separable
(this will happen if Y is separable), then
U(X; L), = V5o (Y5 L)
(Grothendieck, p. 62, Corollary 4).

To end this work we want to show that our approach also yields the space of
tempered distributions.

Ezample 3.1. Consider the Banach space X = LI(R”) and let Y = L®(R").
Taking

(v, 9] =/ wdz, ueL'(R"), ve LP(R™),

it is clear that (X,Y;[-,-]) is a P-space. By the du Bois-Reymond lemma, ¥ =
C®(R") is a test space for L!'(R"). Take now the family

0 0
L= {ﬁ,...,gz,xl,... ,.’En},
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. where z; represents the multiplication by the monomial z; and note that £ C C(‘I!)

PROPOSITION 3.1. The topology of the tesi space W(L'(R™); L) is the topology
¥ = CP(R") as a subspace of the Schwartz space S(R™).

Proof. Let us denote by ¥s, the space ¥ together with the topology induced
as a subspace of the Schwartz space S(R"). Then, the topology of ¥ is generated
by the family of seminorms

¥lla,p = sup{l=2°0°¢(2)| : z € R"},

where a and g are arbitrary multi-indices. On the other hand, the topology of
¥ = ¥(L}(R"); £) is generated by the family of norms

¥ll = max{lIZ5 $ll gy : (] < ),

;C*:{ 9 . e 9 :121,..‘,2:,;}.4

dz," 7 Oz,

It is now clear that ¥ < ¥g. The other continuous inclusion, ¥g <« ¥, is
established just by observing that for any subindex -, L34 can be expressed as a
sum of terms of the form 229%4.

where

CoROLLARY 3.2. (i) W(LY(R™);L) is the space of tempered distributions
S(R™Y.
(i) $(LY(R); £); = S(R™);,.

Proof. (i) Immediate from the Hahn-Banach theorem, since C2°(R™) is dense
in S(R").

(ii) Since S(R™) has the Heine-Borel property, it is separable (Gelfand-Shilov,
p. 58). The result follows from Remark 3.1.
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